
International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 369

On the Security of Moessner’s and Khan’s Authentication

Scheme for Passive EPCglobal C1G2 RFID Tags
Walid Khedr

Department of Information Technology, Faculty of Computers & Informatics, Zagazig University

Zagazig University, Zagazig 44519, Egypt
 (Email: wkhedr@zu.edu.eg)

(Received Feb. 2, 2013; revised and accepted June 23, 2013)

Abstract

RFID technology is one of the most promising automatic

data collection technologies. It uses radio waves to identify

object. Through automatic and real-time data acquisition,

this technology can give a great benefit to various

industries by improving the efficiency of their operations.

Due to the increasing popularity of RFID applications,

different authentication schemes have been proposed to

provide security and privacy protection for users. Recently,

Moessner’s and Khan’s proposed an authentication scheme

for passive RFID tags that can be embeddable into the

ubiquitous EPCglobal C1G2 protocol in order to offers a

high level of security through the combination of a random

key scheme with a strong cryptography. In this paper a tag

traceability attack and a server impersonation attack are

presented. An improved scheme that eliminates these two

attacks and decreases the storage requirements is also

presented. These improvements introduce slight

modification to the scheme.

Keywords: Authentication, hash function, privacy, RFID,

security

1 Introduction

Radio Frequency Identification, abbreviated “RFID”,

basically provides a means to identify objects having RFID

tags attached. Fundamentally, RFID tags provide the same

functionality as barcodes but usually have a globally unique

identifier [4]. Using RFID, the identification is performed

electromagnetically. Unfortunately, RFID also introduces

problems respecting data security and privacy arises. To

solve these problems, many previous studies proposed

solutions in diverse aspects [1, 3, 7, 9-12]

Recently, Moessner and Khan [6] proposed an

authentication protocol that is based on symmetric key

cryptography. The protocol is applicable to passive tags and

it can be embedded with EPCglobal C1G2 standard protocol.

The authors presented an implementation of their protocol

on INTEL WISP UHF RFID tag and a C1G2 compliant

reader [2]. It was designed to provide mutual authentication

and assures forward and backward security. It was also

designed to resist tracking, replay, DoS and MitM attacks.

However, a tag traceability attack and a server

impersonation attack were found. Using the tag tracing

attack, attackers can either identify the same tag from

passively logged messages or interact actively with the tag

to understand its location [8]. On the other hand the server

impersonation attack allows an adversary to eavesdrop a

valid set sessions. The next time the protocol is run, the

adversary impersonating the server can respond to the tag’s

messages and the tag would accept this as valid response.

This leads to the reveal of tag secret information by the

impersonating server [8]. The security of Moessner’s and

Khan’s authentication scheme [6] relies on two key tables.

The key tables are generated during the manufacturing

process and are written on the tag. The storage requirements

of the scheme are high for both server and the tag. This is

due to the key tables with each having a size of 0.5K [6]. In

this paper an improved scheme that decreases the storage

requirements is also proposed.

The rest of this paper is organized as follows: Section 2

briefly reviews Moessner’s and Khan’s authentication

scheme. The security analysis of Moessner’s and Khan’s

scheme is presented in section 3. Section 4 presents the

improved scheme. Section 5 shows the analysis of the

improved scheme. Finally, section 6 concludes the paper.

2 Review of Moessner’s and Khan’s Scheme

In this section, we review Moessner’s and Khan’s

authentication scheme for passive RFID tags. The notations

listed in Table 1 are used throughout this paper. The

scheme is based on symmetric key cryptography; it

employs ciphers to hide messages contents. The security of

the scheme relies on key tables (A and B) that are stored at

the tag level, and ciphers that keep the message content

secret. It also employs monotonically increasing

timestamps to authenticate a tag. The key tables are

generated during the manufacturing process, and along with

a primary timestamp Tt and the tag’s ID (EPC) they are

written on the tag. These two key tables satisfy the

following property: For a particular value of []AKey i ,

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 370

there is only one unique value of key [1]BKey i i.e. the

key pair for a certain index i must be unique. The main idea

of the scheme is that a tag can authenticate the

reader/server as only an authentic entity can know the

unique key pairs [6]. The scheme works as follows:

1. Reader → Tag: Random challenge
1 rm R

2. The tag generates a random challenge
tR . The tag use

tR to fetch two keys ([]A tKey R and [1]B tKey R)

from its key tables. The first key ([]A tKey R) is

employed to encrypt the tag’s timestamp Tt and the

challenge Rr: 1(|| , [])t r A th T R Key R .

3. Tag → Reader:
2 1||tm R h

4. The reader fetches a subset of keys, KA, from the

database that matches the search criteria: Table = A

and Index = Rt. The reader decrypts the tag response h1

with each key of subset KA until the decryption yields

the reader’s challenge Rr. As soon as a matching key is

found, the reader fetches [1]B tKey R that is the other

half of the unique key pair. This key is used to encrypt

the tag’s random number and the recent reader

timestamp: 2 (|| , [1])r t B th T R Key R . If the tag’s

response does not contain Rr then tag simply replies

with a random number.
23 rm R

5. Reader → Tag: 3 2m h

6. After receiving m3, the tag decrypts the message with

the key [1]B tKey R . The reader is approved by the

tag if the decryption yields Rt since only a genuine

reader can find the right key pair. If the reader’s

response does not contain Rt then tag simply replies

with a random number
24 tm R . Otherwise, the

reader’s timestamp Tr is further examined. If it is

greater than the tag’s timestamp, the tag adopts the

reader’s timestamp and replies with

4 3 (, [1])t r B tm h h ID T Key R . If the reader’s

timestamp is not greater than the tag’s timestamp, the

tag does not update its timestamp and replies with

4 3 (, [])t A tm h h ID T Key R [6].

7. Tag → Reader:
4 3m h

If the reader cannot find a pair of keys that matches with

the ID and Rt or if it is expected to receive a random number

from the tag then the tag is not authenticated. We urge the

reader to consult the original paper [6] for details.

3 Analysis of Moessner’s and Khan’s Scheme

Moessner and Khan claimed that their scheme is secure

against tracking and replay attacks. The security of the

scheme relies on key tables that are stored at the tag level,

and monotonically increasing timestamps to authenticate a

tag. The tag generates a random number
tR and uses it to

fetch two keys form the two tables by using
tR as an index,

[]A tKey R and [1]B tKey R . Each of these tables has a

size of 0.5K [6]. This means that each table stores 32 keys;

since the key size is 128 bits. So, there are 32 possible

values for tR . Even if the whole 8 K EEPROM of the

INTEL WISP tag are used to store the two tables, this

number is extended to 256 possible keys. It was assumed

that a hash value and a tag’s ID have a length of b bits each,

while key has a length of 2b bits. Timestamp, random

number and a query message are assumed to have a length

of 0.5b. So, if the key size is 128 bits, as assumed in the

scheme, then the size of a hash value is 64 bits and the size

of a random number is 32 bits. Also, the tag in this scheme

cannot be expected to have a clock since the scheme is

designed form passive RFID tags. Thus, it is unable to

distinguish between a current and a dated timestamps. So,

the tag relies on readers to update its timestamp tT , so that

it can distinguish between future and past timestamps.

Based on the above discussion, an adversary can track

the tag or impersonate the server as long as its timestamp is

not changed. This can be only happen between each two

successive authentication sessions or when the tag is out of

the reader range e.g. the tag leaves the store. At this point,

various readers with different levels of security are assumed

to be able to access the tag [5].

3.1 Tag Tracking

The adversary keeps challenging all n tags with
rR c ,

where c is a constant value, until he gets 32 different replies

form each tag. Each reply corresponds to one of the Rt 32

possible values. The adversary ends with 32 sets of

messages ‘m2’. Each set contains n messages, where n is

the number of tags, and each set corresponds to one of the

Rt 32 possible values. The adversary constructs Table 2 that

can be used to launch tag tracking attack, where

1[,] (|| , [])
i jt A th i j h T c Key R is the second part of

message m2 send by tag i. It is clear that tag i will reply

with one of the 1[,], 1, 32h i j j possible values if the

tag is queried between each two successive rounds or when

Table 1: Notation

Symbol Meaning

EPC Electronic Product Code

ID The tag's ID same as EPC

a b XOR operation of a and b

(,)h a b Encryption of a, with the key b.
1(,)h a b Decryption of a, with the key b

m A message, exchanged between

(backend-server, reader) and tag

R Random number

Tr Current timestamp at the reader or

backend-server

Tt Timestamp stored on the tag.

SQN Sequence number

Inc() SQN increment function

ROTL(x, n) Left rotation of x by n bits

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 371

the tag is out of the reader range. So,
1[,]h i j can be

considered as tagi’s ID when the tag replies with
jtR in

message m3 i.e. we can assume that each tag has 32

possible IDs. Table 2 can be used to identify the tag as

follows:

1. Adversary → iTag :
rR c

2. iTag → Adversary: 2 1||
jtm R h , where

1 [,] || (|| , [])
j i jt t A th h i j R h T c Key R

3. Using
jtR received in step 2, the adversary searches

column j of Table 2 for a matching iTag , which

identifies the tag. It is clear that tag i will reply with

the same time stamp
itT each query as long as it is out

of the reader range e.g. the tag leaves the store.

3.2 Server Impersonation

Moessner’s and Khan’s scheme is also subject to server

impersonation attack. The attack can be performed as

follows: The adversary keeps recording
tR in step 3 of the

protocol and the server reply messages
3m in step 5 for

each
tR until it collects all the possible 32 value of Rt for

each tag. The adversary ends with 32 sets of m3 messages.

Each set corresponds to one of the Rt 32 possible values.

The adversary constructs Table 3.

The next step the adversary must take before it is ready

to impersonate the server is to determine which iTag

received message 3[,]m i j for each
jtR . So, based on the

assumption that the tag is queried between each two

successive rounds or when the tag is out of the reader range,

iTag will always reply with the same message

4 3 (, [])
i jt A tm h h ID T Key R if it receives the

same 3[,]m i j . Based on the above discussion, the adversary

determines iTag that received message 3[,]m i j as follows:

1. Adversary → iTag : rR c

2. iTag → Adversary: 2 1|| [,],1
jtm R h i j i n

3. The adversary picks each message 3[,],1m i j i n

of column
jtR of Table 3 and applies the following

steps.

4. Adversary →
iTag :

3[,]m i j

5. When
iTag receives

3[,]m i j , the tag decrypts it with

the key [1]B tKey R .

3 2[,] (|| , [1])
j jr t B tm i j h T R Key R

If the decryption yields the same Rt expected by the tag,

the tag examines the timestamp Tr after the decryption

of m3. This value should be less than or equal the tag’s

timestamp; since it is part of a replay message.

According to Moessner’s and Khan’s scheme, the tag

does not update its timestamp and replies with

4 3 (, [])
i jt A tm h h ID T Key R if reader’s timestamp

is not greater than the tag’s timestamp. If the

decryption does not yield the same Rt expected by the

tag, the tag replies with a random number.

6.
iTag → Adversary:

4 3m h

7. When the adversary receives m4 he computes its size.

If the size is b (64 bits) i.e. the tag replied with h3, the

adversary associate 3[,]m i j and m4 with the tag

identified by [,]h i j . If the size is 0.5b (32 bits) i.e.

the tag replied with a random number, the adversary

picks the next message
3[1,]m i j of column

jtR of

Table 3 and uses it in the next query.

8. The above steps are repeated until the adversary ends

with Table 4.
Based on the above discussion, the adversary can

impersonate the server as follows:

1. Adversary → iTag :
rR c

2. iTag → Adversary: 2 1||
jtm R h , where

1 [,] || (|| , [])
j i jt t A th h i j R h T c Key R

3. Using
jtR received in step 2, the adversary searches

column j of Table 4 for a matching tag identified by

[,]h i j .

4. Adversary → iTag : 3[,]m i j

5. When a iTag receives 3[,]m i j , the tag decrypts it

with the key [1]B tKey R .

3 2[,] (|| , [1])
i jr t B tm i j h T R Key R

The decryption should yield the same Rt expected by

the tag. So, the tag examines the timestamp Tr after the

decryption of m3. This value should be less than or

equal the tag’s timestamp; since it is part of a replayed

message. According to Moessner and Khan scheme,

the tag does not update its timestamp and replies with

4 3 (, [])
i jt A tm h h ID T Key R if the reader’s

timestamp is not greater than the tag’s timestamp.

6. iTag → Adversary: 4 3m h

7. When the adversary receives m4, he compares it with

4[,]m i j . If they match, this means that the adversary

is accepted by the tag as authenticated server. The

Table 2: Adversary collected data for tag tracking

1t

R ……
jtR ……

mt
R

1Tag 1[1,1]h ……
1[1,]h j …… 1[1,]h m

iTag
1[,1]h i ……

1[,]h i j …… 1[,]h i m

nTag
1[,1]h n ……

1[,]h n j …… 1[,]h n m

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 372

adversary does not need to decrypt m4 to identify or

track the tag; since the tag will reply with same

message m4 each time as along as the adversary query

the tag between two successive rounds or when the tag

is out of the reader range.

4 The Improved Scheme

To avoid the tag tracking and server impersonation attacks

mentioned above, sequence numbers is used instead of

timestamps. There are three secrete values shared between

each tag and the server: AK , BK and SQN. Keys AK and

BK are used instead of key tables (A and B) that are stored

at the tag level. The keys AK and BK are chosen such that

the unique key pair for each tag is generated by circularly

shifting
AK and

BK i and i +1 bits to the left respectively.

This reduces the storage space required by the original

scheme to store the two key tables. The sequence number

SQN is known only to the tag and the server and is updated

each authentication session. The sequence number SQN

prevents third parties from using intercepted authentication

messages for fake authentications later on. It also proves to

both the server and the tag that the authentication messages

have not been used before. These three values are generated

by the server and are written in a secure manner into the

tag’s memory before deployment.

The proposed improvements introduce slight

modification to the scheme. The detailed steps of the

proposed improved scheme are presented as follows and

illustrated in Figure 1.

1. Reader → Tag: Random challenge
1 rm R

2. The tag generates a random challenge
tR and use it to

generate two keys ((,)A A tKey ROTL K R and

(, 1)B B tKey ROTL K R). The tag increments its

sequence number (()t tSQN Inc SQN and encrypt

both
tR and

tSQN using the key
AKey :

1(|| ,)t r Ah SQN R Key .

3. Tag → Reader:
2 1||tm R h

4. The reader generates a subset of keys, SA:

(,)
iA tROTL K R for each tag. The reader decrypts the

tag response h1 with each key of subset SA until the

decryption yields the reader’s challenge Rr. As soon as

a matching key is found, the reader checks if the

increment of one of the associated sequence number

()
it

Inc SQN is greater than or equal the received

tSQN . If this is not the case, the reader place an

assumption about m4 that DIFF > 0. Otherwise, DIFF

is assumed to be equal zero. The value DIFF is

calculated by the tag in step 6 and is defined as the

difference between the tag’s sequence number

tSQN and the received reader’s sequence

number rSQN . The reader update its sequence number

rSQN and generates (, 1)B B tKey ROTL K R that

is the other half of the unique key pair. This key is

used to encrypt the tag’s random number tR and the

Table 3: Adversary collected data for server impersonation.

1t
R ……

jtR ……
mt

R

3[1,1]m ……
3[1,]m j …… 3[1,]m m

3[,1]m i ……
3[,]m i j …… 3[,]m i m

3[,1]m n ……
3[,]m n j …… 3[,]m n m

Table 4: Adversary collected data for server impersonation and tag identification.

 1Rt ……
jRt

……
mRt

Tag1 1[1,1]h ,
3[1,1]m ,

4[1,1]m ……
1[1,]h j ,

3[1,]m j ,
4[1,]m j

…… 1[1,]h m ,

3[1,]m m ,
4[1,]m m

Tagi 1[,1]h i , 3[,1]m i , 4[,1]m i ……
1[,]h i j , 3[,]m i j , 4[,]m i j

…… 1[,]h i m ,

3[,]m i m ,
4[,]m i m

Tagn 1[,1]h n , 3[,1]m n , 4[,1]m n ……
1[,]h n j , 3[,]m n j , 4[,]m n j

…… 1[,]h n m , 3[,]m n m , 4[,]m n m

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 373

reader sequence number ()
ir tSQN Inc SQN :

2 (|| (),)r t t Bh SQN R SQN Key . If the tag’s response

does not contain Rr then reader simply replies with a

random number,
23 rm R . The XOR operation is

necessary to prevent the replay of the message m3

which can be used to perform server impersonation

attack as discussed in section 3.

5. Reader → Tag: 3 2m h

6. After receiving m3, the tag decrypts the message with

the key BKey and extracts Rt using XOR operation.

The reader is approved by the tag if the decryption

yields Rt since only a genuine reader can find the right

key pair and the current sequence number tSQN . If the

reader’s response does not contain Rt then tag simply

replies with a random number
24 tm R . Otherwise, the

reader’s sequence number SQNr is further examined. If

it is greater than or equal the tag’s sequence number,

the tag adopts the reader’s sequence number and uses

BKey Key to generate m4. If the reader’s sequence

number is less than the tag’s sequence number, the tag

does not update its sequence number and uses

tr rR R

false

true

true

false

true

false

3m

Is Rt correct?

r tSQN SQN

true

false

Reader/Server Tag

1 rm R

2 1||tm R h

4m

true
false

 Decrypt
3h with the key

AKey or
BKey

based on assumption about
4m

 ()
ir t rSQN SQN Inc SQN DIFF

 Reveal tag ID based on assumption about

4m by XOR operation with rSQN

 Authenticate the tag if it is one of the

possible tags.

Generate and transfer rR

 Generate
tR

 Generate two keys:

(,)A A tKey ROTL K R

(, 1)B B tKey ROTL K R

 ()t tSQN Inc SQN

 Encrypt tSQN and rR with AKey

 1 (|| ,)t r Ah h SQN R Key

 Reply 1h and tR

Fetch subset
AS of all keys with number

tR

and the associated tag
it

SQN

(keyfound = false) &&

(i < # of keys)

keyfound = true

keyfound = true
Generate random

number:
23 rm R

 Delete all keys from SA except the one found

 Check if ()
it tInc SQN SQN

 Store assumption about 4m (DIFF = 0 or DIFF > 0)

 Generate the related key (, 1)B A tKey ROTL K R

 ()
ir tSQN Inc SQN

 Encrypt the reader sequence number and tR :

3 2 (|| (),)r t t Bm h h SQN R SQN Key

Decrypt 2h using BKey and extracts

tR using XOR operation.

Generate random number:

24 tm R

Set key
Akey Key Update timestamp

t rSQN SQN

Set key Bkey Key

t rDIFF SQN SQN

 ()t tSQN Inc SQN

 Encrypt ID and tSQN with key

4 3 (,) ||tm h h ID SQN key DIFF

Decrypt 1

1 1:[,] (,)
tt rh SQN R h h key

Figure 1: The improved scheme.

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 374

AKey Key to generate m4. The tag computes

t rDIFF SQN SQN which equals to zero, if

r tSQN SQN , and is greater than zero otherwise.

The tag encrypts its ID and its sequence number, after

incrementing it, ()t tSQN Inc SQN with the key

Key and replies with
4m .

4 3 (,) ||tm h h ID SQN Key DIFF

The difference DIFF is used to enable the reader to

calculate the tag’s current sequence number. Since it is

only a difference, no information that could be used by

an attacker for unwanted recognition and tracking is

revealed.

7. Tag → Reader:
4 3m h

8. After receiving 4m , the reader decrypt 3h with the key

AKey or BKey based on assumption about 4m i.e. if

0DIFF then the reader decrypt 3h using BKey and

if 0DIFF then the reader decrypt 3h using AKey .

The reader is then increments its sequence number

rSQN after the addition of DIFF and updates the

associated tag sequence number in its database:

()
ir t rSQN SQN Inc SQN DIFF . Finally the

reader reveals the tag’s ID based on assumption about

4m by XOR operation with
rSQN and authenticates

the tag if it is one of the possible tags.

5 Analysis of the Improved Scheme

In this section, the security of the proposed improved

scheme with respect to the tag tracking and server

impersonation attacks is analyzed.

5.1 Tag Tracking

In the original scheme, the response coming out from a tag i,

after challenging it with rR c , belongs to one of the 32

sets of m2 messages. Each set corresponds to one of the Rt

32 possible values. This response can be used to track the

tag or the person holding the tag. This can be happen

between each two successive rounds or when the tag is out

of the reader range e.g. the tag leaves the store as discussed

in section 3. In the proposed improved scheme each time a

tag is queried, even using a constant value c, it replies with

different m2 message. This is true because h1 depends on

SQNt which is incremented and encrypted each time the

reader query the tag. To prevent tag-server

desynchronization that could happen due to the fake

challenge of tags or the change of the DIFF value, the

improved scheme maintains the copies of the shared secrets

((, ,)A BK K SQN stored at the tag and the server in a

consistent and synchronized state. This happens in step 6

and step 8 of the improved scheme. It should not be possible

for an adversary to induce changes to the shared secrets that

lead to an inconsistent or desynchronized state.

5.2 Server Impersonation

To launch a server impersonation attack, the adversary

should construct Table 4. This could not happen in the

improved scheme; since a tag replies with different m2

message for each query, even if the tag generates the same

random number
jtR . If we assume that the adversary could

construct Table 4, the replay of message m3 does not allow

the adversary to impersonate the server. After

receiving
3 2 (|| (),)r t t Bm h SQN R SQN Key , the tag

decrypts the message using the key
BKey and extracts Rt

using XOR operation. If m3 is a replayed message, the

XOR operation does not yield the same Rt expected by the

tag since the sequence number is changed. In this case the

tag considers the response as a replayed message. So, the

tag simply replies with a random number.

6 Conclusions

Recently, Moessner’s and Khan’s proposed an

authentication scheme for passive RFID tags that can be

embeddable into the ubiquitous EPCglobal C1G2 protocol

in order to offers a high level of security through the

combination of a random key scheme with a strong

cryptography. However, their scheme is vulnerable to tag

tracking attack and server impersonation attack. An

improved scheme is proposed to avoid these two attacks

and, thus, can be applied in environments requiring a high

level of security. The improved scheme reduces storage

requirements and maintains the same number of messages

exchanged between the reader and the tag. The improved

scheme also maintain the same messages size of m2 and m3,

however there is a minor increase in message m4 due to the

concatenation of DIFF.

References

[1] T. Cao and P. Shen, “Cryptanalysis of two RFID

authentication protocols,” International journal of

network security, vol. 9, pp. 95-100, 2009.

[2] H. Chae, D. J. Yaeger, J. R. Smith, and K. Fu,

“Maximalist cryptography and computation on the

WISP UHF RFID Tag,” in Proceedings of the

International Conference on RFID Security, 2007.

[3] C. L. Chen, Y. L. Lai, C. C. Chen, Y. Y. Deng, and Y.

C. Hwang, “RFID ownership transfer authorization

systems conforming EPCglobal class-1 generation-2

standards,” International Journal of Network Security,

vol. 13, pp. 41-48, 2011.

[4] D. Henrici, RFID Security and Privacy : Concepts,

Protocols, and Architectures, 1st ed. New York:

Springer, 2008.

[5] A. X. Liu and L. A. Bailey, “PAP: A privacy and

authentication protocol for passive RFID tags,”

International Journal of Network Security, Vol.16, No.5, PP.369-375, Sept. 2014 375

Computer Communications, vol. 32, pp. 1194-1199,

2009.

[6] M. Moessner and G. N. Khan, “Secure authentication

scheme for passive C1G2 RFID tags,” Computer

Networks, vol. 56, pp. 273-286, 2012.

[7] M. Naveed, W. Habib, U. Masud, U. Ullah, and G.

Ahmad, “Reliable and low cost RFID based

authentication system for large scale deployment,”

International Journal of Network Security, vol. 14, pp.

173-179, 2012.

[8] H. M. Sun and W. C. Ting, “A Gen2-based RFID

authentication protocol for security and privacy,” IEEE

Transactions on Mobile Computing, vol. 8, pp. 1052-

1062, Aug. 2009 2009.

[9] C. H. Wei, M. S. Hwang, and A. Y. H. Chin, “An

authentication protocol for low-cost RFID tags,”

International Journal of Mobile Communications, vol.

9, pp. 208-223, 2011.

[10] C. H. Wei, M. S. Hwang, and A. Y. h. Chin, “A mutual

authentication protocol for RFID,” IT Professional, vol.

13, pp. 20-24, 2011.

[11] C. H. Wei, M. S. Hwang, and A. Y. H. Chin, “An

improved authentication protocol for mobile agent

device in RFID environment,” International Journal of

Mobile Communications, vol. 10, pp. 508-520, 2012.

[12] X. Zhang and B. King, “Security requirements for

RFID computing systems,” International Journal of

Network Security, vol. 6, pp. 214-226, 2008.

Walid Khedr received his Ph.D. degree in computer

science from Ain Shams University in January 2009. He is

currently working as assistant professor of computer

science at Faculty of Computers and Informatics, Zagazig

University. His current research interests are primarily in

network security protocols, key management protocols, and

RFID security. Another field of interest is quantum

cryptography.

