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Abstract

This paper proposes an identity based key agreement pro-
tocol based on elliptic curve cryptography (ECC) between
users of different networks with independent private key
generations (PKGs). Instead of bilinear pairings which
commonly used for contracting identity based schemes,
the proposed protocol makes use of elliptic curves to ob-
tain more computational efficiency. The proposed proto-
col develops Cao et al’s protocol for situations that two
users of independent organizations or networks with sep-
arate servers (that in this article, are named PKGs, based
on their main duty, generating private keys for the users)
want to share a secret key via an insecure link. The main
novelty of this paper is security proof of the proposed
protocol in the random oracle model. The security proof
argues the security attributes of the proposed protocol.
Keywords: Elliptic curve cryptography, identity based
cryptography, key agreement protocol, random oracle
model

1 Introduction

In public key cryptosystems each user has a private key
and a corresponding public key. The main problem in
this field is how establishing a link between user’s iden-
tity (ID) and her/his public key. A general solution for
this problem is based on Public Key Infrastructure (PKI),
defined in ISO/IEC 9594-8 [1], in which a trust authority,
called Certificate Authority (CA), issues a certificate con-
tained user’s ID and user’s public key signed with his/her
private key. Because issuing and using the certificate are
costly, another solution named Identity Based Cryptog-
raphy (IBC) has been proposed.

The IBC idea was first proposed by Shamir in 1984 [12].
In an IBC system, user’s ID is considered as her/his public
key and the user’s private key is generated by a trust au-

thority, called Key Generation Center (KGC) or Private
Key Generation (PKG). The main advantage of the IBC
systems is that unlike PKI systems, issuing a certificate
for each user is not required because there is an inherent
link between user’s ID and her/his public key.

In 2001, Boneh and Franklin [4] gave the first fully
functional solution for ID-based encryption (IBE) using
bilinear pairings. Since then, numerous ID-based authen-
ticated key agreement protocols have been proposed based
on bilinear pairings (e.g., [8, 11, 14, 15]). In the identity-
based cryptosystems, users acquire their private key from
the PKG. A single PKG may be responsible for issuing
private keys to members of a small-scale organization, but
it is unrealistic to assume that a single PKG will be re-
sponsible for issuing private keys to members of differ-
ent organizations, let alone the entire nation or the en-
tire world. Furthermore, it is also unrealistic to assume
that different PKGs will share common system param-
eters and differ only in the master key as done by Chen
and Kudla [8]. Therefore, it is needed to consider multiple
PKG environment where all the PKGs use different sys-
tem parameters. In 2005, Lee et al. proposed ID-based
2-party and tripartite AK protocol for this setting [10].
However, Kim et al. showed that, these protocol has a
serious flaw that allows attackers to impersonate others
freely and proposed modifications to the protocol [9].

On performance, according to the results in [2, 3],
one bilinear pairing operation requires several times more
multiplications in the underlying finite field than an ellip-
tic curve point scalar multiplication does in the same finite
field. For low-power devices such as sensors, cellphones
and low-end PDAs, which are usually characterized by
limited battery lifetime and low computational power, ap-
plications using bilinear pairings can be too expensive to
implement. In addition, most of the ID-based cryptosys-
tems require a special hash function called map-to-point
hash function [4] for converting a user’s identifying infor-
mation to a point on the underlying elliptic curve. This
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operation is also time consuming and cannot be treated
as a conventional hash operation which is commonly ig-
nored in performance evaluation. To solve the problems
which appear due to the bilinear pairings, IBC systems
based on elliptic curves have been introduced and devel-
oped in various areas including key agreement protocols
e.g. [5, 6, 16].

The contribution of this article is to construct a
separate-PKG type identity based key agreement protocol
which does not utilize bilinear pairings, but it uses elliptic
curves which is an appropriate choice for low-power and
low-memory cryptographic devices. The separate-PKG
property allows users of different networks to share a se-
cret key for using in next secure communications.

The remainder of the paper is organized as follows:
Section 2 focuses on the mathematical background of el-
liptic curves and security model of the key agreement pro-
tocols. In Section 3 we propose an ID-based key agree-
ment protocol without pairing for separate KGCs and
prove its security in Section 4. Finally, Section 5 con-
cludes the paper.

2 Preliminaries

2.1 Elliptic Curve

An elliptic curve E over a field Fp is defined by an equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ Fp and ∆ 6= 0 where ∆ is the dis-
criminate of E. The above equation is called the Weier-
strass equation. The condition ∆ 6= 0 ensures that the
elliptic curve is smooth, that is, there are no points at
which the curve has two or more distinct tangent lines.
Also included in the definition of an elliptic curve is a sin-
gle element denoted by O and called the ‘point at infin-
ity ’. The ‘chord and tangent rule’ is used for adding two
points to give a third point on an elliptic curve. Together
with this addition operation, the set of points denoted as
E(Fp) forms a commutative group G under addition with
O serving as its identity and P as its generation.
Assumption 1 Computational Diffie-Hellman (CDH):
For a, b ∈R Z∗p, given P, aP and bP ∈ G, computing
abP ∈ G is hard.

2.2 Security Model of Key Agreement

We now review the formal security model for ID-based au-
thenticated key agreement protocols due to Chen, Cheng
and Smart [7] which is an adapted version of Blake-Wilson
et al’s model [13]. In the model, each party involved in a
session is treated as an oracle, and an adversary can ac-
cess the oracle by issuing some specified queries (defined
later). An oracle Πs

i,j denotes the s-th instance of party
i involved with a partner party j in a session. The secu-
rity of a protocol is defined by a game with two phases.

In the first phase, an adversary E is allowed to issue the
following queries in any order:

• Send(Πs
i,j , x). Upon receiving the message x, oracle

Πs
i,j executes the protocol and responds with an out-

going message m or a decision to indicate accepting
or rejecting the session. If the oracle Πs

i,j does not
exist, it will be created as initiator if x = λ, or as a
responder otherwise. In this work, we require i 6= j,
i.e., a party will not run a session with itself. Such
restriction is not unusual in practice.

• Reveal(Πs
i,j). If the oracle has not accepted, it re-

turns ⊥; otherwise, it reveals the session key. Such
an oracle is called opened.

• Corrupt(i). The party i responds with its private
key.

At some point, E can make a Test query to some fresh
oracle (Definition 1). E receives either the session key or
a random value from a particular oracle.

• Test(Πs
i,j). Oracle Πs

i,j which is fresh, as a challenger,
randomly chooses b ∈ {0, 1} and responds with the
session key, if b = 0, or a random sample from the
distribution of the session key, otherwise.

In the second phase, the adversary can continue mak-
ing Send,Reveal and Corrupt queries to the oracles, ex-
cept that it cannot reveal the test oracle Πs

i,j or its partner
Πt

i,j (if it exists), and it cannot corrupt party j.

• Output: Finally, the adversary outputs a guess b′

for b. If b′ = b, we say that the adversary wins. The
adversary’s advantage is defined as

AdvE(κ) = |2Pr[b′ = b]− 1|

Definition 1. (fresh oracle). An oracle Πs
i,j is fresh if:

1) Πs
i,j has accepted; 2) Πs

i,j is unopened (not been issued
the Reveal query); 3) party j 6= i is not corrupted (not
been issued the Corrupt query) and 4) there is no opened
oracle Πt

i,j, which has had a matching conversation to
Πs

i,j.

Definition of security in the model depends on the no-
tion of matching conversations. As mentioned in [7], two
oracles have matching conversations to each other if they
have the same session identifier which consists of a con-
catenation of the messages exchanged between them.

A secure authenticated key (AK) agreement protocol
is defined as follows:

Definition 2. A protocol is a secure AK if:

1) In the presence of a benign adversary, which faithfully
conveys messages, on Πs

i,j and Πt
i,j, both oracles al-

ways accept holding the same session key, and this
key is distributed uniformly on 0, 1κ;

2) For any polynomial time adversary E, AdvE(κ) is
negligible.
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3 The Proposed Protocol

An ID-based key agreement protocol between users of sep-
arate KGCs is defined in terms of three algorithms system
setup, key generation and key agreement.

System Setup: On input 1κ, this algorithm outputs
params, a set of system parameters. Basically, this is
similar to that of Cao, Kou and Du’s work [5]. However,
in our system, there are total n different KGCs, which do
not share common system parameters. Therefore, each
KGCi must configure its parameters as follows:

1) Chooses a prime p(i) and determine the tuple
{Fp(i) , E(i)/Fp(i) , G(i), P (i)}.

2) Chooses two cryptographic secure hash functions
H

(i)
1 : {0, 1}∗ ×G(i) −→ Z∗

p(i) .

3) Chooses its master key x(i) ∈R Z∗
p(i) and compute

the system public key P
(i)
pub = x(i)P (i).

4) Publishes {Fp(i) , E(i)/Fp(i) ,G(i), P (i), P
(i)
pub,H

(i)
1 } as

system parameters and keep the master key x(i) se-
cret.

Key Generation: Is a key derivation algorithm that
on system parameters, master key, and a user’s identifier
and returns the user’s ID-based long-term key. With this
algorithm, each KGCi works as follows for each user U
with identifier IDU :

1) Chooses a random rU ∈R Z∗
p(i) , compute RU =

rUP (i) and hU = H
(i)
1 (IDU , RU ).

2) Compute sU = rU + hUx(i).

U’s private long-term key is sU and is transmitted to U
via a secure channel. U can verify his/her private key by
checking sUP (i) = RU + H

(i)
1 (IDU , RU )P (i)

pub.

Key Agreement: Two users A and B of two separate
KGCs establish an authenticated secret key as follow:

Step1. A → B: {IDA, T
(1)
A , T

(2)
A , RA}. A chooses two

random numbers a(1) ∈R Z∗
p(1) and a(2) ∈R Z∗

p(2) and

computes T
(1)
A = a(1)P (1) and T

(2)
A = a(2)P (2). Then A

sends {IDA, T
(1)
A , T

(2)
A , RA} to B.

Step2. B → A: {IDB , T
(1)
B , T

(2)
B , RB} B also chooses

two random numbers b(1) ∈R Z∗p(1) and b(2) ∈R Z∗p(2) and

computes T
(1)
B = a(1)P (1) and T

(2)
B = a(2)P (2). Then B

sends {IDB , T
(1)
B , T

(2)
B , RB} to A.

Step3. Upon receiving the message from B, A computes
the shared secrets as follow:

K
(1)
A = sAT

(1)
B

K
(2)
A = a(2)P

(2)
B

where P
(2)
B = sBP (2) = RB + H

(2)
1 (IDB , RB)P (2)

pub.
Finally A computes session key with a general one-way

hash function like SHA-2 as follows:

KAB = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B , a(1)T

(1)
B

a(2)T
(2)
B , K

(1)
A ,K

(2)
A }.

(1)

Step4. Upon receiving the message from A, B also com-
putes the shared secret keys as follow:

K
(1)
B = b(1)P

(1)
A

K
(2)
B = sBT

(2)
A

where P
(1)
A = sAP (1) = RA + H

(1)
1 (IDA, RA)P (1)

pub.
Finally B also computes the session key with a general

one-way hash function like SHA-2 as follows:

KBA = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B , b(1)T

(1)
A ,

b(2)T
(2)
A ,K

(1)
B ,K

(2)
B }.

(2)

4 Security Proof

Theorem 1. The protocol is a secure AK, provided the
CDH assumption holds and the hash function H is mod-
eled as a random oracle.

Proof. The first condition in Definition 2.2 follows from
the assumption that the two oracles follow the protocol
and E is benign. In this case, for our protocol it is clear
that, both oracles accept holding the same session key
because

K
(1)
A = sAT

(1)
B = sAb(1)P (1) = b(1)P

(1)
A = K

(1)
B

and

K
(2)
B = sBT

(1)
A = sBa(1)P (1) = a(1)P

(1)
B = K

(2)
A .

Thus, the session keys KAB and KBA (Equations (1) and
(2), respectively) are equal.

Now we prove that the protocol meets the second con-
dition. For a contradiction, assume that there is an ad-
versary E against our protocol that has a non-negligible
advantage ε in guessing correctly whether the response to
a Test query is real or random (i.e., winning the attacking
game). Apart from this adversary, we show how to con-
struct a simulator S that solves the CDH problem with
non-negligible advantage ε(κ). Suppose A is given an in-
stance (aP, bP ) ∈ G of the CDH problem, and is tasked
to compute cP ∈ G with c = ab mod p.

We assume that the game between S and E involves
nkgc(κ) separate KGCs, each KGC can support nu(κ)
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users and each user may be involved in ns(κ) sessions
where κ is the security parameter. As mentioned, our
protocol executes between users of separate KGCs so we
denote each user i ∈ {1, ..., nu(κ)} supported by key gen-
eration center k ∈ {1, ..., nkgc(κ)} with i(k) and conse-
quently, oracle Πs

i(k)j(l) denote the s-th instance of party
i(k) involved with a partner party j(l) in a session. S
works by interacting with E as follows:

setup: S simulates the system setup to the adversary
E and defines the system public parameters of each
KGC. S randomly chooses K,L ∈ {1, ..., npub(κ)}, I, J ∈
{1, ..., nu(κ)} (where I 6= J) and s ∈ {1, ..., ns(κ)} and
takes the tuple {Fp, E/Fp,G, P, P

(K)
pub ,H

(K)
1 } as system

public parameters of KGCK. Then S computes the long-
term keys for Ui supported by KGCk denoted by s

(k)
i .

S makes a list LPrivateKeys whose elements are tuple
(ID

(k)
i , s

(k)
i ) and determined as follows:

– If i = I and l = K then take R
(K)
I = aP which is

the input of CDH problem; hence S does not know
the long-term private key s

(K)
I and inserts (ID

(K)
I ,⊥)

into the list.

– Otherwise, S chooses r
(k)
i ∈ Z∗p at random and com-

putes R
(k)
i = r

(k)
i P (k), h

(k)
i = H

(k)
i (ID

(k)
i , R

(k)
i ) and

private key s
(k)
i = r

(k)
i + r

(k)
i x(k); then S inserts

(ID
(k)
i , s

(k)
i ) into the list.

Corrupt (ID(k)
i ): S looks through the list LPrivateKeys.

If ID
(k)
i is not on the list, S computes the private key

and inserts it into the list. S checks the value of s
(k)
i ; if

s
(k)
i 6=⊥, then S responds it to E ; otherwise, S aborts

the game (Event1).

Send(Πt
i(k)j(l)

,M1,M2): S maintains a list LSend for
each oracle of the form (Πt

i(k)j(l) , trant
i(k)j(l) , (r(k))t

i(k)j(l) ,
(r(l))t

i(k)j(l) , M1, M2, (K(k))t
i(k)j(l) , (K(l))t

i(k)j(l) ,
SKt

i(k)j(l)) where trant
i(k)j(l) is the transcript of the

oracle so far; (r(k))t
i(k)j(l) , (r(l))t

i(k)j(l) are random integers
used by the oracle to generate messages, (K(k))t

i(k)j(l) ,
(K(l))t

i(k)j(l) , and SKt
i(k)j(l) are set ⊥ initially. Note that

the list LSend can be updated in other queries as well,
such as Reveal and the H queries. S proceeds as follows:

– If Πt
i(k)j(l) 6= Πs

I(K)J(L) ,M , then S treats according to
the protocol.

– Otherwise, S responds with the tuple {ID
(L)
J , T

(K)
J =

bP, T
(L)
J , R

(L)
J } and sets r

(K)
J =⊥ in the list LSend.

Reveal(Πt
i(k)j(l)

): S maintains a list LReveal with tuples

of the form {Πt
i(k)j(l) , ID

(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) ,

Y
(2)

j(l) , SKt
i(k),j(l)}. To respond, first, S looks through to

the list LReveal; if it previously is queried, S responds
SKt

i(k)j(l) from the list to E; otherwise S proceeds in the
following way to respond:

– Get the tuple of oracle Πt
i(k)j(l) from the list LSend.

– If oracle Πt
i(k)j(l) has not been accepted, then respond

with ⊥; if Πt
i(k)j(l) = Πs

I(K)J(L) , then abort the game
(Event 2), and if SKt

i(k)j(l) 6= ⊥, return SKt
i(k)j(l) .

– Otherwise, look through LH ;

◦ If the tuple {ID
(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l)}
is not in the list, then S selects a random num-
ber SKt

i(k),j(l) ∈ {0, 1}κ, responds it to E and

inserts the tuple {Πt
i(k)j(l) , ID

(k)
i , ID

(l)
j , X

(1)

i(k) ,

X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l) , SKt
i(k)j(l)} into LReveal;

◦ Otherwise (i.e. the tuple {ID
(k)
i , ID

(l)
j , X

(1)

i(k) ,

X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l)} is in the list LH), S proceeds
as follows:

. If the existing tuple in LH is of the form
{Πt

i(k)j(l) , ID
(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) ,

Y
(2)

j(l) , Z1u, Z2u,K1u, K2u, hu}, then S re-
sponds hu to E and updates the list LReveal.

. If the existing tuple in LH is of the form
{––, ID

(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l) ,
Z1u, Z2u,K1u, K2u, hu}, then S selects a
random number SKt

i(k)j(l) ∈ {0, 1}κ, re-
sponds it to E and updates the list LReveal.

. If the existing tuple in LH is of the form
{⊥, ID

(k)
i , ID

(l)
j , X

(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l) , Y
(l)

j(l) ,
Z1u, Z2u, K1u, K2u, hu}, then S checks
Z1u ∈ G(k), Z2u ∈ G(l), e(X(k)

i(k) , Y
(k)

j(l) ) =

e(Z1u, P (k)), e(X(l)

i(k) , Y
(l)

j(l)) = e(Z2u, P (l)),

K1u ∈ G(k), K2u ∈ G(l) and e(P (k)
i , Y

(k)

j(l) ) =

e(K1u, P (k)), e(P (l)
j , X

(l)

j(k)) = e(K1u, P (l));

¦ If those hold, S responds hu to E and re-
places the tuple {⊥, ID

(k)
i , ID

(l)
j , X

(k)

i(k) ,

X
(l)

i(k) , Y
(k)

j(l) , Y
(l)

j(l) , Z1u, Z2u, K1u,K2u,

hu} with the tuple {Πt
i(k)j(l) , ID

(k)
i ,

ID
(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l) , Z1u,
Z2u, K1u, K2u, hu} in the list LH ; then
S updates the list LReveal.

¦ Otherwise, S selects a random number
SKt

i(k)j(l) ∈ {0, 1}κ and responds it
to E; then S updates the list LReveal

and replaces the tuple {⊥, ID
(k)
i , ID

(l)
j ,

X
(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l) , Y
(l)

j(l) , Z1u, Z2u, K1u,

K2u, hu} with the tuple {––, ID
(k)
i ,
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ID
(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l) , Z1u,
Z2uK1u, K2u, hu} in the list LH .

H(ID(k)
i , ID(l)

j ,X(1)

i(k) ,X
(2)

i(k) , Y(1)

j(l)
, Y(2)

j(l)
, Z1u, Z2u, K1u,

K2u): S maintains a list LReveal with tuples of the
form {⊥, ID

(k)
i , ID

(l)
j , X

(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l) , Y
(l)

j(l) , Z1u, Z2u,
K1u,K2u, hu}. To respond, S first looks through to the
list LH ; if it previously is queried, S responds hu from
the list to E; otherwise S Looks through to LReveal and
proceeds in the following way to respond:

− If the tuple {ID
(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l)} is
not in the list, then S selects a random number
hu ∈ {0, 1}κ, responds it to E and inserts the tu-
ple {⊥, ID

(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l) , Y
(2)

j(l) , Z1u, Z2u,
K1u, K2u, hu} into LH ;

− Otherwise, S checks Z1u ∈ G(k), Z2u ∈ G(l),
e(X(k)

i(k) , Y
(k)

j(l) ) = e(Z1u, P (k)), e(X(l)

i(k) , Y
(l)

j(l)) =
e(Z2u, P (l)), K1u ∈ G(k), K2u ∈ G(l) and
e(P (k)

i , Y
(k)

j(l) ) = e(K1u, P (k)), e(P (l)
j , X

(l)

j(k)) =
e(K1u, P (l));

◦ If those hold, S responds SKt
i(k)j(l) to E and inserts

the tuple {Πt
i(k)j(l) , ID

(k)
i , ID

(l)
j , X

(k)

i(k) , X
(l)

i(k) ,

Y
(k)

j(l) , Y
(l)

j(l) , Z1u, Z2u, K1u,K2u, hu = SKt
i(k)j(l)}

into the list LH .

◦ Otherwise, S selects a random number hu ∈
{0, 1}κ, responds it to E and inserts the tu-
ple {––, ID

(k)
i , ID

(l)
j , X

(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l) , Y
(l)

j(l) ,
Z1u, Z2u, K1u,K2u, hu} into the list LH .

Test (Πt
i(k)j(l)

): If Πt
i(k)j(l) 6= Πs

I(K),J(L) , S aborts the
game (Event 3). Otherwise, S selects a random number
sk ∈ {0, 1}κ and responds to E.

Output: the adversary E outputs the guess b′ ∈ {0, 1}.

Now, the simulator S for solving the CDH problem
proceeds as follows:

The shared secret of the Test oracle Πs
I(K)J(L) is

(K(K))s
I(K)J(L) = s

(K)
I T

(K)
J = (a + x(K))bP

= abP + bx(K)P = abP + x(K)T
(K)
J .

It is clear that S can easily compute the part x(K)T
(K)
J

of the shared secret by extracting the master private key
of KGCK, x(K) from setup phase of the game and finding
T

(K)
J from the list LSend which is (M1)s

I(K)J(L) , while S
cannot compute the first part of the secret directly. How-
ever, S can randomly select a Ku from the list LH and
compute Q = Ku − x(K)(M1)s

I(K)J(L) ; hence, Q = abP
provided by:

1) Events 1, 2 and 3 do not occur;

2) (K(K))s
I(K)J(L) is in the list LH , and

3) Ku = (K(K))s
I(K)J(L) .

Therefore,

Pr[Q = abP ] = Pr[Event1, Event2, Event3]

·Pr[(K(K))s
I(K)J(L) ∈ LH ]

·Pr[Ku = (K(K))s
I(K)J(L) ]

= 1
nu(κ)ns(κ)npub(κ)Pr[(K(K))s

I(K)J(L) ∈ LH ]

· 1
nH(κ)

(3)
where nH(κ) is number of elements of the list LH . Thus,
for computing the above probability, Pr[(K(K))s

I(K)J(L) ∈
LH ] should be computed. Assume that the event A is
“The adversary wins the game”. Therefore, the probabil-
ity is computed as follows:

Pr[A] = Pr[A|(K(K))s
I(K)J(L) /∈ LH ]Pr[(K(K))s

I(K)J(L) /∈ LH ]

+Pr[A|(K(K))s
I(K)J(L) ∈ LH ]Pr[(K(K))s

I(K)J(L) ∈ LH ]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH ](1− Pr[(K(K))s

I(K)J(L) ∈ LH ])

+Pr[A|(K(K))s
I(K)J(L) ∈ LH ]Pr[(K(K))s

I(K)J(L) ∈ LH ]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH ] + (Pr[(K(K))s

I(K)J(L) ∈ LH ]

−Pr[A|(K(K))s
I(K)J(L) /∈ LH ])Pr[(K(K))s

I(K)J(L) ∈ LH ]

≤ 1
2

+ 1
2
Pr[(K(K))s

I(K)J(L) ∈ LH ]

Therefore,

Pr[A] ≤ 1
2

+
1
2
Pr[(K(K))s

I(K)J(L) ∈ LH ] (4)

On the other hand,

Pr[A] ≥ Pr[A|(K(K))s
I(K)J(L) /∈ LH ]

·Pr[(K(K))s
I(K)J(L) /∈ LH ]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH ]

·(1− Pr[(K(K))s
I(K)J(L) ∈ LH ])

= 1
2 − 1

2Pr[(K(K))s
I(K)J(L) ∈ LH ]

(5)

Equations (4) and (5) lead to the following equation:

|2Pr[A]− 1| ≤ Pr[(K(K))s
I(K)J(L) ∈ LH ] (6)

Moreover, we know that
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ε(κ) = AdvE(κ) = |2Pr[A]− 1| (7)

Then, Equations (6) and (7) follow that

Pr[(K(K))s
I(K)J(L) ∈ LH ] ≥ ε(κ) (8)

Thus, from Equations (3) and (8), the probability of
solving the CDH problem by the simulator S is as follows:

Pr[abP = Ku − x(K)(M1)s
I(K)J(L) ]

= 1
nu(κ)ns(κ)npub(κ)nH(κ)Pr[(K(K))s

I(K)J(L) ∈ LH ]

≥ ε(κ) 1
nu(κ)ns(κ)npub(κ)nH(κ)

Since the advantage ε(κ) is a non-negligible function, the
probability of solving the CDH problem by the simulator
S also is non-negligible and this fulfills the proof.

5 Conclusions

In this article we proposed a new identity based key agree-
ment protocol based on elliptic curves between two users
supported by separate PKGs that have independent sys-
tem parameters. Then we proved the security of the pro-
tocol in the random oracle model by an extended ver-
sion of Blake-Wilson et al’s model. Using elliptic curves
causes the protocol be compatible with low-power and
lightweight devices, and the property of multi PKGs, en-
ables users of different organizations to share secret keys
and establishes a secure communication.
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