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Abstract

A new key agreement scheme based on the triple de-
composition problem over non-commutative platforms is
presented. A realization of the new scheme over braid
groups is provided and the strengths of it over earlier
systems that rely on similar decomposition problems are
discussed. The new scheme improves over the earlier sys-
tems over braid groups by countering the linear algebra
and length based attacks to the decomposition problem
in braid groups.
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1 Introduction

One of the main tasks in cryptography is the encryption
and decryption of private messages. A key exchange sys-
tem allows the users to agree on a common key to encrypt
and decrypt their messages. We call this common key the
shared key. The secrecy of the shared key is the main
concern in a key exchange system. The first key exchange
scheme was introduced by Diffie and Hellman in 1976 [7],
and independently by Merkle in 1978 [23]. The security
of the Diffie-Hellman key exchange system relies on the
difficulty of the Diffie-Hellman problem over finite fields.
Emergence of index calculus attacks against the discrete
logarithm problem, developments in quantum computing,
and also curiosity of mathematicians have led to search for
new cryptosystems; cryptosystems relying on hard prob-
lems of different natures.

Various key agreements schemes to work on commuta-
tive settings, enhancements on existing schemes, and their
cryptanalysis have been studied since Diffie and Hellman
proposed the concept of key agreement protocols (KAP)
and public key cryptosystems (PKC) in 1976. In more
recent years, the demand in mobile communications re-
sulted in studies addressing security concerns in these
communications. Authentication and key agreement pro-
tocols took their place as one of the pillars of security in

these studies [16, 20, 25].
In 1999 Anshel et al. introduced a new key agree-

ment scheme using non-commutative groups known as the
Commutator KAP exploiting the difficulty of conjugacy
search problem [1]. Following this new line, Ko et al. in
2000 and Cha et al. in 2001 proposed new schemes that
also work over non-commutative groups [5, 18]. How-
ever these systems have been vulnerable to some attacks
[6, 13, 14, 15, 21]. A more recent key agreement proto-
col that relies on solving multivariate equations on non-
commutative rings has been proposed by Yagisawa in 2012
[28, 29].

In this paper we introduce a new way to do key ex-
change. The method works over non-commutative struc-
tures and is designed to counter the weaknesses of the
earlier systems; in particular the weaknesses in the re-
vised Diffie-Hellman like (DH-like) key exchange system
[5]. The revised DH-like system is considered to be
the stronger system among the earlier systems over non-
commutative groups. It has been realized over braid
groups and its security relies on the difficulty of the de-
composition problem over braid groups. The decompo-
sition problem is to decompose a given element u in the
group, into a1ga2 where g is known and a1 and a2 are un-
knowns that satisfy some commutativity conditions. Even
though the decomposition problem over braid groups is
hard in general, the special choices that had to be made
for the system to be practical and the linear nature of
the relations between the public and private keys allowed
some attacks to yield feasible solutions [27].

The improvement in the new scheme is that the re-
lation between the public and private keys is no longer
only linear; one has to deal with quadratic relations in
addition to linear ones in order to find a key that works.
The underlying problem is again a type of decomposition
problem which we call the “triple decomposition prob-
lem”. Stated roughly, it is the problem of decomposing
an element into parts in which there are three unknowns
that satisfy certain commutativity and invertibility con-
ditions.

There have been some attacks against decomposition
problems over braid groups in general. One line of at-
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tacks uses linear representations of braid groups. These
have been successful against the revised DH-like system
[6, 15, 21]. Another line of attack uses a length-based
probabilistic approach to solve equations in certain cases
over braid groups [12]. Also, an attack that uses De-
hornoy’s handle reduction method as a counter measure
to diffusion and as a tool for simplifying braid words
has been successful against the revised Diffie-Hellman like
scheme [24]. We discuss the effectiveness of these attacks
on the new system in section 6. A recent development
in cryptanalyis of Commutator KAP and DH-like scheme
is given in [26]. The polynomial-time algorithms they
propose to solve the underlying problems in the afore-
mentioned schemes do not seem to apply to the scheme
proposed in this manuscript as is stated in [26] (page 18).

We start by describing the revised DH-like system in
section 2. In section 3 we describe the new primitive and
discuss the security for a general platform. We state some
cases that need to be avoided so that the system truly
relies on the triple decomposition problem.

In section 4 we give a rough exposition of braid groups;
we list the properties that make them useful for cryp-
tography. We also briefly mention the representations of
braid groups as they are one of the tools in attacking the
systems that uses braid groups as platforms.

In section 5 we describe the revised DH-like scheme in
the braid group setting and concentrate on why certain
types of attacks work against it.

In section 6 we discuss the new primitive over braid
groups. We provide two settings for the new scheme over
braid groups. The first setting is simple but exhibits a
vulnerability. It is introduced in order to motivate the
second setting where the relations between the private
and the public keys are quadratic. This renders the linear
representation attacks ineffective. Also, the subgroups in
the final setting are generated by short generators and
this foils length-based attacks. The choice of subsets also
thwarts the attacks that use handle reduction. So, when
known attacks against similar systems are considered, the
new system stands strong.

The linear algebra attacks we consider are via Burau
representation because the representation is simple and is
more likely to yield feasible solutions.

In section 7 we discuss practicality of the new scheme
in terms of key size and the complexity of the operations
during key exchange. Another practical concern that re-
quires further research is the authentication to be used
with the key exchange. The protocol as described in the
subsequent sections is secure against passive eavesdrop-
ping adversary, but it is not secure against active adver-
sary; for example against man-in-the-middle attack. Se-
cure protocols and properties required of such protocols
for authenticated key exchange have been discussed in
various articles such as [2, 3, 8, 9, 22].

Even though more research is required in order for the
system to be promising in practice, we think it is a worth-
while direction to pursue as it brings a new perspective
in non-commutative cryptography. Even if braid groups

turn out to be not suitable as a platform, there may be
other groups or monoids on which the new primitive can
be explored and hopefully work.

In order to describe the scheme in a more general set-
ting we take the underlying structure to be a monoid.

Definition 1. A monoid is a set with an associative bi-
nary operation and an identity element. It is almost a
group except that the elements may not be invertible.

Notation 1. Let G be a monoid. We write G multiplica-
tively and use the notation [A,B] = 1 for two subsets A,
B of G when ab = ba for all a ∈ A and b ∈ B.

Suppose Alice and Bob are the two parties who want to
agree on a key.

2 DH-like Key Exchange

Let G be a non-commutative monoid and g an element in
G. Let L and R be two subsets of G satisfying [L,R] = 1.

2.1 Setting the private and the public
keys

1. Alice and Bob agree on who will use which subset, say
Alice uses L and Bob uses R.

2. Alice randomly chooses a1, a2 ∈ L and computes u =
a1ga2. Her private key is (a1, a2) and her public key is u.

3. Bob randomly chooses b1, b2 ∈ R and computes v =
b1gb2. His private key is (b1, b2) and his public key is v.

2.2 Key exchange

To agree on a key Alice and Bob do the following:

1. Alice sends Bob her public key u.

2. Bob sends Alice his public key v.

3. Alice computes a1va2 = a1(b1gb2)a2.

4. Bob computes b1ub2 = b1(a1ga2)b2.

Since ai and bi commute (because they come from L and
R respectively), Alice and Bob agree on

shared key = a1b1ga2b2.

2.3 Security

In genreal, for any key exchange system, one can proceed
in one of the following ways to find the shared key:

1. Find the private key (or a pseudo-key, a key that
works like a private key) of one of the users using
his/her public key.
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2. Find the shared key using the public keys of the users
without necessarily finding a private key.

The first problem, in the Revised DH-like scheme,
translates to finding a1, a2 in L given g and u = a1ga2

in G. This is called the decomposition problem.
The second problem, in the Revised DH-like scheme,

translates to finding a1b1gb2a2 given a1ga2 and b1gb2. We
call this the Diffie-Hellman like composition problem.

Depending on the particular platform and system pa-
rameters (the element g and the subsets L and R) there
may be different approaches to solving these problems. In
section 5 we will describe a realization of the scheme over
braid groups and discuss attacks against this realization.

3 The New Scheme

3.1 The protocol

The system requires a non-commutative monoid G and
two sequences containing 5 subsets of G each, say A =
{A1, A2, A3, X1, X2} and B = {B1, B2, B3, Y1, Y2}, satis-
fying the invertibility and commutativity conditions:

i. (Invertibility conditions) The elements of
X1, X2, Y1, Y2 are invertible.

ii. (Commutativity conditions) [A2, Y1] = 1, [A3, Y2] =
1, [B1, X1] = 1, and [B2, X2] = 1.

3.1.1 Setting the private and the public keys

Suppose a monoid G and the subsets A =
{A1, A2, A3, X1, X2} and B = {B1, B2, B3, Y1, Y2}
satisfying i and ii above are fixed. Alice and Bob carry
out the following steps:

1. Alice and Bob agree on who will use which set of
subsets; say Alice uses A and Bob uses B.

2. Alice randomly chooses a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,
x1 ∈ X1, x2 ∈ X2, and computes:

u = a1x1, v = x1
−1a2x2, and w = x2

−1a3.

Her private key is (a1, a2, a3) and her public key is
(u, v, w).

3. Bob randomly chooses b1 ∈ B1, b2 ∈ B2, b3 ∈ B3,
y1 ∈ Y1, y2 ∈ Y2, and computes:

p = b1y1, q = y1
−1b2y2, and r = y2

−1b3.

His private key is (b1, b2, b3) and his public key is (p, q, r).

3.1.2 Key exchange

To agree on a key Alice and Bob do the following:

1. Alice sends Bob her public key (u, v, w).

2. Bob sends Alice his public key (p, q, r).

3. Alice computes a1pa2qa3r.

4. Bob computes ub1vb2wb3.

Note that Alice computes

a1pa2qa3r = a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3)

= a1b1a2b2a3b3

and Bob computes

ub1vb2wb3 = (a1x1)b1(x−1
1 a2x2)b2(x−1

2 )a3b3

= a1b1a2b2a3b3.

The commuting conditions ensure that they agree on

shared key = a1b1a2b2a3b3.

The idea is to hide the private key by multiplying each
component by some elements from the monoid. These el-
ements are chosen from subsets satisfying the invertibility
and commutativity conditions so that both parties com-
pute the same key. Note that there are no conditions on
the subsets A1 and B3. If security is not sacrificed, they
may be chosen in a special way to make the system more
practical; for instance to have smaller key sizes.

3.2 Security

For some choices of subsets in the scheme the shared key
can be computed from the public keys immediately. If
these cases are avoided it seems that the only way to
attack the system is to deal with equations that relate the
public and private keys, i.e. solve the system of equations

a1x1 = u (1)

x−1
1 a2x2 = v (2)

x−1
2 a3 = w (3)

for a1, x1, a2, x2, a3 satisfying the invertibility and com-
mutativity conditions. These conditions are automati-
cally met if it is made sure that x1, a2, x2, a3 come from
X1, A2, X2, A3 respectively. The problem is then to de-
compose v and w into elements from the respective sub-
sets in such a way that the inverse of the last component
of v is the first component of w. Note that because there
are no restrictions on a1, once x1 is found, u can be de-
composed into a1x1 by taking a1 = ux−1

1 .
Solving (2) requires v to be decomposed into three ele-

ments, and solving (3) requires w to be decomposed into
two elements. The former is generally a harder task than
the latter. One can think of (2) as a quadratic equation
in terms of the unknowns simply by rewriting it in the
form a2x2 = x1v whereas (3) is considered linear.

The main difference of the new scheme from the ear-
lier systems over non-commutative structures is that one
has to deal with quadratic relations which in terms of de-
composition becomes the triple decomposition problem.
In this setting the triple decomposition problem can be
defined as:
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Definition 2. Let G be a non-commutative monoid and
X, Y, A be subsets of G where elements of X and Y are
invertible and satisfy some commutativity conditions. The
Triple Decomposition Problem (TDP) in G is the problem
of finding x ∈ X, a ∈ A, and y ∈ Y given u = xay ∈ G.

In the general setting, the security of the system re-
lies on the triple decomposition problem. Depending on
the specific platform and choices of subsets, the security
may be stated more precisely. We would like to note that
when we say solving the system we do not mean finding a
private key in the underlying platform. Depending on the
platform it may be possible to map the the system into a
different structure where tools to deal with these types of
equations exist. This is going to become clear when we
discuss the system over a specific platform, namely braid
groups.

In the following section we discuss the cases in which
the shared key can be computed from the public keys im-
mediately as well as the cases in which solving the system
of equations does not require solving the triple decom-
position problem. So, these cases should be avoided to
have a system truly relying on the triple decomposition
problem.

3.2.1 Cases to be avoided

In this section we give some cases in which the shared key
can be computed without requiring to solve a quadratic
system and hence should be avoided. These cases are
in a way obvious cases that should be avoided over any
platform. There may be other cases that needs to be
avoided depending on the platform chosen. One should
pay attention to such platform-specific cases.

The cases listed in the remarks 1 and 2 below allow
immediate computation of the shared key from the public
keys hence should be avoided.

Remark 1. If [X1, Y1] = 1, [X2, Y1] = 1, and [X2, Y2] =
1 then the shared key can be computed from the public keys
by

(a1x1)(b1y1)(x−1
1 a2x2)(y−1

1 b2y2)(x2a3)(y2b3) =upvqwr.

Remark 2. If [A2, B1] = 1, [A3, B2] = 1, and [A3, B1] =
1, then the shared key can be computed from the public
keys by

(a1a2a3)(b1b2b3) = uvwpqr.

Remark 3. For the system to truly rely on solving (2)
(i.e. quadratic equations) we need to make sure that there
are many solutions to (3).

When there are few solutions to (3), the security of the
system mainly relies on (two instances of) decomposing
an element into two elements: First decompose w into
x−1

2 a3, then substitute x−1
2 in (2) and decompose vx−1

2

into x−1
1 a2.

Another case that needs to be necessarily avoided in
order to have a true TDP involved is given in the following
remark:

Remark 4. If [A2, B1] = 1 and [X2, B1] = 1, or
[A3, B2] = 1 and [A3, Y1] = 1, then the security of the
system relies on the difficulty of decomposing an element
into two elements.

When [A2, B1] = 1, the shared key is a1a2b1b2a3b3.
Multiplying the first two components of Alice’s public key,
we get the equation a1a2x2 = uv. We need to check if
having a1a2 together in the shared key and in the equation
above implies any vulnerabilities. We need to investigate
if/when decomposing uv into ax2 with a ∈ G, x2 ∈ X2

suffices to compute the shared key. We need to check if

apqa3r = shared key.

Substituting pq = b1b2y2 on the left hand side above and
then using [A3, Y2] = 1 and a = uvx2

−1 for the second
equality, and a3 = x2w for the third equality on the left
hand side we get

a(b1b2y2)a3y
−1
2 b3 = (uvx2

−1)(b1b2)a3b3 (4)

= (uvx2
−1)(b1b2)x2wb3.

Note that the shared key is ub1vb2wb3. The last expres-
sion in equation (4) above is equal to the shared key if
[X2, B1] = 1, because then we have vb1 = b1v. This
explains the first case in Remark 4. Similar arguments
apply for having b1b2 together and the case [A3, B2] = 1
and [A3, Y1] = 1.

4 Braid Groups

Braid groups are infinite, non-commutative, finitely pre-
sented groups with properties desirable in cryptography
for practical applications [5, 10, 11]. They have been
used in cryptosystems such as Arithmetica [1] and Diffie-
Hellman like braid-based systems [5, 18]. Here we give a
brief explanation of braid groups that helps to state these
practical properties. We also very briefly mention two lin-
ear representations of braid groups that have been useful
in attacking braid-based cryptosystems.

Definition 3. The n-braid group Bn is an infinite, non-
commutative (for n ≥ 3) group defined by the following
group presentation

Bn =

〈
σ1, σ2, . . . , σn−1 |

σiσj = σjσi, |i− j| ≥ 2

σiσjσi = σjσiσj , |i− j| = 1

〉

The integer n is called the braid index and the elements
in Bn are called n-braids or simply (braid) words. The
generators σi are called Artin generators.

4.1 Normal Form and Computations
with Braids

Definition 4. The fundamental braid of index n, denoted
by ∆, is defined to be ∆n−1 where ∆i is defined inductively
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by:

∆1 = σ1

∆i = σ1 · · ·σi∆i−1.

So, ∆ = σ1 · · ·σn−1σ1 · · ·σn−2 . . . σ1σ2σ1.

Theorem 1. ∆2 generates the center of Bn for n ≥ 3.

Definition 5. Let B+
n denote the submonoid of Bn gener-

ated by σ1, . . . , σn−1. Elements in B+
n are called positive

braids.

Definition 6. There is a partial order on Bn defined by

v ≤ w iff

there exist α, β ∈ B+
n such that w = αvβ.

Any v ∈ Bn which satisfies ε ≤ v ≤ ∆ is called a canonical
factor where ε is the empty word.

There is a canonical homomorphism from the braid
group Bn into the symmetric group Sn, say π : Bn → Sn,
which maps σi onto the transposition interchanging i and
i + 1. The restriction of this homomorphism to the set of
canonical factors induces a bijection. Due to this bijection
a canonical factor is also called a permutation braid.

Definition 7. Let u be a positive braid. A factorization
u = vw into a canonical factor v and a positive braid w is
said to be left weighted if v has the maximal length among
such decompositions.

Definition 8. Every braid word W in Bn can be written
uniquely in the form ∆kp1p2 . . . pl where ∆ is the fun-
damental braid of index n, k is an integer, and pi are
permutation braids satisfying ρiρi+1 is left-weighted for
1 ≤ i ≤ l−1 [10]. This form is called the Garside normal
form and l is called the canonical length of W .

The following are the properties that make braid
groups suitable for applications.

1. The number of n-braids of canonical length l is at
least (bn−1

2 c!)l [18].

2. Let W be a word on σi’s with word length s. Then
the left-canonical form of W can be computed in time
O(s2 log n) [11]. This implies a fast solution to the
word problem.

3. Each canonical factor can be represented by a permu-
tation on n letters so requires n log n bits. Therefore
a braid of canonical length l can be represented by a
bit string of size ln log n.

4. Let U = ∆up1 . . . pl and V = ∆vq1 . . . qk be the left
canonical forms of n-braids. Then the left canonical
form of UV can be computed in time O(lkn log n)
and the left canonical form of U−1 can be computed
in time O(ln) [11].

4.2 Linear Representations of Braids

Braid groups have two well-known linear representa-
tions: Burau Representation [4] and Lawrance-Krammer
(LK) representation [19]. In the Burau representation,
the braid group Gn is mapped into the matrix group
GLn−1(Z[t±1]), the group of (n − 1) × (n − 1) matrices
of Laurent polynomials over integers. The entries in the
matrices in this representation are quite simple: Image of
the generator σi is the (n− 1)× (n− 1) matrix obtained
from the identity matrix by replacing the central (i, i+1)
square with

(
1−t t
1 0

)
, i.e. image of σi is




Ii−1 0 0
0 1−t t

1 0 0
0 0 In−i−1




where Ik is the identity matrix of size k.
The small size matrices and simple entries make com-

putations more efficient in Burau representation but the
representation is not faithful for n ≥ 5. On the other
hand, Lawrence-Krammer representation is faithful but
the matrices in this representation are big and the entries
are not as simple. The braid group of index n is mapped
into n× (n− 1) matrices over Laurent polynomial ring in
two variables over integers. In this paper we will give anal-
ysis of the system using Burau representation. Analysis
via LK representation seems less efficient. Nevertheless it
needs to be done. We hope to provide it in the very near
future.

5 Revised DH-like Scheme Over
Braids and Attacks Against It

The revised DH-like scheme requires two commuting sub-
sets L and R (see section 2). In braid groups commuta-
tivity is easily achieved by taking generators apart from
each other. In the system over braid groups L and R are
taken to be the subgroups generated by the (almost) left
half and the right half of the generators respectively [5].
i.e. L = 〈σ1 . . . σbn−1

2 c〉 and R = 〈σbn−1
2 c+2 . . . σn−1〉.

Revised DH-like system in the above setting over braid
groups has been vulnerable to various types of attacks.
One type of attack is linear algebra attacks in which a
representation of braid groups is used to map the system
into a matrix group. The equations are solved in the ma-
trix group for the (image of the) shared key. Once the
(image of the) shared key is found, it is pulled back into
the braid group. In order for this to work a faithful rep-
resentation with a feasible algorithm to pull the solution
back is required. Both Burau representation and LK rep-
resentation have been used to attack the system. They
have been effective against the revised DH-like system be-
cause of the combination of the properties of the system
listed below. We consider the Burau representation here
but attacks via LK representation make use of the same
properties [6].
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1. When the system is mapped into the matrices one
gets a system of linear equations to solve. Recall that
the equation relating the public and private keys is
a1ga2 = u. Rewriting this in the form

a1g = ua−1
2

we get a linear equation.

Let ρ : Gn → GLn(Z[t±1]) be the Burau representa-
tion of the braid group Gn and let A1, G, A−1

2 , U be
the images of a1, g, a−1

2 , u under ρ. Then any solution
(A′1, A

′
2) to the system A1G = UA−1

2 satisfying the
commuting condition that A′iM = MA′i for all M ∈
ρ(L) for i = 1, 2 allows the computation of (the image
of) the shared key: If the image of Bob’s public key is
V then (image of) the shared key is A′1V A′2 because
A′1V A′2 = A′1B1GB2A

′
2 = B1A

′
1GA′2B2 = B1UB2,

which is how Bob would compute the shared key.
Note that the system of equations is over Laurent
polynomials with integer coefficients.

2. The braid words in the subsets L and R in the setting
above are mapped to matrices in nice block forms so
the system to solve is simpler than a random system.
On Alice’s side for example we have

A1 =
[

A11 0
0 I

]
, A2 =

[
A21 0
0 I

]
,

U =
[

U1 U2

U3 U4

]
, G =

[
G1 G2

G3 G4

]
.

The entries are all n
2 × n

2 matrices (assuming n is
even).

And so the system to solve is

[
A11G1 A11G2

G3 G4

]
=

[
U1A21 U2

U3A21 U4

]

3. The system can be reduced to positive braids [21]. In
other words,

a1ga2 = u with a1, a2 ∈ L, g, u ∈ Bn iff

a′1g
′a′2 = u′ with a′1, a

′
2 ∈ L+, g′, u′ ∈ B+

n

where L+ consists of positive braid words generated
by the first half of the generators. The reduced sys-
tem gives matrices with polynomial entries instead
of Laurent polynomials in the Burau representation.
The computations are simpler when only polynomials
are involved. Also, even though the Burau represen-
tation is not faithful, there is a heuristic algorithm to
pull the matrix back into the the braid group when
it has polynomial entries (and is in the image). The
algorithm works with non-negligible probability.

Length-based approach for solving equations in braid
groups and its applicability to the decomposition problem
and the conjugacy search problem are discussed in [12,
13]. We will discuss length-based attacks in more detail
in section 6.

Using Dehornoy’s handle reduction method to mini-
mize the lengths of the words has been another way of
successfully attacking the DH-like system [24]. This spe-
cial length-based method takes advantage of the nature
of the equations to be solved as well. That the unknowns
a1, a2 come from Rn (or Ln) and that the the middle
component g in the equation u = a1ga2 is known make
this type of attack successful against the revised DH-like
system.

6 New Primitive over Braids

A possible division of generators that satisfies the com-
mutativity conditions and avoids the cases in remarks 1,
2, 4 in section 3.2 is given below.

Let Gn be the braid group of index n. Let n− 1 = 3d
for some positive integer d ≥ 2. Set

A1 = Bn (5)

X1 = 〈σ1, . . . , σd−1〉 B1 = 〈σd+1, . . . , σn−1〉
A2 = 〈σ1, . . . , σd−1〉 Y1 = 〈σd+1, . . . , σn−1〉
X2 = 〈σ1, . . . , σ2d−1〉 B2 = 〈σ2d+1, . . . , σn−1〉
A3 = 〈σ1, . . . , σ2d−1〉 Y2 = 〈σ2d+1, . . . , σn−1〉

B3 = Bn

so that X1 is generated by the first d − 1 generators
and so on. The condition that the equation x−1

2 a3 = w
has a large solution space (as was required in 3 in section
3.2) is satisfied in this setting, because we have X2 = A3

which gives x2 = x, a = xw is a solution for any x ∈
X2. Even though the above choice of subsets takes the
remarks in section 3.2 into consideration, the system is
vulnerable to linear algebra attacks, in particular using
Burau representation of braid groups.

The images of the braid words corresponding to the
subgroups chosen in setting 5 are matrices in certain block
forms. We assume n− 1 = 3d, so we can think of the ma-
trices to be composed of 9 submatrices of size d× d each.
We use the following convention for these submatrices:
For example the matrices corresponding to braid words
in A1 and in X1 are respectively of the form

a1 =




A11 A12 A13

A14 A15 A16

A17 A18 A19


 x1 =




X11 0 0
0 Id 0
0 0 Id


 .

Having matrices in block forms implies a vulnerability:
some of the non-trivial entries in the images of private
keys get revealed in the public keys when matrices are
multiplied. (The entries of the submatrices that are 0 or
Id are called trivial) For example the first component of
Alice’s public key looks like
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u = a1x1 =




A11X11 A12 A13

A14X11 A15 A16

A17X11 A18 A19

.




Notice that the second and third columns of u and a1

are the same which means those entries of a1 can be read
off from the public key u. Another weakness in this setting
is that the cases in remarks in section 3 are barely avoided.
The shared key a1b1a2b2a3b3 is equal to a1a2b1a3b2b3 in
this setting because a2 and b1, and a3 and b2 commute.
This excess commutativity together with the revealed en-
tries weakens the system. We modify the subsets in set-
ting 6 to counter these weaknesses. The modification is
based on the simple observation that if ab = ba, then
(sas−1)(sbs−1) = (sbs−1)(sas−1) for any s ∈ Gn.

Let s1, s2, s3, s4 ∈ Gn be fixed, system wide parameters
and let X1, X2, A1, A2, A3, Y1, Y2, B1, B2, B3 be as in
5. Set

A′1 = Gn (6)

X ′
1 = {s1xs−1

1 | x ∈ X1} B′
1 = {s1bs

−1
1 | b ∈ B1}

A′2 = {s2as−1
2 | a ∈ A2} Y ′

1 = {s2ys−1
2 | y ∈ Y1}

X ′
2 = {s3xs−1

3 | x ∈ X2} B′
2 = {s3bs

−1
3 | b ∈ B2}

A′3 = {s4as−1
4 | a ∈ A3} Y ′

2 = {s4ys−1
4 | y ∈ Y2}

B′
3 = Gn.

The commutativity conditions are still satisfied with
these subsets. With careful choice of si’s (by careful we
mean si should include a large number of distinct gen-
erators) the block forms are destroyed so no entry gets
revealed in the public keys. The other weakness in the
previous setting, namely the commutativity of certain
parts of the shared key is also avoided. The only case in
the remarks in section 3.2 that is not immediately taken
care of is Remark 3, namely the condition that equation
x′−1

2 a′3 = w has a large solution space for x′2 ∈ X ′
2 and

a′3 ∈ A′3. Written more explicitly the equation

s3x
−1
2 s−1

3 s4a3s
−1
4 = w

or equivalently

x−1
2 s−1

3 s4a3 = s−1
3 ws4 = w′ (7)

should have a large solution space for x2 ∈ X2 and a3 ∈
A3. We will discuss this issue below. Before, we would like
to draw attention to the fact that this equation is similar
to the equation that needs to be solved in the revised
DH-like KE system over braid groups [5]. Namely, find
x, y ∈ H ⊂ G given u = xay and a ∈ G. In the setting
of the Dh-like scheme over braid groups, H is generated
by either the left or the right half of the generators. The
case in the new system is different in two ways:

1. H corresponds to X2 in our case and it consists of
a larger potion of the generators(two thirds instead of a
half).

2. A solution to equation 7 does not necessarily lead to
a working private key. The variable x2 has to also satisfy

s1x
−1
1 s−1

1 s2a2s
−1
2 s3x2s

−1
3 = v

or equivalently

x−1
1 s−1

1 s2a2s
−1
2 s3x2 = s−1

1 vs3 = v′. (8)

The first point is worth mentioning because the tech-
niques that were able to get solutions for parameters sug-
gested in [18] made use of the special structure of the
subgroup H or more accurately the image of H under
linear representations of Gn (see section 5 and [6, 21]).
When we have a larger H this structure changes and the
same techniques may not work.

More important is the second point. One way to pro-
ceed is to substitute a solution of (7) into (8). This gives
another equation of similar type. If this new equation has
a solution that we can compute then we have a key, if not
we try another solution of (7). This works if the solution
space for (7) is small. Otherwise one has to deal with (8)
as a whole which involves quadratic relations.

Now the question is how to make sure that (7) has a
large solution space. We need the definition of a central-
izer before we proceed:

Definition 9. Let G be a monoid (or a group) and let
g ∈ G . The centralizer of g in G is the set of all elements
in G that commutes with g and is denoted by C(g). i.e.

C(g) = {a ∈ A|ag = ga}.
Note that, in the above setting, if x−1

2 = x, a3 = a is
a solution to the system, then so is x−1

2 = xz, a3 = z−1a
for any z ∈ C(s−1

3 s4) ∩ X2. (Recall that in setting (5)
the subgroups X2 and A3 are equal so we have xz ∈ X2

and z−1a ∈ A3 as required.) Therefore in order to guar-
antee a large solution space for (7) we can choose s3 and
s4 so that C(s−1

3 s4) ∩X2 is large. Similarly, for the cor-
responding party, we require C(s−1

1 s2) ∩ Y1 to be large.
Here we will discuss the case for equations on Alice’s side.
The conclusions for Bob’s side can be derived similarly.
One way of having many elements in C(s−1

3 s4)∩X2 is for
C(s−1

3 s4) and X2 to have several common generators. Re-
call that X2 is generated by σ1, . . . , σ2d−1. For example,
if s3 and s4 are chosen so that s−1

3 s4 consists of genera-
tors from σd+1, . . . , σn−1, then X2 and C(s−1

3 s4) will have
σ1, . . . , σd−1in common so (7) will have many solutions.
(On Bob’s side s1 and s2 would be chosen so that s−1

1 s2

consist of generators from σ1, . . . , σ2d−1).
So, rewriting (8), the equation to solve in order to find

a pseudo-key becomes:
Problem: Given v, s, s′ ∈ Gn decompose v into

x−1
1 sa2s

′x2 where x1 ∈ X1, a2 ∈ A2, and x2 ∈ X2.
This problem is again a decomposition problem and it

involves decomposing an element into five pieces three of
which are unknown. So it is a variant of the triple decom-
position problem and involves quadratic equations. There
is no known algorithm to solve this problem. There are
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two lines of attacks against decomposition problems over
braid groups in general: Linear algebra attacks and length
based attacks. As we have explained in section 5.1 linear
algebra attacks have been effective against the decom-
position problem in the revised DH-like scheme. Length
based attacks have been effective against the conjugacy
search problem in the DH-like cryptosystem in [18], and
the multiple conjugacy search problem in the commutator
key exchange protocol in [1]. In the next two sections we
discuss the effectiveness of these methods against the new
system.

6.1 Linear algebra attacks

We give an analysis via Burau representation. We con-
sider the equations on Alice’s side. Let the images
of the braid words in (7) and (8) under Burau repre-
sentation be as follows. Note here that the entries of
s−1
1 s2, s

−1
2 s3, s

−1
3 s4, and s−1

2 s4 are known and the rest
are unknown.

s
−1
1 s2 =




s1 s2 0

s3 s4 0

0 0 1




s
−1
2 s3 =




r1 r2 r3

r4 r5 r6

r7 r8 r9




s
−1
3 s4 =




1 0 0

0 t1 t2

0 t3 t4




s
−1
2 s4 =




p1 p2 p3

p4 p5 p5

p7 p8 p9




x
−1
1 =




x11 0 0

0 1 0

0 0 1




a2 =




a21 0 0

0 1 0

0 0 1




x2 =




x21 x22 0

x23 x24 0

0 0 1




x
−1
2 =




ix21 ix22 0

ix23 ix24 0

0 0 1




a3 =




a31 a32 0

a33 a34 0

0 0 1




From (7) we get w′:

w
′ =




ix21 a31 + ix22 t1 a33 ix21 a32 + ix22 t1 a34 ix22 t2

ix23 a31 + ix24 t1 a33 ix23 a32 + ix24 t1 a34 ix24 t2

t3 a33 t3 a34 t4




and from (8) we get v′ :

First column of v′ =




(x11 s1 a21 r1 + x11 s2 r4) x21 + (x11 s1 a21 r2 + x11 s2 r5) x23

(s3 a21 r1 + s4 r4) x21 + (s3 a21 r2 + s4 r5) x23

r7 x21 + r8 x23




Second column of v′ =




(x11 s1 a21 r1 + x11 s2 r4) x22 + (x11 s1 a21 r2 + x11 s2 r5) x24

(s3 a21 r1 + s4 r4) x22 + (s3 a21 r2 + s4 r5) x24

r7 x22 + r8 x24




Third column of v′ = 


x11 s1 a21 r3 + x11 s2 r6

s3 a21 r3 + s4 r6

r9




Since v′ and w′ are public, we can multiply them to
get v′w′ which yields more equations:

First column of v′w′ =




(x11 s1 a21 p1 + x11 s2 p4) a31 + (x11 s1 a21 p2 + x11 s2 p5) a33

(s3 a21 p1 + s4 p4) a31 + (s3 a21 p2 + s4 p5) a33

p7 a31 + p8 a33




Second column of v′w′ =:




(x11 s1 a21 p1 + x11 s2 p4) a32 + (x11 s1 a21 p2 + x11 s2 p5) a34

(s3 a21 p1 + s4 p4) a32 + (s3 a21 p2 + s4 p5) a34

p7 a32 + p8 a34




Third column of v′w′ =:




x11 s1 a21 p3 + x11 s2 p5

s3 a21 p3 + s4 p5

p9




Note that the discussions in the previous paragraph are
taken into account so that s−1

3 s4 and s−1
1 s2 have the nec-

essary block forms. Also, not only the components of pub-
lic information v′, w′, but also the matrix corresponding
to v′w′ is included as it may lead to useful equations. In
the entries of v′,w′, and v′w′ all the variables are d×d ma-
trices where d = n−1

3 . The single- indexed variables are
known; they are system parameters, the double-indexed
ones are unknown. Looking at the entries of v′, w′, and
v′w′ (each of which is an equation) we draw attention to
the following points:

1. There are linear and quadratic equations. Not all
solutions to the linear equations lead to the shared
key; the solution has to satisfy a quadratic equation
as well. In fact, the choice of subsets ensures that
there are too many solutions to the linear equations
to exhaust by trial and error.

2. The unknowns are again in nice block forms but the
resulting equations are not as simple as they are in
the revised DH-like system (see section 5)

3. The system cannot be reduced to positive braids. Or
more accurately when the system is reduced to pos-
itive braids the respective subsets are not preserved
in equation x−1

1 a2x2 = v so that the nice block forms
that allow one to easily solve the equation are de-
stroyed.

The idea when reducing the system to positive braids
is to multiply the equation by high enough powers of
the “appropriate fundamental braids” so that the un-
knowns when these fundamental braids are included
are positive. “Appropriate fundamental braid” is ob-
tained in a similar fashion as in Definition 4 by using
the generators that generate the respective subgroup.
This makes sense in this setting because successive
generators are used to generate each subgroup. In
equation x−1

1 a2x2 = v, when a power of the “funda-
mental braid” in the subgroup A2 is multiplied (on
the left or on the right) it can’t be moved next to
a2 to put the system in the form x′−1

1 a′2x
′
2 = v′ with

x′1 ∈ X+
1 , a2 ∈ A+

2 , x2 ∈ X+
2 because “fundamen-

tal braid” in the subgroup A2 does not necessarily
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commute with x1 or x2. This method works in the
earlier system, because the middle element in the sys-
tem comes from Bn. Since ∆2 commutes with every
word in the group (Theorem 1), multiplying the sys-
tem by a high enough even power of ∆ and moving it
into the middle using commutativity, one is able to
get a positive braid in B+

n in the middle as desired.

6.2 Length-based attacks

In [12] Garber et al give a probabilistic method to solve
a system of equations in a random finitely generated sub-
group of the braid group. They make use of a “mono-
tonic” length function - a length function which satisfies
that the expected length tends to increase with the num-
ber of generators (of the subgroup) multiplied. In the
analysis they provide, the subgroup is generated by el-
ements that are composed of 10 Artin generators each.
They state that if the generators can be written as a
product of very few Artin generators then the required
monotonicity of the length function gets violated and the
algorithm fails. According to the setting in (6)and the
discussion following it, the generators of the subgroups to
which the unknowns belong are single Artin generators
in the new system. Most of the analysis provided in [12]
is over B8, braid group of index 8. For larger index, it
is concluded that the probability of success decreases but
not significantly. The discussion in this paper seemed in-
sufficient to make conclusions for the new system which
will be using a higher index ( 100), so we referred to an-
other paper by the same authors [13] where the multiple
conjugacy search problem instead of the general decom-
position problem is considered. The method applies more
effectively to the conjugacy problem because of the spe-
cial nature of the equations involved: x−1ax = u where
x is the unknown.) Some of the conclusions they have
apply to any decomposition problem. First conclusion is
the same as in [12], that is, the smaller is the size of the
generators of the subgroups, the smaller is the probabil-
ity of success. Here size of an element is the number of
Artin generators in it. Since the generators consist of sin-
gle Artin generators in the new system, the system seems
to be strong against length-based attacks. Another con-
clusion is that the longer is the size of the unknowns, the
smaller is the probability of success. The analysis in [13]
was carried over Bn for n up to 20 and for unknowns of
length up to 18 in the generators of the subset to which
they belong.

These points need to be considered when the parame-
ters to be used in practice are chosen. A plausible choice
of parameters is to use the braid group of order 100, i.e.
B100, and choose the secret values to consist of about 300
generators each. In the setting in 6, B100 gives subgroups
of 32 generators and 64 generators. Each of these genera-
tors of the subgroups is a single Artin generator and this
foils the length-based attacks.

Another length-based attack to solve the decomposi-
tion problem of finding x1, x2 ∈ Rn given a ∈ Bn and

u = x1ax2 is given in [24]. It uses Dehornoy’s handle
reduction to simplify the braid words. The idea is to
counter-measure the diffusion provided by the Garside
normal by converting the word u (which is given in its
Garside normal form) to x′1ax′2 with x′1, x

′
2 ∈ Rn and a of

short length. This attack takes advantage of the fact that
the middle component in the decomposition of u is known
and the fact that x1 and x2 come from Rn (or Ln).

The equations we need to solve in the new system,
namely equations (7) and (8), are different from the equa-
tions attacked using this method. First, the middle com-
ponent in (8), a2, is unknown. Second, even though the
middle component in (7) is known, the unknowns do not
come from Ln or Rn but from larger subsets. Also, it
is made sure while choosing the system parameters that
not all solutions to (7) will provide a solution for (8) (See
beginning of section 6).

7 Key Size and Complexity of Key
Computation

In section 3.1, we discussed the complexity of some ba-
sic operations of braids when represented in Garside nor-
mal form. Garside normal form is not the only way to
uniquely represent braid words. How to choose a random
braid word, which canonical form of the braids to use for
security and practicality is an interesting question in it-
self and there have been studies addressing these in the
literature [5, 17].

Assuming braid words are represented in Garside nor-
mal form and there is a good way of choosing the words
randomly, the key size for a private key, say Alice’s, would
be 3ln log n where l is the canonical length, n is the braid
index. This is because we have three braid words in the
private key (a1, a2, a3) and Property 3 on page 5 in sec-
tion 3.1 states that the number of bits for a braid word
of canonical length l is ln log n. Same is true for the pub-
lic key, however we note that l should be taken to be the
maximum possible length among lengths of all private and
public keys.

The computation of the shared key requires 5 braid
operations (for example a1pa2qa3r when Alice computes
the shared key). Using Property 4 in section 3.1 and
assuming l is the largest canonical length that can come
up in these operations, the complexity of calculating the
shared key in terms of system parameters is 5l2n log n.

Note that, even though high for the parameters sug-
gested in section 5.2 compared to systems used in prac-
tice, the complexity of key calculation is polynomial in the
number of bits in the private key assuming l is constant
(or polynomial in n); i.e if K = 3l log n is the key size,
then computation of the shared key takes 5

3 lK operations.
More research need to be conducted in order to deter-

mine how the canonical length can be kept below a certain
value for practical purposes.
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8 Conclusion

We have proposed a new way to achieve key agreement in
a public key system. The security of the new scheme re-
lies on what we call the triple decomposition problem in a
non-commutative group; namely decomposing an element
into various pieces three of which are unknown and satisfy
certain invertibility and commutativity conditions. We
have focused on braid groups as they have the desirable
practical properties required by the system. We analyzed
the system over a classical protocol in detail and provided
a setting in which the system is immune to linear alge-
bra attacks via Burau representation and length-based at-
tacks. Further research is required to establish a stronger
confidence in the system and to determine concrete pa-
rameters for practical purposes. Concerns in determining
parameters for braid based applications such as how to
generate random braids are partly addressed in [17].

Another enhancement to the system is to employ a
new protocol suggested by Shpilrain and Ushakov in [27].
In this protocol, instead of fixing commuting subsets in
advance, the commuting conditions are satisfied during
key exchange by exchanging centralizers of random el-
ements. The underlying problem becomes finding the
common centralizer of a set of elements. This is another
promising direction that we would like to do further re-
search on.
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