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Abstract

Structured, peer-to-peer (P2P) networks scalably sup-
port efficient data-retrieval operations over large data sets
without resorting to centralized servers that may be vul-
nerable to attack or failure. However, data confidentiality
policies, such as data ownership privacy, are difficult to
enforce reliably in these networks. This paper presents
Penny, a structured P2P network that efficiently supports
integrity and confidentiality labeling of data, and enforces
a notion of ownership privacy that permits peers to pub-
lish data without revealing their ownership of the data. A
decentralized reputation management system allows the
network respond and adapt to malicious peers. These fea-
tures are applied to securely manage traditional files and
large RDF data sets stored as N -triples in a P2P environ-
ment. Simulations demonstrate that Penny can efficiently
handle realistic P2P network traffic and robust enough to
prevent malicious collectives from subverting security la-
bels.

Keywords: Distributed computing, peer-to-peer secu-
rity,RDF data, reputation management, trust manage-
ment

1 Introduction

Peer-to-peer (P2P) networking is a distributed, load-
balancing computing paradigm designed to scalably share
work loads between peers. Unlike traditional client-server
models, each peer in a P2P network is an equally privi-
leged, equipotent participant in the distributed computa-
tion or service. This has the advantage of avoiding cen-
tralized points of failure that, when successfully attacked,
suffice to dismantle the entire network. P2P was first pop-
ularized as a vehicle for music-sharing [28], but has since
expanded to general-purpose file- and data-sharing appli-
cations (e.g., [4, 14, 21]) and is increasingly important as
a basis for fault-tolerant cloud computing [26]. Since its
inception, it has been tremendously popular and ubiqui-
tous because of its collective computation power, natural
load-balancing, and low-cost deployability. For example,

it has been estimated that BitTorrent traffic accounts for
roughly 27–55% of all Internet traffic (depending on geo-
graphical location) as of February 2009 [35].

However, while P2P networks have proven successful
for maintaining high data availability under adversarial
or noisy conditions, enforcing strong data integrity and
confidentiality under these conditions remains a difficult
challenge. Integrity enforcement is challenging because
P2P networks lack a centralized authority who can iden-
tify and evict malicious nodes from the network. Ma-
licious nodes are therefore free to propagate malicious
code or untrustworthy data by misrepresenting it as a
high-integrity resource available for download [39]. Ap-
proximately 18.5% of all BitTorrent downloads contain
malware [3] as a result. Confidentiality enforcement is im-
peded by the explicit divulgence of sender peer positions
during overlay communications while the requesting peer
remains anonymous [6, 9]. This allows malicious peers
to anonymously identify and target purveyors of security-
relevant resources.

To address these deficiencies, we have designed, im-
plemented, and tested Penny, a P2P networking proto-
col that extends Chord [36] with secure integrity- and
confidentiality-labeling of shared data. Penny uses a dis-
tributed reputation management system based on Eigen-
Trust [20] to securely manage data labels without the in-
troduction of a central authority. The data labels em-
power requester peers to avoid downloads of low-integrity
data, and allow sender peers to deny low-privilege peers
access to high-confidentiality data. In addition, sender
peers may publish and serve their data anonymously, frus-
trating attacks that seek to single out and target owners
of security-relevant data.

We have applied Penny to construct a secure, fully de-
centralized, data management system for traditional data
files as well as Resource Description Framework (RDF)
data. RDF is a popular web data format that is of partic-
ular importance to Semantic Web technologies. Stores of
RDF data can be extremely large and security-sensitive,
resulting in an increasing demand for secure distributed
computing paradigms that can manage them efficiently
(cf., [8, 22]). Managing RDF data in a P2P network has
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the advantage of facilitating dynamic, low-cost growth of
the network to accommodate expansion of the data set
without sacrificing the security guarantees traditionally
associated with more centralized networks, such as clouds.
Though there has been much research within the seman-
tic web community on the security and privacy of RDF
data, few works consider a fully decentralized approach
like the one considered here.

Our prior work proposed Penny’s overlay and resource-
sharing protocol as a preliminary study without any
implementation or experiments [37]. We here extend
that theoretical work with improvements to the architec-
tural design, new formulas for computing data integrity
and confidentiality labels, empirically determined optimal
neighborhood sizes, new publish and request protocols
adapted for RDF data, and other new empirically tested
algorithms necessary for the system. We also describe a
full implementation of the Penny client, supporting tradi-
tional files and RDF datasets, with experimental results
and analysis.

Related works are first summarized in Section 2.
Penny’s architectural design, including publish and down-
load protocols, is then presented in Section 3. We describe
our simulation methodology, results, and analysis in Sec-
tion 4. Security properties enforced by the design are dis-
cussed in Section 5. Finally, we conclude with suggestions
for future work in Section 6.

2 Related Work

P2PRep [10] is one of the first works to implement secure
reputation management in a real-world P2P network [14].
Resource-requesting peers in the network assess the relia-
bility of perspective providers before initiating downloads
by polling large numbers of peers using broadcast mes-
sages. Poll responses are then aggregated by the request-
ing peer to estimate the desired integrity label or trust
value along with trust values for all peers whose opinions
were acquired by polling. This strategy has the advan-
tage of being implementable atop the existing Gnutella
network protocol, but it has the disadvantage that labels
and trust values are not global and are not guaranteed
to converge. That is, the integrity label or trust value
obtained depend on which peers were polled, which in
turn depends upon the poller’s placement within the P2P
network. Two peers at different locations in the network
might therefore consistently derive different reputations
for the same resource. Broadcast messages can also be
expensive, requiring O(bd) messages to be sent, where b
is the branching factor of the network and d is a time-to-
live parameter dictating the maximum depth of the tree
of peers being polled.

XRep [11] enhances P2PRep by combining reputa-
tions of providers and resources, offering more informa-
tive polling and overcoming the limitations of strictly
provider-based solutions. However, it still suffers the
disadvantages of P2PRep above. ServiceTrust [19] is a

service-oriented paradigm that computes trust globally,
but at the cost of centralizing the system, inviting cen-
tralized points of failure. One solution is to compute trust
globally using decentralized gossip-based algorithms [2].
However, this does not recursively apply the trust system
to the gossip itself, allowing malicious agents to poten-
tially gain undue influence by reporting high trust for
malicious allies.

In contrast to these unstructured approaches, Penny
is implemented atop a structured P2P protocol—
Chord [36]. Chord solves the fundamental problem of
efficiently locating peers with particular data objects by
assigning a unique identifier to each peer, and arranging
them in a ring structure sorted by identifier. Each peer
maintains a finger table of size m, where 2m is the size
of the identifier space. This enables peers to locate and
contact the peer with a given identifier in O(log N) mes-
sage hops, where N is the number of peers in the network.
In Chord, each shared data object also has a single key-
holder peer, who is charged with directing requesters of
that object to peers that own it. To request an object, a
peer can locate its key-holder in O(log N) message hops,
whereupon the key-holder responds with a list of servers
from which the object can be downloaded. Alternatives to
Chord include CAN [32], Pastry [33], Tapestry [42], and
MAAN [7]. These systems offer distributed, scalable, and
efficient search, but they do not include data security or
privacy enforcement mechanisms. Penny extends Chord
by providing a framework for maintaining centralized se-
curity labels for data shared over a Chord network.

In trust management systems, peers and occasionally
objects in the system are labeled with trust values based
on past peer interactions. These past experiences are con-
sulted to predict future malicious behavior and incentivize
good behavior. There are three major types of trust man-
agement systems. Reputation-based systems use knowl-
edge of a peer’s reputation (gathered through personal
or indirect experience) to determine the trustworthiness
of another peer. Examples include EigenTrust [20], DM-
Rep [1], P2Prep [10], XRep [11], Sporas and Histos [41],
PeerTrust [40], NICE [23], and DCRC/CORC [17]. In
contrast, policy-based trust management systems, such as
PolicyMaker [5], derive peer trust based on supplied cre-
dentials. Finally, trust management systems based on
social networks determine trust by analyzing a complex
social network. Examples include Marsh [27], Regret [34],
and NodeRanking [31].

Penny integrates a reputation-based trust management
system based on secure EigenTrust [20]. Each peer is as-
signed a global trust value based on the peer’s history of
downloads. Global trust values are computed in a dis-
tributed manner with minimal load, resulting in assured
convergence for all trust queries without centralization.

Resource Description Framework (RDF) is a metadata
model for web data exchange. It is widely used for seman-
tic web knowledge due to its expressive power, semantic
interoperability, and reusability. We show that Penny
is well-suited not only for traditional P2P file/object
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lookups/downloads, but also for deploying and querying
RDF datasets. Two categories of prior work have inves-
tigated effective RDF data management in P2P environ-
ments. One considers the problem of distributing and
retrieving RDF data efficiently [8, 29, 30], while the other
proposes algorithms for efficient query processing (but not
storage) [24, 25, 38]. Neither body of work considers peer
trust or data security issues to our knowledge.

Penny’s RDF representation scheme is most closely re-
lated to that of RDFPeers [8]. RDFPeers stores each RDF
triple by hashing it three times (once for subject, predi-
cate, and object, respectively), resulting in three replicas.
Penny adopts a similar strategy, but for more efficient
query processing it indexes each query by hashing only
one of the three parts, retrieves a superset of the desired
triples, and locally filters the results.

To ensure confidentiality, Penny peers must send
some messages anonymously. This is accomplished via
anonymizing tunnels [12, 13, 43], which permit peers to
route their messages through tunnels of randomly cho-
sen peers. Multilayer encryption and randomly generated
cover traffic prevent any peer in the tunnel from learn-
ing whether its successor is the message originator or just
another hop in the tunnel. The tunnels are bidirectional,
allowing recipients to reply without knowing the identity
of the message originator. The approach has proved to be
both flexible and scalable, requiring little overhead above
that incurred by Chord’s existing message-routing proto-
col [12, 13].

3 Penny Network

Penny implements a standard Chord ring, but with an
extended form of reputation tracking: For each peer and
data object, Penny allots k score-manager peers and k
key-holder peers (respectively) to compute and track the
peer or object’s trust label(s). Parameter k is fixed at net-
work start and controls the degree of replication; greater k
means greater security, since attackers must compromise
more peers to successfully corrupt data. Penny strategi-
cally positions responsibility-sharing score-managers and
key-managers at adjacent ring positions, forming a neigh-
borhood. This greatly improves lookup efficiency over
standard Chord, since only one overlay message (instead
of k) suffices to contact all k replicas. The result is high
replication (and therefore high security) with low over-
head.

To protect data ownership privacy, data lookups in
Penny employ a cryptographically protected extra level
of indirection. Data-serving peers first encrypt their re-
quests with the public key of the data item’s key-holder,
and then ask an arbitrary score-manger to forward the
server’s key (not its real identifier) and encrypted infor-
mation to the key-holder. As a result, the key-holder
does not know who the real owner of the data item is,
and so when someone later requests that data item, the
key-holder forwards the request back through the score-

manger(s). Meanwhile, the score-mangers do not know
which data items are owned by which peers, and thus
learn no peer-object associations as they forward the re-
quests. As a result, the ownership information is con-
cealed from all other parties.

We explain this protocol in detail below, beginning
with foundational definitions in Section 3.1 and proceed-
ing to architectural details in Section 3.2.

3.1 Definitions

Agents: We refer to the peers in a P2P network as
agents. Each agent a is assigned an identifier ida by
applying a one-way, deterministic hash function to its
IP address and port number. We assume that identi-
fiers are unique and that agents cannot influence which
identifiers they are assigned. An agent’s identifier deter-
mines its position in the network’s ring structure. When
agents are arranged in a ring, each agent has a predecessor
pred(a) and a successor succ(a). We refer to the interval
(idpred(a), ida] as the identifier range of agent a.

Objects and keys: An object o is an atomic item of
data (e.g., a file) shared over a P2P network. Each ob-
ject also has a unique identifier ido obtained by applying
a one-way, deterministic hash function to its name. Ob-
jects can be owned by multiple agents. A single key is
associated with each object and each agent. The keys for
object o and agent a are defined by keyo = h(ido) and
keya = h(ida) respectively, where h is a one-way, deter-
ministic hash function over the domain of identifiers.

Key-holders and score-managers: Each agent a1 is
assigned a (not necessarily unique) key-range, denoted
kr(a1). Agent a1 is charged with tracking the global
integrity and confidentiality labels (discussed later) as-
signed to all objects o that satisfy keyo ∈ kr(a1). In ad-
dition, agent a1 tracks the global trust values (discussed
later) assigned to all agents a2 satisfying keya2

∈ kr(a1).
Whenever keyo ∈ kr(a1) holds, we refer to agent a1

as a key-holder for object o, and we refer to object o
as a daughter object of agent a1. Likewise, whenever
keya2

∈ kr(a1) holds we refer to a1 as a score-manager
for agent a2, and we refer to agent a2 as a daughter agent
of agent a1. Every peer in a Penny network acts as both a
key-holder for some objects and a score-manager for some
peers.

Local confidentiality and integrity labels: Each
object o is labeled with a measure of its integrity and con-
fidentiality levels. We denote the integrity and confiden-
tiality labels assigned to object o by agent a as ia(o) and
ca(o), respectively. Similarly, there are local integrity and
confidentiality labels for agents with whom other agents
had transactions. Integrity labels measure data quality;
confidentiality labels measure who should be permitted
to own the data. In Penny, confidentiality and integrity
labels are modeled as real numbers from 0 to 1 inclusive,
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with 0 denoting lowest confidentiality and integrity and 1
denoting highest confidentiality and integrity.

Local trust values: Trust measures the belief that one
agent has that another agent or object will behave as
expected or promised. Each ordered pair of agents (a1, a2)
has a local trust value denoted ta1

(a2) that measures the
degree to which agent a1 trusts agent a2. Likewise, each
ordered pair of agent and object (a, o) has a local trust
value denoted ta(o) that measures the degree to which
agent a trusts object o. Like confidentiality and integrity
labels, trust values range from 0 to 1 inclusive (cf., [20]).
Local integrity and confidentiality labels are computed
and assigned based on local trust values.

Global labels and trust values: Each object o in the
system is associated with global integrity and confiden-
tiality labels, denoted io and co, respectively, and mea-
sured by global trust values To. Likewise, each agent
a is associated with global integrity and confidentiality
labels, denoted ia and ca, respectively, and measured
by global trust values Ta. Key-holders with a common
key-range compute To and score-managers with a com-
mon key-range calculate Ta using Secure EigenTrust [20].
Thus, the global labels and global trust values for any ob-
ject o and for any agent a can be acquired by any agent in
the network by contacting all key-holders akh for object
o, and all score-managers asm for agent a.

3.2 Network Architecture

3.2.1 Identifier Space and Neighborhood

A Penny ring is like a Chord ring, with Penny’s identifier
ranges being equal to Chord’s key-ranges. However, a
Penny agent’s key-range strictly subsumes its identifier
range, and agent key-ranges are not unique. Key-ranges
are assigned in a Penny ring so that for every agent a,
there are between min(k, n) and c agents in the ring whose
key-ranges are equal to kr(a), where n is the total number
of agents and c is a fixed bound on neighborhood size.
(The choice of c is discussed in Section 4.1; usually c =
3k.) Bounding neighborhood size from below by k limits
the influence of malicious agents, because each contributes
at most 1/k of the responses to a secure query. Bounding
it from above by c ensures that lookup is not too costly,
and it bounds the storage overhead for finger tables.

3.2.2 Message Routing

An agent can contact all score-managers for a particular
agent a, or all key-holders for a particular object o, us-
ing O(log N + k) messages. The first O(log N) messages
propagate the message using the Chord algorithm [36]
to an agent whose identifier range includes keya or keyo,
who then forwards it directly to the other O(k) agents
in its neighborhood. Penny therefore reduces the over-
head of all network operations that involve contacting
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Figure 1: Penny message propagation

key-holders, score-managers, and RDF data owners by
a factor of k over EigenTrust. This permits higher repli-
cation rates (e.g., k = 16) that are often infeasible with
past approaches.

As in Chord, each agent a in a Penny ring maintains a
finger table that is used to route messages efficiently. For
each i ∈ [0, m), agent a’s finger table includes the agent
whose identifier range includes (ida + 2i) mod 2m (where
2m is the size of the identifier space). In addition, agent
a’s finger table also includes an entry for each agent in its
neighborhood. The size of each finger table is therefore
O(m + k), where k is a constant dictating the number of
redundant key-holders assigned to each key.

Figure 1 shows an example of the propagation of a
Penny message through the resulting ring. In this exam-
ple, m = 6. Agent 0 wishes to send a message to all agents
whose key-range includes identifier 28. First, the message
is propagated along the ring according to the Chord al-
gorithm to the agent whose identifier range includes 28
(agent 42). This involves first sending the message to the
agent whose identifier range includes 0 + 24 = 16 (owner
is agent 16), and next to the agent whose identifier range
includes 16 + 23 = 24 (owner is agent 42). Once the mes-
sage reaches an agent whose key-range includes 28, that
agent forwards the message directly to all other agents in
its neighborhood. These are all agents in the ring whose
key-ranges include 28.

3.2.3 Network Dynamics

To maintain the invariant that the number of score-
managers for each key-range stays between k and c, a
Penny network must occasionally split or merge neigh-
borhoods as agents join and leave the network. If a peer-
join causes a neighborhood’s population to rise above c,
it splits into two smaller neighborhoods. Dually, if peer-
leave reduces a neighborhood’s population below k, some
or all peers from an adjacent neighborhood migrate in.

When an agent anew joins a Penny ring, it is by de-
fault assigned a key-range identical to its successor’s. Its
successor informs all agents in its neighborhood that they
should update their finger tables to include anew . How-
ever, if this would result in a neighborhood size b that
is greater than c, a split occurs. The first ⌊b/2⌋ agents
and the last b − ⌊b/2⌋ agents in the neighborhood each
become their own neighborhoods. The key-ranges of the
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new neighborhoods are the unions of the identifier ranges
of the agents within each.

Figure 2 illustrates a join operation with a split. Iden-
tifiers are labeled next to each agent outside the ring, and
agent key-ranges are labeled inside the ring. In this ex-
ample, k = 2, c = 4, and m = 6, so when the agent with
identifier 8 joins, key-range [5, 42] has more than c agents
and must be split.

When an agent aold leaves a Penny ring, it informs
its successor asucc and the other agents in aold ’s neigh-
borhood. If asucc is in a different (adjacent) neighbor-
hood, asucc informs the other agents in that neighborhood
that the neighborhood’s key-range has grown to include
identifiers up to and including idpred + 1 (where apred is
aold ’s predecessor). Likewise, agents in aold ’s neighbor-
hood must shrink their key-ranges so that they end with
idpred .

If the departure of aold causes aold ’s neighborhood to
have fewer than k members, two adjacent neighborhoods
must be merged. Let Hold be aold ’s neighborhood and
Hpred be the preceding neighborhood. If |Hold | < k, then
the agent in Hold whose predecessor is in Hpred sends a
merge request to its predecessor. That merge request is
then forwarded to all agents in Hpred . If |Hpred | ≤ k + 1,
then both neighborhoods merge to form a single neigh-
borhood. Otherwise, the rightmost (|Hpred | − |Hold |)/2
agents of neighborhood Hpred join neighborhood Hold .
The key-ranges of the new neighborhoods are the unions
of the identifier ranges of the agents in the new neighbor-
hoods.

Figure 3 illustrates an agent leave operation that re-
quires a key-range merge. Here, the departure of agent 15
from the ring leaves fewer than k = 2 agents in its neigh-
borhood. Agent 16 therefore merges with its predecessor

neighborhood; agents in both neighborhoods extend their
key-ranges to include the identifier ranges of all agents in
the new neighborhood.

Whenever an agent’s key-range shrinks due to any of
the above operations, it must transfer any state associ-
ated with keys not in its new range to the appropriate
key-holders. Similarly, whenever its key-range grows, it
receives state associated with new keys from the agents
who previously occupied that range. An average net pop-
ulation change of 1

2 (c − k) agents per neighborhood is
required before that neighborhood will need to be split
or merged. Thus, by initializing c to be large relative to
k, the frequency of these state transfer operations can be
reduced.

3.2.4 Agent’s Local State

In addition to routing messages, each agent a in a Penny
network plays three different roles: It acts as a server
when sharing objects, as a score-manager for agents whose
keys fall within its key-range, and as a key-holder for ob-
jects whose keys fall within its key-range. For each of
these roles, it maintains some internal state:

• To act as server, it maintains a list of the identifiers
ido of each object o that it owns.

• To act as score-manager, it maintains a list of daugh-
ter agents ad that satisfy keyad

∈ kr(a). These are
the agents for whom agent a is a score-manager. For
each daughter agent ad, it also maintains a vector
of global trust values Tad

with global integrity and
confidentiality labels iad

and cad
, respectively.

• To act as key-holder, it maintains a list of daughter
objects od that satisfy keyod

∈ kr(a). These are the
objects for which agent a is a key-holder. For each
daughter object od, it maintains a vector of global
trust values Tod

with global integrity and confiden-
tiality labels iod

and cod
, respectively.

• For encrypted communication, it chooses a public
key, private key pair (Ka, ka).

• It maintains a list of the keys keysvr and public keys
Ksvr of the agents that serve object o. Thus key-
holders do not learn the actual identifiers of agents
who serve object o, only their keys.

• It maintains local trust values ta(a1) and ta(o) for
agents a1 and objects o with whom it had experience.
These local trust values give rise to local integrity and
confidentiality labels that agent a associates with a1

and o.

3.2.5 Publishing and Downloading Protocols for

Traditional File Objects

Once a Penny network has been initialized, agents interact
according to the protocols detailed below. The protocol
diagrams that follow use solid arrows to denote messages
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that are sent directly from agent to agent without using
the P2P overlay, and dashed arrows for messages that use
the P2P overlay to find the message target based on its
ring identifier. Dashed arrows therefore actually involve
sending O(log N +k) total messages. Arrows with double-
heads may optionally be sent via anonymizing tunnels for
privacy [12, 13, 43]. Notation Ka denotes agent a’s public
key, and 〈. . .〉K denotes a message encrypted with key K.

When an agent asvr wishes to share an object o, it
must first publish that object according to the protocol
depicted in Figure 4. Agent asvr first obtains (possibly
anonymously) the public keys of all key-holders akh for
object o. Agent asvr next encrypts the object identifier
and its own public key with each of the key-holders’ public
keys. It asks one of its score-managers asm to forward
the encrypted messages to the key-holders akh . Agent
asm conceals agent asvr ’s identity by sending only its key
(which later can be used to get the global trust values
and labels from the server’s score-manger) to the key-
holder rather than its identifier, along with the encrypted
message.

To request an object (Figure 5), requester areq first
sends the requested object’s identifier to all key-holders
akh for the object. Each key-holder responds with the ob-
ject’s global integrity and confidentiality labels, and a list
of the keys and public keys of servers who offer the object.
Agent areq can then obtain the object from any server asvr

by sending a request to all score-managers for agent asvr .
Score-mangers reply to areq with the server’s global trust
labels. Based on a selection procedure (Section 3.2.8),
areq then sends a download request message. In the mes-
sage, the requested object’s identifier is encrypted with
the server’s public key to avoid disclosing it to the selected
server’s score-manager. The score-managers forward the
request to the server. The server can then anonymously
send the data directly to the requester.

3.2.6 Publishing and Downloading Protocols for

RDF Datasets

Besides traditional file lookup, Penny also supports RDF
dataset queries. RDF triples are stored within file objects,
but it would be prohibitively inefficient and insecure to
store all triples within a single file owned by a single peer.
Triples are therefore distributed over many smaller files
distributed across many peers, with a protocol for locat-
ing each triple’s containing file. Neighborhoods therefore
collaborate to manage a subset of triples. Instead of keys
for files, we associate triples with identifiers directly, and
all neighborhood agents reply with list of servers who own
the identified triples. One is chosen from this list using
the selection procedure in Section 3.2.8.

This publishing procedure is detailed in Algorithm 1.
To distribute the load of serving particularly popular
triples, each agent maintains a usage count for each triple
it serves. When this count exceeds an agent-imposed pop-
ularity threshold, it defers storage of future instances of
that triple component to its successors in the ring. This

implements a form of coalesced chaining in the distributed
hash table.

RDF queries have syntax ([?]s,[?]p,[?]o), where s is
a subject, p is a predicate, and o is an object, and where
each optional ? indicates an unknown in the query. For
example, query (s,p,?o) requests all RDF triples sat-
isfying subject s and predicate p. For downloading or
querying RDF datasets over Penny network, agents im-
plement Algorithm 2.

3.2.7 Reputation-based Trust Management

Penny incorporates a reputation-based trust management
system based on EigenTrust [20]. EigenTrust is a secure,
distributed trust management system that maintains a
globalized trust value for each agent. These globalized
trust values are obtained by an iterative computation that
approximates the left eigenvector v of the matrix T of all
local trust values in the network. That is, if we define
element Tij to be the degree to which agent ai trusts
agent aj, then the left eigenvector v of matrix T measures
each agent a’s global trust based on how much each agent
trusts a, how much each agent trusts the agents who trust
a, etc.

If an agent ai downloads a file or RDF data from an
agent aj , it rates the transaction as positive (rating 1)
or negative (rating −1) based on the experience. We may
define local trust value s(ai, aj) as the sum of these ratings
of agent aj by agent ai. Then, in order to aggregate the
local trust values, they are normalized. We may define
normalized local trust value, c(ai, aj), as follows:

c(ai, aj) =
max(s(ai, aj), 0)

∑
x max(s(ai, ax), 0)

(1)

This ensures that all values are between 0 and 1. These
normalized local trust values are then aggregated.

To keep the algorithm scalable and robust, eigenvector
v is computed in a distributed and redundant fashion,
where k different agents (score-managers) are responsible
for computing each element of v. This conforms to Secure
EigenTrust [20], except with global trust labels extended
to objects as well as agents, and score-manager replicas
grouped into Penny neighborhoods for better performance
rather than disbursed throughout the ring.

3.2.8 Data Selection Procedure

Every object request (whether a traditional file download
or RDF query) delivers to requesting agent areq a set S
of agents who can supply the object. If some respondents
are malicious, some of these responses may differ. Agent
areq must choose among them based on their reputations.
To do so, it partitions S by response. Let R denote the
resulting equivalence relation, so that quotient set S/R is
the set of agent groups, each of which returned a common
response. For each partition P ∈ S/R we compute the
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public key request
--

Kkh��

akh , 〈ido, Ksvr 〉Kkh -

keysvr , 〈ido, Ksvr 〉Kkh -

asvr asm akh

Figure 4: Publish protocol for traditional file objects

ido --

io, co, keysvr1 ,Ksvr1 ,keysvr2 , . . .
��

keysvr , 〈ido〉Ksvr -

isvr , csvr�

areq , 〈ido〉Ksvr -

areq , 〈ido〉Ksvr -

datao��

areq akh asm asvr

Figure 5: Request protocol for traditional file objects

Algorithm 1 Publish protocol for RDF data

for each RDF triple r do

for each part (subject/predicate/object) rp of r do

attempt ← 0
while true do

id ← succ(h(rp + attempt))
ask aid to store the triple r
if aid already at popularity threshold then

aid refuses to store r
attempt ← attempt + 1

else

aid stores r
break

end if

end while

end for

end for

following evaluation function:

f(P ) = w1
|P |

|S|
+ w2

∑
a∈P t(a)

∑
a∈S t(a)

+ (1−w1−w2)
1

|S/R|
(2)

where w1 and w2 are weights in [0, 1] that prioritize each
partition’s relative size and reputation, respectively, in
the evaluation. We determine acceptable values for w1

and w2 experimentally in Section 4.

Equation 2 is used by Algorithm 3 to resolve the se-
lection choice. In the algorithm, police transactions are
non-user transactions submitted by the security system
during idle times in order to improve convergence. These
are discussed in the next section.

Algorithm 2 Download protocol for RDF data

for each sub-query q in query Q do

for each part (subject/predicate/object) qp in q do

attempt ← 0
while true do

id ← succ(h(qp + attempt))
Request triples D from aid satisfying qp

if |D| < agent aid ’s popularity threshold then

break // the search for qp is finished
else

attempt ← attempt + 1
end if

end while

end for

end for

Download triples from servers in list obtained above
Locally compute query result from retrieved data

4 Implementation and Results of

Experimental Evaluation

We developed a Java implementation of Penny and tested
its ability to weather several simulated attack scenarios.
Efficiency and robustness of the network was evaluated
in terms of the percentage of successful query responses.
All experiments employ 20% malicious nodes and 10 pre-
trusted agents [20, Section 4.5]. Throughout the simula-
tion, we use SHA-256 for all hashing and 2160 for the iden-
tifier space size. We do not simulate the details of the un-
derlying network and encryption operations, or anonymiz-
ing tunnels, since these are covered by prior works (see
Section 2). Experiments are conducted under dynamic
conditions, including peer joins and leaves, and neighbor-
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Algorithm 3 Data server selection procedure

if all members of S have trust 0 then

select one server from S randomly
else if transaction is a police transaction then

w1 ← 0
w2 ← 0
for each partition P ∈ S/R do

choose partition P with probability f(P )
end for

else

w1 ← 0.2
w2 ← 0.8
B ← arg maxP∈S/Rf(P )
B ← arg maxP∈B|P |
choose a partition randomly from set B

end if

hood splitting and merging.
In our implementation and analysis of Penny, we focus

on four classes of attacks:

• A malicious agent or collective might spread corrupt
or incorrect data. For example, the malicious agent
or collective might spread malicious code or circulate
false facts.

• A malicious agent or collective might attach incorrect
security labels to data. In particular, low-integrity
data might be ascribed a high-integrity label, or high-
confidentiality data might be ascribed a low confiden-
tiality label.

• A malicious agent or collective might attempt to
learn which agents own certain data, perhaps as a
prelude to staging additional attacks against those
agents.

• A malicious agent or collective might attempt to gen-
erate a list of all data served by a particular agent,
violating that agent’s privacy.

We do not consider attacks upon the network overlay
itself, such as message misrouting, message tampering, or
denial of service attacks. These attacks are beyond the
scope of this paper, but could be addressed with various
techniques, such as digital signatures, delivery receipts,
and non-deterministic routing [18].

4.1 Bounding Neighborhood Size

As discussed in Section 3.2.1, the upper bound c for the
size of a neighborhood must be chosen so as to balance
high security (high c) with good performance (low c). We
empirically determine a suitable value for c as follows.
Each experiment consists of three phases of dynamic ac-
tivity: (1) 1000 agents join the network, (2) 1000 random
joins and leaves occur, and (3) 2000 more joins and leaves
occur. All other network activities, including neighbor-
hood splitting and merging, agent finger table updates,

periodic EigenTrust runs, file downloads, etc., all occur
randomly within all phases. The first two phases serve
to initialize and stabilize the network; statistical results
are gathered and reported only for phase 3. We tested
networks with replication factors k ranging from 3 to 90,
with 10 trials per replication factor. We also tested neigh-
borhood size bounds of c = 2k and c = 3k, obtaining the
best results for c = 3k.

Figures 6(a) and 6(c) show that the number of neigh-
borhood split and merge operations is greatly reduced
when c is increased from 2k to 3k. This is because
splitting a size-2k neighborhood results in one of size
k, which is near the lower bound on neighborhood size.
The new neighborhoods are therefore susceptible to merg-
ing, leading to oscillations between sizes k and 2k, and
many expensive merge/split operations. Choosing c = 3k
resolves this problem. Splitting size-3k neighborhoods
yields size- 3

2k neighborhoods, which must undergo con-
siderable churn before they must be merged (at size k) or
split again (at size 3k). Even though the neighborhoods
are larger, the vastly reduced number of split/merge oper-
ations leads to significantly fewer maintenance messages
total, as shown in Figures 6(b) and 6(d). The curve in
Figure 6(d) is smoother than the one in Figure 6(b) be-
cause of the elimination of the oscillations.

4.2 Results for File Downloads

In this section we conduct different experiments for tradi-
tional file downloads in the presence of malicious agents,
and show the robustness of Penny against these attacks.
We simulate the publish protocol (Figure 4) and the re-
quest protocol (Figure 5). For these experiments, there
are 1000 agents and 100 file objects in the system, and
k = 5. We run 1000 downloads in the simulation, each of
which uses the selection procedure in Algorithm 3.

Algorithm 3 makes the natural choice of preferring
high- over low-reputation agents for user-submitted re-
quests. We discovered that this tends to cause EigenTrust
(and other reputation-based trust management systems)
to converge slowly because low-reputation agents are so
rarely exercised. To correct this, we introduced a new
form of transaction, called a police transaction, that is
designed to harmlessly exercise the system during idle pe-
riods rather than yield a correct result. Such transactions
utilize low-reputation agents, providing higher-reputation
agents additional opportunities to evaluate their answers.
In our simulations, we used 50% police transactions.

For non-police transactions, we placed greatest weight
on reputations (w2 = 0.8) and the remaining weight on
consensus size (w1 = 0.2). We consider each 20 down-
loads as one frame and thus show the frame position over
time with 1000 downloads. After each frame, we run the
EigenTrust algorithm and compute global trust values ac-
cordingly. For each type of experiment, we run it 5 times
and take the average success rate. For all experiments,
we pessimistically assume that all malicious agents know
the identities of all the pre-trusted agents, and that they
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Figure 6: Performance comparisons for c = 2k and c = 3k

must display high trust for those agents in order to avoid
lowering their own reputations. Thus, malicious agents
trust only other malicious agents and pre-trusted agents.

In our negative feedback experiment, malicious agents
always serve malicious files, and non-malicious agents who
download the files always submit negative feedback for the
transaction. Figure 7 shows that under these conditions,
malicious agents fail to accrue high trust. Figure 7(a)
is for a static network with no leaves or joins, and Fig-
ure 7(b) is for a dynamic network undergoing constant
churn. As expected, convergence is slower in the pres-
ence of dynamic activity; the static network converges at
about frame 10, whereas the dynamic doesn’t until about
frame 20. For both, we get a very high average success
rate: 95.58% for the static network and 92.22% for the
dynamic one, even with 20% malicious agents.

Figure 8 records the results of our half-correct behav-
ior experiment, in which malicious agents provide cor-
rect files 50% of the time. Non-malicious agents always
provide positive feedback for correct files and negative
feedback for corrupt ones. Both static and dynamic net-
works converge quickly—at approximately frames 14 and
24, respectively. Average success rates were also still very
high: 96.72% for the static network and 94.50% for the
dynamic one. We further observe that the success rates
are higher than each corresponding negative feedback ex-
periment, since malicious agents provide correct files 50%
of the time. On the other hand, convergence is slower
because non-malicious agents take longer to identify the

malicious agents.

Our malware propagation experiment next considers
the pervasive problem of botnet malware infections of P2P
file-sharing networks. In this experiment, non-malicious
downloaders of malicious files have a 20% chance of be-
coming infected and exhibiting malicious behavior there-
after. Malicious agents behave the same as in the half-
correct behavior experiment. In both static (Figure 9(a))
and dynamic (Figure 9(b)) networks, success rates ini-
tially drop as previously high-reputation agents suddenly
attack the system. However, the reputation system
adapts and around frame 16 the non-malicious agents
manage to largely isolate the infection. The count of ma-
licious agents continues to grow monotonically, as seen in
Figures 9(c) and 9(d), because the experiment includes
no facility for disinfection. But the growth slows, and
any new malicious agents are identified relatively quickly
by the non-malicious majority. The average success rates
were 93.04% for static networks and 90.44% for dynamic
ones.

4.3 Results for RDF Datasets

We next present experiments for RDF dataset downloads
in the presence of malicious agents, and show the robust-
ness of Penny networks. We simulate the publish protocol
(Algorithm 1) and download protocol (Algorithm 2). The
rest of the experimental setup is same as in Section 4.2.
We use the LUBM100 [16] dataset for our experiments,
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Figure 7: Negative feedback experiment success rates
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Figure 8: Half-correct behavior experiment success rates
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Figure 9: Malware propagation experiment success and propagation rates
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which is broadly used by researchers for similar evalu-
ations [15]. The LUBM data generator yields datasets
in RDF/XML format, which we converted to N -triples
format. For download or query purposes, we use atomic
triple queries and conjunctive multi-predicate queries (cf.,
[8]). We conduct the same three sets of experiments for
RDF datasets as reported in Section 4.2.

For the negative feedback experiment (Figure 10) we
see average success rates of 95.12% for static networks and
87.26% for dynamic ones. These are slightly lower than
the corresponding rates for non-RDF file downloads be-
cause of the additional number of transactions required to
successfully answer RDF queries. If any sub-query fails,
the entire query fails. In addition, the coalesced chaining
implemented by Algorithm 2 requires additional transac-
tions to retrieve popular triples. Convergence rates are
slightly lower for the same reason. Despite this, both suc-
cess rates and convergence rates remain quite high for a
network with so much malicious population.

The half-correct behavior experiment exhibits even
faster convergence, as seen in Figure 11. The static net-
work converges at about frame 15, and the dynamic at
25. Average success rates were similarly high at 96.46%
and 92.78%, respectively.

While malware is not possible in RDF data to our
knowledge, for the sake of completeness we replicated the
malware propagation experiment for the RDF publish and
download protocol. Results are reported in Figure 12.
Both static and dynamic networks exhibited fast conver-
gence; about frame 19 for the static network and 29 for
the dynamic one. Success rates were similarly promising,
being 92.90% and 88.98% on average for the static and dy-
namic cases, respectively. Again, these are slightly lower
than for file downloads because of the higher complexity
of the RDF protocol. As before, both networks exhibit an
initial drop in success but manage to adapt and recover
fairly smoothly.

5 Discussion

The high success rates and strong convergence properties
experimentally observed in Section 4 can be traced largely
to Penny’s support for exceptionally high data replication
via its neighborhood topology. Label retrieval is efficient
in Penny, requiring approximately the same number of
messages as object lookup in a Chord network, but with k
independent replicas of each label. An agent can retrieve
any object’s global integrity label by sending a single re-
quest message, which gets forwarded at most O(log N+k)
times throughout the network. The request solicits O(k)
response messages, from which one response is selected
via Algorithm 3.

Penny inhibits the spread of low-integrity data (e.g.,
malware) by maintaining a global integrity label for each
object shared over the network. Agents wishing to avoid
such data can therefore consult each object’s global in-
tegrity label before downloading it. Thus, the problem of

restraining the spread of malware over a Penny network
reduces to the problem of efficiently maintaining and re-
porting accurate integrity labels.

In addition to global integrity labels, Penny also main-
tains global confidentiality labels for objects. Agents can
use these labels as a basis for selectively serving data
to other agents—possibly based on the requester’s trust
level, global confidentiality label, or other credentials.

An object’s global security labels are determined by the
votes of other agents in the network via EigenTrust [20].
Votes are weighted by the reputation of each voter so that
the votes of agents who are widely regarded as trustwor-
thy are more influential than the votes of those who are
not. This makes it difficult for a malicious agent to attach
a high integrity label to low-integrity data. In order for
such an attack to succeed, malicious agents must collec-
tively have such good reputations that they outweigh the
votes of all other voters. Penny uses EigenTrust to track
agent reputations and to prevent malicious agents from
accruing good reputations.

Secure hashing and replication are both employed to
protect against malicious key-holders and score-managers
who might falsify an object’s global integrity labels or an
agent’s global trust value. Use of a secure hash function
for identifier assignment ensures that agents cannot dic-
tate the set of objects and agents for which they serve as
key-holders and score-managers. By ensuring that there
exist at least k key-holders and score-managers for every
key-range, Penny prevents any one agent from subvert-
ing the reputation of any object or agent. At least ⌊b/2⌋
agents in a neighborhood must be malicious in order to
subvert a reputation, where b ≥ k is the neighborhood
size.

Malicious peers cannot elevate their own reputations
by switching IP addresses or creating false network ac-
counts because all agent and object reputations start at
zero in Penny (cf., [20]). An agent or object acquires a
positive reputation only by participating in positive trans-
actions with other agents. Agents with established rep-
utations then report positive feedback for those transac-
tions, elevating the new agent’s reputation.

Unlike Penny, Chord [36] requires each key-holder to
maintain a list of the agents who own the key-holder’s
daughter objects. These lists are reported to any agent
who requests the object, divulging the identities of all
agents who own a particular object. To address this pri-
vacy vulnerability, Penny conceals information associat-
ing agents with the objects they own by splitting that in-
formation amongst key-holders and score-managers (see
Figure 5). A malicious key-holder and a malicious score-
manager must therefore collaborate to learn that a par-
ticular server owns a particular object. Opportunities
for such collaboration are limited because key-holders
and score-managers cannot choose their key-ranges. It
is therefore unlikely that a malicious collective will oc-
cupy both a key-range that includes a particular victim
object’s key and a key-range that includes a particular
victim agent’s key (assuming the collective is small rela-
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Figure 10: RDF negative feedback experiment success rates
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Figure 11: RDF half-correct behavior experiment success rates
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Figure 12: RDF malware propagation experiment success and propagation rates
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tive to the size of the network). Thus, Penny enforces a
notion of object ownership privacy.

Key-holders and score-managers can, of course, learn
ownership information through guessing attacks, but this
is prohibitively expensive when the space of object and
agent identifiers is large. For example, a malicious agent
am can discover whether a particular object o is served
by any agent for which am serves as score-manager by
requesting ido and comparing the key-holders’ responses
against its list of daughter agents. However, am cannot
easily produce a list of all objects served by any of its
daughter agents because to do so it would have to search
the entire space of object identifiers. Likewise, am can
discover whether a particular server asvr owns any object
for which am serves as key-holder. To do so, am computes
keysvr and searches for that key in its list of keys of servers
that own am’s daughter objects. However, am cannot
easily produce a list of all servers that own any given
object because it would have to search the entire space
of server identifiers. So a large identifier space provides
natural resistance to guessing attacks.

6 Conclusion and Future Work

Penny efficiently supports global trust labels, data in-
tegrity labels, and data confidentiality labels in a fully
decentralized, structured, peer-to-peer network. Global
labeling assures convergence for all security queries, while
decentralization avoids centralized points of failure typi-
cally associated with centralized label servers. Its rep-
utation management system applies and extends Eigen-
Trust [20], distributed hash tabling based on Chord [36],
and anonymizing tunnels based on Tarzan [12, 13] or
SurePath [43]. The security labeling scheme preserves
the efficiency of network operations; lookup cost includ-
ing label retrieval is O(log N +k), where N is the network
size and k is a constant replication factor.

We developed a Penny client in Java and tested it
under eight attack simulations. The results illustrate
Penny’s efficiency and reliability over realistic network
operations, including high dynamic churn; object pub-
lications, lookups, and downloads; and regular reputation
maintenance via the Secure EigenTrust algorithm. The
results also demonstrate the robustness of Penny in the
presence of malicious agents. We obtain extremely high
average success rates for all experiments even when 20% of
the network is malicious. Experiments show that success
rates remain high even with relatively complex publish
protocols, such as those used to manage RDF data.

Penny is one contribution to the larger research ques-
tion of how to combine anonymity with reputation-based
trust management. Anonymity and reputation-based
trust are often at odds because it is difficult to divulge
an agent’s reputation without also divulging its identity.
Penny accomplishes this by decoupling object-owner in-
formation through a cryptographically protected layer of
indirection.

Our implementation and analysis did not consider at-
tacks upon the P2P network overlay itself, such as de-
nial of service, message misrouting, message tampering,
or traffic pattern analysis. Using trust values to change
the routing structure (so as to avoid routing messages
through malicious agents) is an interesting and active area
of research that might address these vulnerabilities (cf.,
[18]). We intend to consider such attacks in future work.

Future research should also consider how to enforce in-
formation flow policies based on Penny’s integrity and
confidentiality labeling system. For example, Penny’s
publish and request protocols might be augmented with
security checks that block the dissemination of data items
whose integrity labels lie below a certain threshold. This
would have the effect of censoring known malware from
the network. One might also enforce a corresponding con-
fidentiality policy that prohibits low-trust agents from ob-
taining high confidentiality data, but this is a more diffi-
cult research challenge. In order to prevent future confi-
dentiality violations the trust management system must
be informed of past confidentiality violations, but it is
unclear how to ensure that such violations get reported
(since typically the only witnesses are the malicious agents
involved in leaking the data). Enforcing strong confiden-
tiality policies in P2P networks therefore remains an in-
teresting open problem.
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