
International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 382

A Regular Expression Matching Approach to

Distributed Wireless Network Security System

Jie Wang, Yanshuo Yu, and Kuanjiu Zhou

(Corresponding author: Yanshuo Yu)

School of Software Technology & Dalian University of Technology

Economy and Technology Development Area, Dalian City 116620, P.R.China

(Email: yuyanshuo@gmail.com)

(Received Aug. 6, 2013; revised and accepted Mar. 13, 2014)

Abstract

There is a growing demand for wireless ad hoc network
systems in examining the content of data packages in or-
der to improve network security and application service.
Whereas, each distributed wireless node has limited mem-
ory and computing power. Since regular expressions offer
superior expression power and flexibility, taking advan-
tage of distributed nodes and regular expression collabo-
ratively can be a new perspective for wireless network se-
curity strategy. In this paper, a regular expression match-
ing approach is introduced for distributed wireless net-
work security system called DREM (Distributed Regular
Expression Matching), which divides the matching into
two stages: prefiltering stage and verifying stage. Inten-
sive experiments were conducted on Snort and L7-Filter
regular expression data sets to verify the system. The
experimental results show that our strategy can speed up
the efficiency to 1.7 times faster than conventional ap-
proaches for wireless security systems. It is also proved
by emulation that our approach can be regarded as a fire-
wall system and well applied in medium or large scale
distributed wireless network systems.

Keywords: DREM, regular expression, wireless ad hoc

1 Introduction

An ad hoc network is a collection of wireless nodes dynam-
ically forming a temporary network without the use of any
existing network infrastructure or centralized administra-
tion. In such a network, each mobile node operates not
only as a host but also as a router, forwarding packets for
other mobile nodes in the network that may not be within
direct wireless transmission range of each other. Some ex-
ample of the possible uses of ad hoc networking include
business associates sharing information during a meeting,
soldiers relaying information for situational awareness on
battlefield, and emergency disaster relief personnel coor-
dinating effort after a hurricane or earthquake [9, 19]. Ad

hoc network is much more vulnerable to malicious exploits
than a wired network. Most of current studies focus on
how to provide authentication, confidentiality, integrity,
nonrepudiation and access control to ad hoc [4, 5, 6, 13].
Distributed authentication is a very common method to
solve the ad hoc security problem [1]. However, the high
level secure ad hoc approach is specified to a certain sit-
uation [17], and a common method is lacked.

On the one hand, since regular expressions offer su-
perior expression power and flexibility, they have been
widely used in a variety of network and security applica-
tions, such as anti-virus scanners, network intrusion de-
tection and prevention systems [16], firewalls, and traffic
classification and monitoring [10].

On the other hand, deterministic finite automata
(DFA) and non-deterministic finite automata (NFA) rep-
resentations are typically used to implement regular ex-
pressions. However they require either enormous mem-
ory or unacceptable time consumption, rendering them
unsuitable for wireless nodes with limited memory and
computation power.

In this paper, a regular expression matching approach
is proposed for distributed wireless network security sys-
tems to take advantage of distributed nodes collabora-
tively. The matching is divided into prefiltering stage and
verifying stage. Given a regular expression set R, another
set R′ is constructed so that any unmatched item of R′

is also an unmatched item of R, but R′ is much smaller
than R. Any item that matches R′ may be an unmatched
item of R so that the verifying stage is needed to obtain
the exact result. Thus, R is divided into small groups
R1, R2, , Rn according to their correlation coefficients at
the prefiltering stage. Then these groups are used to ac-
complish the exact matching at the verifying stage.

There are three key contributions. First, we introduce
an efficient method to generate the correlation sequence
of sub expression print in the prefiltering stage. Second,
we propose the Correlation Sets Partition (CSP) algo-
rithm to cluster regular expressions into correlation sets
and place them to distributed nodes. Third, we imple-

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 383

ment our approach to each wireless node to calculate the
relevancy of the package and decide whether to conduct
accurate matching.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 explains the generation
and implementation of correlation sequence and correla-
tion sets. In Section 4, we present experimental results.
Finally, conclusion and future work are given in Section 5.

2 Related Work

As DFA is the preferred representation of regular ex-
pression matching, recent work has focused on reducing
the huge memory usage of DFA-based regular expression
matching. However they achieve memory reduction only
for signature sets of simple or specific regular expression.
None of them can achieve high-speed regular expression
matching for real-world signature sets that contain thou-
sands of complex regular expression. Meiners et al. [14]
proposed a well-designed Ternary Content Addressable
Memory (TCAM)-based regular expression matching so-
lution that introduces three novel techniques (transition
sharing, table consolidation, and variable striding) to re-
duce TCAM space and improve matching speed. A Mini-
mize then Union framework for constructing compact al-
ternative automata focusing on the D2FA (Delayed DFA)
was proposed by Liu et al. This algorithm runs up to 302
times faster and decreases 1390 times of memory con-
sumption than previous algorithms [11].

TCAMs are off-the-shelf chips and have been widely
deployed in modern networking devices. Whereas, tables
of DFA and NFA are too big to be stored in TCAMs even
if we employ techniques such as D2FA [7, 11]. In 2012,
Liu et al. [12]presented the RegexFilter, a high-speed and
memory-efficient technique. They attempted to speedup
regular expression matching by quickly searching these
regular expressions that may match each arriving item as
little as possible. However, this method only focuses on
the prefiltering stage and has nothing to do with the veri-
fying stage. Therefore, we proposed an approach based on
a two-stage matching method and the main idea is as fol-
lows: first, the filtering stage performs high-speed regular
expression print matching on each arriving item. If one
regular expression print is matched, the corresponding
regular expression will be checked in the verifying stage.

2.1 Prefiltering Stage

Given a regular expression set R, we want to construct
another set R′ so that any unmatched item of R′ is also
an unmatched item of R. An unmatched item of a reg-
ular expression set is an item that does not match any
regular expression in the set [12]. Given an item i, we
first match it against R′ to get set O(R′, i). If O(R′, i) is
empty, it does not obviously match any member in R

and therefore we can skip this item safely; otherwise,
we continue to match it against T (R,O(R′, i)), where

Figure 1: Relationship of prefilterging stage set and
matches item

O(R, i) ⊆ T (R,O(R′, i)) ⊆ R.

The relationship between print (R′) and match items
is shown in Figure 1. Because most items are unmatched
and the match cost of R′ is much less than that of R, the
overall throughput of this approach is much higher than
directly matching against R.

On the one hand, we want the regular expression print
to filter out as many unmatched items as possible. On the
other hand, we desire matching efficiency of the regular
expression print as high as possible. These two goals are
conflicting. Therefore two variables called ES(r) (Expres-
sion Size) and MP (r) (Matching Probability) are intro-
duced. ES(r) is an estimation variable to quantitatively
measure the complexity of regular expression print and
MP (r) is the filtering effectiveness of regular expression
print. The completely definitions of ES(r) and MP (r)
are given as follows.

Definition 1. Given a Regular Expression r, its Expres-
sion Size, denoted by ES(r), is the number of strings rep-
resented by r, namely ES(r) = |S(r)|.

if r = ε, ES(r) = r

if r = α(α ∈
∑

), ES(r) = 1

if r = (r1), ES(r) = ES(r1)

if r = r1 · r2, ES(r) = ES(r1) × ES(r2)

if r = r1|r2, ES(r) = ES(r1) + ES(r2)

if r = r∗1 , ES(r) =
∑∞

t=0ES(r1)
t = ∞

Definition 2. Given a Regular Expression r, the Mini-
mum Expression Length of r, denoted by L(r), is the num-
ber of characters in s, where s is the shortest string in set
S(r).

if r = ε, L(r) = 0

if r = α(α ∈
∑

), L(r) = 1

if r = (r1), L(r) = L(r1)

if r = r1 · r2, L(r) = L(r1) + L(r2)

if r = r1|r2, L(r) = min(L(r1), L(r2))

if r = r∗1 , L(r) = 0

Definition 3. Given a Regular Expression r, the Shortest
Expression Size of r, denoted by SES(r), is the number
of strings of length L(r) in set S(r).

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 384

if r = ε, SES(r) = 1

if r = α(α ∈
∑

), SES(r) = 1

if r = (r1), SES(r) = SES(r1)

if r = r1 · r2, SES(r) = SES(r1) × SES(r2)

if r = r1|r2 :

⇒ if L(r1)is bigger than L(r2), SES(r) = SES(r2)

⇒ if L(r1)is smaller than L(r2), SES(r) = SES(r1)

⇒ if L(r1)is equal to L(r2), SES(r) = SES(r2)

+ SES(r2)

if r = r∗1 , SES(r) = 1

Definition 4. The matching probability of a Regular Ex-
pression r, denoted by MP (r), is dened as the ratio of
SES(r) to SCS(r), where SCS(r) represents the total
number of strings of length L(r) over alphabet

∑

.

MP (r) =
SES(r)

|
∑

|
L(r)

=
SES(r1) × SES(r2)

|
∑

|
L(r1+L(r2)

=(r1) ×MP (r2) 6 MP (r1)

2.2 Verifying Stage

In the verifying stage, we mainly focus on how to build
correlation from prefiltering print and reduce the memory
cost of DFA tables.

A DFA is a 5-tuple (Q,
∑

, δ, q0, A) where Q is a set of
states,

∑

is an alphabet, δ :
∑

×Q→ Q is the transition
function, Q0 is the start state, and A ⊆ Q is a set of
accepting states. The fundamental issue with DFA-based
algorithms is the large amount of memory required to
store the transition table δ, which is the major part we
should deal with.

Prior regular expression matching algorithms are ei-
ther software-based [2, 3, 8] or FPGA-based [15, 18, 20].
TCAM-based solutions have the advantages of easy en-
coding and high parallelism [11]. Liu et al. proposed
three novel techniques: transition sharing, table consoli-
dation, and variable striding to reduce TCAM space and
improve matching speed.

In this paper, we try to use the correlation from pre-
filtering print to divide the regular expression set R into
small groups. Then we adopt the state transition com-
pressing method to improve verifying efficiency.

3 DREM Approach

3.1 Generating Correlation Sequence

At the prefiltering stage, the union of regular expression
set is defined as R, and every regular expression has its
own identifier ri. Then the sub expression print is gener-
ated as a sequence of print called Pi. The relationship of
the three variables is shown in Equation (1):

R =

n
⋃

i=1

ri =

n
⋃

i=1

pi (1)

ì ï ï ï ï ï ï ï í ï ï ï ï ï ï ï î ì ï ï ï í ï ï ï î

Figure 2: The process of generating print pi from ri

First, every regular expression ri executes PrintSelect al-
gorithm to generate expression print Pi. According to the
definitions of ES(r), SES(r) and MP (r) in Section 2.1,
the pseudo code is shown in Algorithm 1. Figure 2 shows
the selecting process of regular expression ′′a[bc]d.[bc]

′′
,

which has five atoms. Given the parameter β = 256, we
should make sure that the expression size of every print
is less than β. The selecting stage begins from the first
atom. The curr pointer keeps moving to the next atom
if ES(r) value of the regular expression print between
the begin pointer and end pointer is less than or equal
to β. When the curr pointer arrives at the fourth atom
′′.′′, ES(a[bc]d.) = 1 ∗ 2 ∗ 1 ∗ 256 = 512 > β. Condition
ES(r) 6 β does not hold, and print a[bc]d is selected.
Then we make a directed line from ri to Pi to mark the
correlation relationship. In step 2, although [bc]d satisfies
the condition, it is included in the already selected print
′′a[bc]d

′′
. According to section 2.1 that a[bc]d has higher

matching probability (MP) than [bc]d, thus [bc]d is not
selected. Step 3, 4 and 5 follow the same criteria to select
print.

After selecting the print, we can get a directed graph
from r[1,···n] to p[1,···,m]. The relationship of this graph is
called correlation sequence.

3.2 CSP Algorithm

The most common way to compute the similarity of reg-
ular expression ri, rj is to compute the times they appear
simultaneously. The basic idea is: the more times they
appear in the same expression, the closer their relation-
ships are.

Definition 5. Correlation between Regular Expressions

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 385

Algorithm 1 PrintSelect(R,P)

1: Begin
2: Initialize the start,current and end pointer
3: Assign end to R.size()
4: Send service request to the SCA.
5: while start is less than end do

6: if ExpressionSize(R,begin,curr) less than β then

7: curr:=curr+1
8: else

9: P.add(R[start,curr])
start:= start +1

10: end if

11: end while

12: End
13: ExpressionSize (R,begin,curr)
14: Begin
15: Initialize the map<char,int>and make pair of(′a −

z0 − 9′, 1) etc.
16: Initialize: ES as expression size.
17: for r ∈ R[begin, curr] do

18: ES := ES * calculator [R[r]]
19: return ES
20: end for

21: End

Sim(ti, tj) is defined as the similarity of ri and rj :

{

Sim (ri, rj) = 1 (i = j)

Sim (ri, rj) =
|{t|tk,i>0,tk,j>0}|

min(|{t|tk,i>0}|,|{t|tk,j>0}|) (i 6= j)
(2)

where tk,i is the time of resource pk labeled by ti. Accord-
ing to this definition, the similarity of two regular expres-
sions will be 1 when two ri produce the same print or one
is the subset of the other.

The similarity of any two regular expressions can be
calculated by Equation (2) and a similarity matrix of R
can be obtained: TT {1, 2, · · ·|T |} × {1, 2, · · ·|T |}. The
matrix element value is the Sim(ti, tj) in Formula (2).
|T | is the total number of the regular expression. Then a
clustering algorithm is used to cluster the regular expres-
sion.

Definition 6. Regular Expressions Grouping Our ap-
proach divides r1, ···, rn into small correlative groups based
on the relationship of pair ri and pi so that they can be
stored in each signal wireless node. If Sim(ri, rj) > γ,
ri,rj will in the same group. The union of each group
satisfies G = g1, g2, · · ·gn = R.

The value of γ is decided by the wireless node num-
ber and available memory. We want to group as many
as correlative expressions in one group when the memory
usage is smaller than or equal to available memory. Ob-
viously this is a multiple 0-1 knapsack problem. In this
paper, we achieve this goal by using the classical dynamic
programming solution for 0-1 knapsack problem [21].

p [1 m]F (g i , p [1 m]) F (g i , p [1 m])
F (g i , p [1 m])

Figure 3: The matching process of ad hoc packages

3.3 Network Security System Matching

Strategy

In the ad hoc wireless environment, each package will be
transmitted across a certain nodes N1, N2, · · ·Nn. We will
divide these nodes into two groups, one for prefiltering
stage and the other for verifying stage. Extra package
fields are added to make each node work collaboratively.

Definition 7. Prefiltered Correlation Sequence For ev-
ery package T , we use p[1···m] to represent the prefiltered
correlation sequence if it matches print p1, p2, · · ·, pm re-
spectively after the prefiltering stage. To measure the cor-
relation of p[1···m] and gi, we introduce a search engine
model. p[1···m] is treated as the keyword of Web Page, and
gi as a signal page. Then, we can get the correlation by
calculating the frequency of p[1···m] in gi. More specifi-
cally, if we have m print called p1, p2, · · ·, pm, and their
frequencies are f1, f2, · · ·fm, we can get the correlation
rate to the group gi by F (gi, p[1,···,m]) according to For-
mula (3). Afterwards, we will conduct the verifying step
if F (gi, p[1,···,m]) is more than ψ.

{

fi =
∑

(pi ⊆ gi)

F
(

gi, p[1,···,m]

)

= f1 + f2 + · · · + fm.
(3)

The package matching process is shown in Figure 3.
Since each wireless node has limited computing power,
we simplify the calculation of F (gi, p[1,···,m]) to be addi-
tion only. At first, we need to store the feature vector
pi so that we only need to calculate the sum of pi to get
F (gi, p[1,···,m]). In Equation (3), when the package reaches
Node 2 after prefiltering of Node 1, the prefiltered corre-
lation sequence p[1···m] will be obtained. Then, Node 2
should calculate the F (gi, p[1,···,m]) by adding the feature
vector pi if p[1···m] is not empty. Node 2 will continue the
verifying process using the group gi in its memory as long

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 386

Figure 4: The matching framework of each node

as F (gi, p[1,···,m]) is larger than ψ.Otherwise, the package
will be transmitted to the next hop to match gj .

One possible architecture to implement our matching
framework in each wireless node is shown in Figure 4. The
implementation called Matching Layer is set between the
MAC and network layers, which can be envisioned as an
enhancement to existing MAC and routing protocols.

Under this matching strategy, the network package will
be checked by the prefiltering stage because it will pass
through at least one node. Then we can decide whether
this package is safe or needs to be verified by the correla-
tion sequences. Therefore, our matching approach can be
equivalent to the lightweight intrusion detection method
for networks based on regualr expression [17].

4 Experimental Results

4.1 Experiment Set

Table 1: Experimental parameters setting

Parameter L7-Filter Snort
Num of RegExp 161 166

Num of DFA state 1432 1257
β (Expression Size) 256 256

ψ (relevance frequency) [0.23,0.34] [0.23,0.34]
η (Match Probability) [0.75,0.99] [0.75,0.99]

γ (similarity) [0.5,10] [0.5,10]

In this paper, our matching approach is evaluated on
regular expression sets extracted from two real world sys-
tems, namely L7-Filter and Snort. L7-Filter is a popular
open source application layer traffic classifier for Linux. It
re-assembles the payload content of a flow and identified
its application level protocol through regular expression
matching. Snort is a famous open-source intrusion detec-
tion system, which can be configured to perform protocol
analysis, content inspecting over online traffic to detect a
variety of worms, attacks and probes.

Figure 5: Results of node average hops in NS-2

We choose two sets as R = r1, r2, · · ·, rn to perform our
experiments. We also set the experiment parameter: ES,
MP , Sim and F to corresponding boundary according to
the algorithm in section 3, as shown in Table 1. Then we
try to get the local optimal value during our experiments.

4.2 Results on Sequence Generation and

Group Division

In the experiments, we select three sets of parameters of
L7-Filter and Snort, respectively. The setting of param-
eters (η, γ, ψ) and the results of each experimental step
are shown in Table 2.
Print size denotes the memory occupation of prints

after the prefiltering stage; Group number is the group
number of correlative regular expression according to the
parameter γ; Average similarity is the average value of
similarity in each group (see Equation (2)); Package size
is the testing packages length. Our simulation environ-
ment is based on NS-2 (Network Simulator, version 2).
We set the number of nodes from 20 to 100. Num of

suspicious package is the number of package that needs
to be verified after the prefiltering stage. Lastly, we calcu-
late our experiment efficiency by their average executing
cost: Efficiency = (Num of suspicious package/Total
package Number)×(F (gi)/ GroupNumber). We can see
from the table that we can get a good result from 71.71%
to 87.37%.

Our Regular Matching experiments were also per-
formed with our strategy and normal approach to make
a comparison. Figure 5 is the Average Hop and Aver-
age F (Gi) variation tendency alone with the number of

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 387

Table 2: Experimental data

L7-Filter Snort
η1=0.23, η2=0.28, η3=0.34, η1=0.23, η2=0.28, η3=0.34,

Parameters γ1=0.75, γ2=0.85, γ3=0.95, γ1=0.75, γ2=0.85, γ3=0.95,
ψ1=0.5 ψ2=5 ψ3=10 ψ1=0.5 ψ2=5 ψ3=10

Print Size 0.15MB 0.31MB 0.11MB 0.24MB 0.36MB 0.21MB
Group Number 13 16 10 16 15 10

Average Similarity 0.82 0.88 0.96 0.79 0.89 0.98
Package Size 1024B 2048B 4096B 1024B 2048B 4096B

Num of suspicious package 250 80 120 40 112 38
Efficiency 87.37% 71.71% 74.0% 80.0% 75.49% 82.132%

nodes. We test L7-Filter and Snort separately. X-axis
indicates the nodes number and Y-axis is hops. Then a
significant difference can be obtained from results figure
that the hops number of using Gi decreases sharply when
nodes are more than 30.

Figure 5 shows that the matching approach can test
and verify the packages efficiently when the number of
wireless nodes is more than 30. This indicates that our
approach can be well applied in medium or large scale
distributed wireless network systems. However, there is
no major difference in average hops when dealing with
a small group of wireless nodes. Compared with other
end-to-end strategies [1, 16], our approach provides a well
scalable way by integrating distributed wireless nodes to
detect intrusion. By selecting appropriate parameters,
our system can effectively monitor network attacks.

5 Conclusion and Future Work

In this paper, a regular expression matching approach
for distributed wireless network security systems is pro-
posed to take advantage of distributed nodes collabora-
tively, which divides the matching into a prefiltering stage
and a verifying stage. We compare the performance of
the proposed method with the standard regular expres-
sion matching approach. Experimental results show that
our strategy can speed up the efficiency of regular ex-
pression by at least 71% for the regular expression set
of Snort and L7-Filter systems. Emulation also proves
that our approach can be well applied in medium or large
scale distributed wireless network systems if the number
of nodes is more than 30.

Several aspects of the verifying strategy could be im-
proved in the future, such as the regular expressions
grouping coefficient selection and the robustness of multi-
ple matching. Future work will also extend the proposed
approach and explore its feasibility for other network ar-
eas.

Acknowledgments

This study was supported by the National Natural Sci-
ence Funds of trusted software major research projects
(No. 91018003) and Fundamental Research Funds for the
Central Universities (No. DUT14QY32). The authors
gratefully acknowledge the anonymous reviewers for their
valuable comments.

References

[1] S. S. Ahmeda, “ID-based and threshold security
scheme for ad hoc network,” in IEEE 3rd Interna-
tional Conference on Communication Software and
Networks, pp. 16–21, Xi’an, China, 2011.

[2] M. Becchi and P. Crowley, “Efficient regular expres-
sion evaluation: theory to practice,” in Proceedings of
the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, pp. 50–
59, San Jose, USA, 2008.

[3] B. C. Brodie, D. E. Taylor, and R. K. Cytron,
“A scalable architecture for high-throughput regular-
expression pattern matching,” in ACM SIGARCH
Computer Architecture News, vol. 34, pp. 191–202,
2006.

[4] H. Deng, W. Li, and D. P. Agrawal, “Routing se-
curity in wireless ad hoc networks,” IEEE Transac-
tions on Communications Magazine, vol. 40, no. 10,
pp. 70–75, 2002.

[5] L. Eschenauer and V. D. Gligor, “A key-management
scheme for distributed sensor networks,” in Proceed-
ings of the 9th ACM Conference on Computer and
Communications Security, pp. 41–47, Dalian, China,
2002.

[6] Y. C. Hu, D. B. Johnson, and A. Perrig, “Sead: Se-
cure efficient distance vector routing for mobile wire-
less ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1,
pp. 175–192, 2003.

[7] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,
and J. Turner, “Algorithms to accelerate multiple
regular expressions matching for deep packet inspec-
tion,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 339–350, 2006.

International Journal of Network Security, Vol.16, No.5, PP.382-388, Sept. 2014 388

[8] S. Kumar, J. Turner, and J. Williams, “Advanced
algorithms for fast and scalable deep packet inspec-
tion,” in Proceedings of the 2006 ACM/IEEE sym-
posium on Architecture for Networking and Commu-
nications Systems, pp. 81–92, New York, USA, 2006.

[9] B. M. Leiner, R. J. Ruther, and A. R. Sastry, “Goals
and challenges of the DARPA glomo program global
mobile information systems,” Personal Communica-
tions, IEEE, vol. 3, no. 6, pp. 34–43, 1996.

[10] J. Levandoski, E. Sommer, M. Strait, et al. “Appli-
cation layer packet classifier for linux,”, 2008.

[11] J. P. A. X. Liu and E. Torng, “Bypassing space ex-
plosion in regular expression matching for network
intrusion detection and prevention systems,” in Pro-
ceedings of the 19th Annual Network & Distributed
System Security Symposium, pp. 11–34, San Diego,
USA, 2012.

[12] T. Liu, Y. Sun, A. X. Liu, L. Guo, and B. Fang, “A
prefiltering approach to regular expression matching
for network security systems,” in Applied Cryptogra-
phy and Network Security, pp. 363–380, Berlin, Ger-
many, 2012.

[13] R. Matam and S. Tripathy, “Provably secure routing
protocol for wireless mesh networks,” International
Journal of Network Security, vol. 16, no. 3, pp. 182–
192, 2014.

[14] C. R. Meiners, J. Patel, E. Norige, E. Torng,
and A. X. Liu, “Fast regular expression matching
using small TCAMs for network intrusion detec-
tion and prevention systems,” in Proceedings of the
19th USENIX Conference on Security, pp. 111–126,
Washington DC, USA, 2010.

[15] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling
pcre to fpga for accelerating snort ids,” in Proceed-
ings of the 3rd ACM/IEEE Symposium on Architec-
ture for Networking and Communications Systems,
pp. 127–136, New York, USA, 2007.

[16] A. Prathapani, L. Santhanam, and D. P. Agrawal,
“Detection of blackhole attack in a wireless mesh net-
work using intelligent honeypot agents,” The Journal
of Supercomputing, vol. 64, no. 3, pp. 777–804, 2013.

[17] M. Roesch et al., “Snort: Lightweight intrusion de-
tection for networks,” in LISA, vol. 99, pp. 229–238,
1999.

[18] R. Sidhu and V. K. Prasanna, “Fast regular ex-
pression matching using FPGAs,” in The 9th An-
nual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 227–238, California,
USA, 2001.

[19] N. Siegel, D. Hall, C. Walker, and R. Rubio,
“The tactical internet graybeard panel briefings,” US
Army Digitization Office, 1997.

[20] I. Sourdis and D. Pnevmatikatos, “Pre-decoded
CAMs for efficient and high-speed NIDS pattern
matching,” in The 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
pp. 258–267, Napa, USA, 2004.

[21] Q. Zhang and H. Li, “Moea/d: A multiobjective evo-
lutionary algorithm based on decomposition,” IEEE
Transactions on Evolutionary Computation, vol. 11,
no. 6, pp. 712–731, 2007.

Jie Wang is a Lecturer in Department of Embedded
Systems Engineering, Dalian University of Technology,
China. His main research interests focus on parallel
computing and network security. He received his B.S.,
M.S. and Ph.D. degree from Department of Computer
Science & Technology, Harbin Institute of Technology,
China.

Yanshuo Yu received BS degree in software engineering
from Dalian University of Technology in 2012. He is
currently working toward a master degree in Department
of Embedded Systems Engineering, Dalian University
of Technology His research interests include network
security and parallel computing.

Kuanjiu Zhou is a professor in Department of Embed-
ded Systems Engineering, Dalian University of Technol-
ogy, China. His main research interests focus on embed-
ded software modeling and trusted software. He received
his B.S.,M.S. and Ph.D. degree from Department of Com-
puter Science & Technology, Harbin Institute of Technol-
ogy, China.

