
International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 118

On the Design of RNS Bases for Modular
Multiplication

Mohammad Esmaeildoust1, Shirin Rezaei2, Marzieh Gerami2, and Keivan Navi1

(Corresponding author: Mohammad Esmaeildoust)

Faculty of Electrical and Computer Engineering, Shahid Beheshti University, GC, Tehran, Iran1

Microelectronic Laboratory of Shahid Beheshti University, Tehran, Iran2

{m doust, navi}@sbu.ac.ir, {sh.rezaie, m.gerami}@srbiau.ac.ir

(Received Mar. 8, 2011; revised and accepted Jan. 27, 2012)

Abstract

Modular multiplication is the main and basic operation
in public key cryptography algorithms like Elliptic Curve
Cryptography (ECC). By using Residue Number System
(RNS) in these algorithms, large number computation is
replaced by computation over the small moduli without
carry propagation between moduli. Moduli selection has
an important role in the efficiency of modular multipli-
cation. Therefore in this work the moduli sets for mod-
ular multiplication with aims of increasing the efficiency
of arithmetic operation and speeding up the RNS to RNS
conversions are presented. The proposed moduli sets are
suitable for ECC. The results show a noticeable improve-
ment in speed comparing to the state-of-the-art.

Keywords: Computer arithmetic, Modular multiplication,
Residue Number System, Montgomery Multiplication.

1 Introduction

Carry free nature of residue number system makes it suit-
able for application which uses operations such as addi-
tion, subtraction and multiplication [29]. Public key cryp-
tography [1, 2, 3, 4, 5, 6, 7, 14, 16, 17, 18, 21, 22, 26, 30,
31, 32, 33, 36], and digital signal processing (DSP) [10]
are such applications. RNS mainly consists of three main
parts which include arithmetic operation, forward and re-
verse conversion [28]. Moduli selection is one of the most
important parts of RNS which can affect the efficiency of
these three parts. Different moduli sets are presented for
RNS. One of the most well known moduli set is {2k, 2k-1,
2k+1} which is a balanced and well formed moduli set and
the best reverse converter for this moduli set is reported
in [38]. Forward conversion for the moduli 2k, 2k-1 and
2k+1 can be done with simple process [11]. With growth
of application especially for public key cryptography algo-
rithms, more parallelism and dynamic ranges are needed.
Therefore moduli sets with four and five moduli such as

{2k-1, 2k, 2k+1, 2k+1-1}, {2k-1, 2k, 2k+1, 22k+1-1}, {2k-
1, 2k+1, 22k, 22k+1} and {2k-1, 2k, 2k+1, 2k+1-1, 2k−1-1}
are reported [8, 9, 23, 24]. The main part of public key
cryptography algorithms like RSA [3, 4] and ECC [31, 32]
is the modular multiplication. Montgomery modular mul-
tiplication [25] needs auxiliary moduli sets (basis) to per-
form modular multiplication without division. Selecting
an efficient RNS bases can dramatically increase the per-
formance of the modular multiplication. In [30] moduli
in the form of 2k±1 are considered and moduli set {2m-

1,22
0m+1,22

1m, ,22
km+1} are proposed. The main disad-

vantage of this work is unbalanced moduli which yields
inefficient arithmetic operation. In [20] for first and sec-
ond basis moduli in the form of 2ki-1 and 2kj+1 where i,
j =1,..., m are proposed, respectively. The same problem
of unbalanced moduli and inefficiency of arithmetic op-
eration still exist in this work. The other problem is the
inefficient multiplicative inverses which lead to an increase
in the delay of reverse converter. In [31] RNS implementa-
tion of multiplication for ECC is presented. Efficiency of
arithmetic operation and conversion from weighted num-
ber to RNS and vice versa are not considered in their
report. In [4] RNS bases in the form of 2k-ci where 0 ≤ ci
< 2k/2 are presented. In this approach exhaustive search
for different sets are done and moduli sets with hamming
weight equal to three are reported. Advantage of small
hamming weight is in replacing multiplication with addi-
tions. Simple multiplicative inverses are another advan-
tage of this work which relies on efficient conversion from
RNS to its equivalent weighted number. This report pro-
vides the best solution to date considering the efficiency
of arithmetic operation and also reverse and forward con-
version. Since conversion from one basis to another is
needed in modular multiplication process, efficiency of the
moduli sets like {2k-1, 2k, 2k+1, 2k−1-1} [9, 23] and {2k-
1, 2k, 2k+1, 2k+1-1, 2k−1-1} [8] in the point of view of
arithmetic unit, forward and reverse converter are not em-
ployed in [4]. Therefore in this paper efficient RNS bases

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 119

for public key cryptography and specifically for ECC are
presented. The main purpose is to increase the efficiency
of arithmetic operation, and conversion from one basis to
another. Therefore modular multiplication can be done
with less delay. Designing the RNS bases with four and
five moduli set are performed. In designing the first ba-
sis, exhaustive search are performed for moduli set in the
form of 2k-ci where 0 < ci < 2k/2 with hamming weight
equal to three. In designing the auxiliary basis, moduli
sets {2k-1, 2k, 2k+1, 2k−1-1} [9, 23] and {2k-1, 2k, 2k+1,
2k+1-1, 2k−1-1} [8] are used. With this approach in one of
the basis, the advantages of arithmetic unit and efficient
design of forward and reverse converter can be employed.
Results shows a noticeable improvement of modular mul-
tiplication comparing to method proposed in [4].

This paper is organized as follows. First, RNS and
modular multiplication background is presented in Sec-
tion 2. The proposed RNS bases are presented in Section
3. Section 4 discusses the performance evaluation and
comparison with the other RNS bases and finally Section
5 concludes the paper.

2 Related Background

2.1 RNS Background

An integer number X in residue number system is repre-
sented as X=(x1, x2,..., xm) where xi = (X mod Pi)
and in order to avoid redundancy, RNS moduli must
be pair wise relatively prime. An integer number X
has unique representation between 0 and M -1 where
M= P1×P2×...×Pm is the dynamic range of the system.
Residue to binary conversion can be performed by us-
ing two conventional algorithms, Mixed Radix Conver-
sion (MRC) and Chinese Reminder Theorem (CRT). By
MRC, the number X can be calculated from its residues
by:

X = vm

m−1∏
i=1

Pi + ...+ v3P2P1 + v2P1 + v1 (1)

Where
v1 = x1 (2)

v2 =
∣∣∣(x2 − v1)

∣∣P−1
1

∣∣
P2

∣∣∣
P2

(3)

And in the general manner:

vm =

∣∣∣∣∣ (((xm − v1)
∣∣P−1

1

∣∣
Pm

− v2)
∣∣P−1

2

∣∣
Pm

−
· · · − vm−1)

∣∣P−1
m−1

∣∣
Pm

∣∣∣∣∣
Pm

(4)

| Pi
−1|Pj is the multiplicative inverse of Pi in modulus

Pj . Horner’s scheme for MRC representation is [4]

X = v1 + P1(v2 + P2(v3 + · · ·+ Pm−1vm) · · ·) (5)

The vi’s in Equations (1) and (5) represents the intermedi-
ate system which called Mixed Radix System (MRS). By

CRT, residue numbers can be converted into their equiv-
alent in binary form as follow:

X =

∣∣∣∣∣
m∑
i=1

|xiNi|Pi
Mi

∣∣∣∣∣
M

(6)

Where M =
∏m

i=1 Pi, Mi =
M
Pi

and Ni = | Mi
−1|Pi is

the multiplicative inverse of Mi in modulo Pi. The cal-
culation of X using CRT is implemented in parallel chan-
nel followed by a modulus M adder. This moduli adder
is very large and this drawback leads to a very difficult
VLSI design. On the other hand, MRC is a sequential
algorithm that is not suitable for moduli set with more
than four moduli. In some cases for the moduli set with
more than four moduli, the combination of these two al-
gorithms could be applied in order to achieve higher speed
of reverse converter. Such implementations are reported
in [9, 15, 23]. We present two lemmas which are employed
in forward and reverse conversion in this paper.

Lemma 1 The residue of a negative residue number
(−v) in modulo (2k - 1) is the one’s complement of v,
where 0 ≤ v < 2k - 1 [27].

Lemma 2 The multiplication of a residue number v by
2P in modulo (2k - 1) is carried out by P bit circular left
shift, where P is a natural number [27].

2.2 Modular Multiplication in RNS

In this section, Montgomery modular multiplication
which is introduced in [25] will be discussed. Consider
X and Y as two large numbers (public key cryptography
nature), first we consider RNS with two bases Bm =
{P1,..., Pm} and B′

m = {P ′
1,..., P

′
m} with M =

∏m
i=1 Pi

and M ′ =
∏m

i=1 P
′
i , respectively. RNS representation of

A and B in the first basis is equal to (a1,..., am) and
(b1,..., bm). In the auxiliary basis B′

m, RNS representa-
tion is equal to (a′1,..., a

′
m) and (b′1,...,b

′
m). We consider

T such that T < M < M ′ and gcd (T , M) = gcd (T ,
M ′) = gcd (M , M ′) = 1. The modular multiplication
computing X× Y×M−1 (mod T) is as follows:

RNS Montgomery Multiplication:
1: D = X × Y

(di= |xi × yi|Pi
in Basis Bm and d′i=

∣∣x′
i× y′i

∣∣
P ′
i

in basis B′
m)

2: qi =
∣∣di × |T |−1

Pi

∣∣
Pi

in Bm

3: qi in Bm → q′i in B′
m

RNS to RNS conversion from first to auxiliary basis

4: r′ = (d′i − q′i ×N ′
i)M

−1 in B′
m

5: r in Bm ← r′ in B′
m

RNS to RNS conversion from auxiliary to first basis

The basic operation for RNS Montgomery multiplica-
tion consists of two conversions, one RNS product on the
two bases, one RNS product on the first basis, two RNS
products and one addition on the second basis [4]. There-
fore intelligent selection of RNS moduli sets can yield to

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 120

speed up the modular addition and multiplication in each
moduli. For an instance, modular multiplication and ad-
dition in moduli 2k-1 and 2k+1 can be implemented with
more efficient hardware architecture and speed up com-
paring to general moduli [13, 34, 37]. By this point of
view, it is desired that the reverse and forward conver-
sion can be done with more speed as much as possible.
With targeting these aims in the following the proposed
RNS bases will be discussed.

3 Moduli Selection for Modular
Multiplication

Selecting the efficient RNS bases is crucial for achieving
efficient modular multiplication. As mentioned before, in
[4] the RNS bases in the form of 2k-ci where 0 ≤ ci <
2k/2 is presented. The aim of this selection is that re-
duction in modulo 2k-ci is easy and efficient arithmetic
operation will be achieved by this form of moduli. In
their approach an exhaustive search for moduli set with
hamming weight equal to three with simple multiplica-
tive inverses is carried out. The aim of this work is that
with small hamming weight for multiplicative inverses,
multiplication can be replaced by simple shift and some
additions. Therefore modular multiplication can be done
in a fast and efficient way. Reduction method in [4] in
moduli 2k-ci for the value less than 22k is reported as
2ω(ci)+2 addition of k bit words where ω(ci) is the ham-
ming weight of ci. As mentioned before, using moduli sets
with efficient arithmetic units and reverse converters has
significant importance in modular multiplication. There-
fore in proposing RNS bases, the sets like {2k, 2k+1-1,
2k-1, 2k+1} [9, 23] and {2k, 2k+1-1, 2k-1, 2k+1, 2k−1-1}
[8] are employed for second basis. For first basis like the
method proposed in [4] the exhaustive search for the mod-
uli in the form of 2k-ci where 0 < ci < 2k/2 are carried
out. Based on multiplicative inverses reported in [19], the
first basis enjoys simple multiplicative inverses which lead
to replacing the multiplication needed in MRS by simple
shift and some addition. Despite all the advantages of the
first basis which are selected from moduli in the form of
2k-ci, the second basis enjoys more efficient arithmetic op-
eration, forward and reverse conversion. Figure 1 shows
the process of conversion from one basis to another which
is needed in line 3 and 5 of modular multiplication de-
scribed in Section 2.2.

3.1 RNS to RNS Conversion from first to
second Basis

In this work ci’s are considered as 2ti± 1 where 0 < ti <
k/2. Conversion delay from first to second basis which is
shown in Figure 1 can be calculated as

DelayRNS−RNS=DelayRNS−MRS+DelayMRS−RNS (7)

Figure 1: RNS to RNS conversion, (a) conversion from
first to second basis (Bm to B′

m), (b) conversion from
second to first basis (B′

m to Bm), d1 and d2 are the moduli
sets {2k, 2k+1-1, 2k-1, 2k+1} and {2k, 2k+1-1, 2k-1, 2k+1,
2k−1-1}, respectively.

Where

DelayRNS−MRS =(
m−1∑
i=1

max
j=2,m;i<j

(ω(|P−1
i |Pj) + 2ω(cj) + 4)

)
kDFA

DelayMRS−RNS =

(
m−1∑
i=1

(MA(2k + 1) + 3)

)
DFA

Where m is the number of moduli, ω(k) is the Hamming
weight of k and MA(2k+1) is the Modulo(2k+1)adder.
Based on [4] delay of RNS to MRS in first basis is

DelayRNS−MRS =(
m−1∑
i=1

max
j=2,m;i<j

(ω(|P−1
i |Pj) + 2ω(cj) + 4)

)
nDFA

(8)

Equation (8) is the delay for calculation of mixed radix
number vi’s in Equation (1). In order to calculate the
delay of conversion from MRS to RNS, delay of slowest
moduli is considered. As proved in Section 3.3, the worst
case delay of MRS to RNS conversion in critical moduli
2k+1 when all the moduli are in the form of 2k-2ti-1 is

DelayMRS−RNS =

(
m−1∑
i=1

(MA(2k + 1) + 3)

)
DFA (9)

Different implementation for MA(2k+1) with varied area
and delay are reported, such as using carry propagate
adder (CPA) or parallel prefix adder [39]. Therefore in
MA(2k+1) needed in Equation (9) one of these imple-
mentation can be used.

3.2 RNS to RNS Conversion from second
to the first Basis

As depicted in Figure 1, conversion from second to first
basis is needed in RNS Montgomery modular multiplica-
tion. The second basis is the four and five moduli set

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 121

{2k, 2k+1-1, 2k-1, 2k+1} [9, 23] and {2k, 2k+1-1, 2k-1,
2k+1, 2k−1-1} [8]. Delay and area of conversion from
RNS to weighted number using the assumption reported
in [9, 23, 24] are shown in Table 1. Note that several im-
plementations with different delay and area for the reverse
conversion are proposed for four moduli set {2k, 2k+1-1,
2k-1, 2k+1}, but for simplicity, one design is included in
Table 1. RNS to RNS conversion from second to first
basis can be calculated as

DelayRNS−RNS=
DelayRNS−Weighted +DelayWeighted−RNS

(10)

Where

DelayRNS−Weighted=

{
(23k+12)/2DFA d1
(18k+L+7)DFA d2

DelayWeighted−RNS=

(
m−1∑
i=1

(2ω(c′j)+2)

)
kDFA

(11)

The delays of RNS to weighted number are included
in Table 1 and conversion delay of weighted number to
its equivalent residue number in first basis are proven in
Section 3.4. It is worth mentioning that by using these
four and five moduli sets, arithmetic operation in one ba-
sis can be done in a fast and efficient way. Therefore both
RNS to RNS conversion and arithmetic operation are im-
proved and the Montgomery modular multiplication can
be done more rapidly. In Table 2, four and five moduli
bases for k equal to 64 is reported.

3.3 Reduction of Mixed Radix Numbers
in Moduli 2k+1, 2k-1, 2k−1-1 and 2k+1-
1

Reduction of mixed radix numbers vi’s into residues in
moduli 2k, 2k-1, 2k+1, 2k+1-1 and 2k−1-1 are needed in
the process of RNS to RNS conversion from first to second
basis. Based on Equation (5) we have

xi = |v1 + P1(v2 + P2(v3 + · · ·+ Pm−1vm) · · ·)|Pj
(12)

Where P1, P2,..., Pm−1 are the moduli in the form of
2k-2ti± 1 and Pj is equal to 2k, 2k-1, 2k+1, 2k+1-1 and
2k−1-1. Therefore Equation (12) can be rewritten as

xi=

∣∣∣∣∣∣
v1+(2k − 2t1 ± 1)(v2+

(2k−2t2 ± 1)(v3+(2k−2t3± 1)v4︸ ︷︷ ︸
J

+· · ·)· · ·)

∣∣∣∣∣∣
Pj

(13)

Reduction in modulo 2k can be simply done by consider-
ing k-bit LSB of the result of summation. Therefore the
reduction in moduli 2k-1, 2k+1, 2k+1-1 and 2k−1-1 will
be discussed in the following.

3.3.1 Reduction in Modulo 2k+1

Based on Equation (13) we have

xi=

∣∣∣∣∣∣
v1+(2k−2t1±1)(v2+

(2k−2t2±1)(v3+(2k−2t3±1)v4︸ ︷︷ ︸
J

+· · ·) · · ·)

∣∣∣∣∣∣
2k+1

(14)

The value of 2k-2ti±1 in modulo 2k+1 is equal to -(2ti+2)
and -2ti for 2k-2ti-1 and 2k-2ti+1, respectively. Basic
operation in Equation (14) is calculation of J . Calculation
of J can be done as

J=

{
|vi−(2ti+2)vi+1|2k+1 if Pi =2k−2ti−1

|vi−2tivi+1|2k+1 if Pi =2k−2ti+1
(15)

J=



∣∣∣∣∣∣vi−vi+1 0 · · · 0︸ ︷︷ ︸
ti

−vi+10

∣∣∣∣∣∣
2k+1

if Pi =2k−2ti−1∣∣∣∣∣∣vi−vi+1 0· · ·0︸ ︷︷ ︸
ti

∣∣∣∣∣∣
2k+1

if Pi =2k−2ti+1

(16)
(k+1)-bit separation results in

J=

{ ∣∣vi−v1i+1−v2i+1−v3i+1

∣∣
2k+1

if Pi =2k−2ti−1∣∣vi−v2i+1−v3i+1

∣∣
2k+1

if Pi =2k−2ti+1

(17)
Where

v1i+1 = vi+1,k−2 . . . vi+1,00
v2i+1 = vi+1,k−ti . . . vi+1,0 0 · · · 0︸ ︷︷ ︸

ti

v3i+1 = 0 · · · 00︸ ︷︷ ︸
k−t+2i

vi+1,k−1 . . . vi+1,k−ti+1

The computation of Equation (17) can be implemented
only using additions, given that negative number in mod-
ulo 2k+1 can be expressed as

|−v|2k+1 =
∣∣2k + 1− v

∣∣
2k+1

= |v̄ + 2|2k+1 (18)

Thus

J=

{ ∣∣vi+v̄1i+1+v̄2i+1+v̄3i+1+6
∣∣
2k+1

if Pi =2k−2ti−1∣∣vi+v̄2i+1+ v̄3i+1+ 4
∣∣
2k+1

if Pi =2k−2ti+1

(19)
Hardware implementations of Equation (19) are shown in
Figure 2. Correspondence value of J according to mod-
uli 2k-2ti-1 or 2k-2ti+1 is inserted in Equation (14) with
(k+1)-bit in binary representation. Therefore J ′= vi +
(2k - 2ti±1)×J must be calculated in next step. Calcula-
tion of J ′ is as follows.

J ′=

{
|vi− (2ti+2)J |2k+1 if Pi =2k−2ti−1

|vi−2tiJ |2k+1 if Pi =2k−2ti+1
(20)

J ′=

{ ∣∣vi+J̄1+J̄2 + J̄3+J̄4 + 8
∣∣
2k+1

if Pi =2k−2ti−1∣∣vi+J̄3 + J̄4 +4
∣∣
2k+1

if Pi=2
k−2ti+1

(21)
Where

J1 = Jk−1 . . . J00
J2 = 0 · · · 0︸ ︷︷ ︸

k

Jn

J3 = Jk−ti . . . J0 0 · · · 0︸ ︷︷ ︸
ti

J4 = 0 · · · 00︸ ︷︷ ︸
k−ti+1

Jn . . . Jk−ti+1

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 122

Table 1: Delay and area of reverse conversion in second RNS basis

RNS Basis Delay of Conversion Area of Conversion

from RNS to Weighted from RNS to Weighted

{2k, 2k+1-1, 2k-1, 2k+1} [23] ((23k+12)/2)DFA ((k-4)(k+1)/2 + 9k+5)AFA

+2kAOR+2kAXNOR+(6k+1)ANOT

{2k, 2k+1-1, 2k-1, 2k+1, 2k−1-1} [8] (18k+L+7) D∗
FA ((5k2+43k+m)/6+16k-1)AFA

+ (6k+1)A∗
NOT

∗ m=k-4, 9k-12 and 5k-8 for k=6h-2, 6h and 6h+2 (h= 1, 2,...), respectively,

and L is the number of the levels of the CSA tree with ((k/2)+1) inputs.

Table 2: Proposed RNS bases for k=64

RNS bases First Basis Bm Auxiliary Basis B′
m

264-28-1, 264,

Four moduli RNS bases 264-222-1, 265-1,

264-215-1, 264-1,

264-216-1 264+1

264-210-1, 264,

Five moduli RNS bases 264-231-1, 265-1,

264-216-1, 264-1,

264-219-1, 264+1,

264-220-1 263-1

CSA (2k+1)

viC1

CSA (2
k
+1)

CSA (2
k
+1)

CSA (2k+1)

CSA (2
k
+1)

viv
2
i+1v

3
i+1

C2

CSA (2k+1)

CSA (2k+1)

(a) (b)

J

J

v 3
i+1 v 2

i+1 v
1
i+1

Figure 2: Hardware implementation of reduction of J in
modulo 2k+1. C1 is equal to 3 and C2 is equal to 2. (a)
when 2k-2ti+1, (b) when 2k-2ti -1.

Hardware implementations of J ′ are shown in Figure 3.
Carry save adder (CSA) in modulo 2k+1 add the input
values with an extra unit [11]. Therefore in each CSA
shows in Figures 2 and 3 the one unit is decreased from
constant values in Equation (19) and 21. The remaining
values of constants are included as the input of CSA in
Figures 2 and 3. Based on hardware implementations in
Figures 2 and 3, the delay and area of conversion from
MRS to RNS in the worse case can be calculated as

DelayMRS−RNS =

(
m−1∑
i=1

(MA(2k + 1) + 3)

)
DFA (22)

CSA (2k+1)

viC1

CSA (2
k
+1)

CSA (2
k
+1)

CSA (2k+1)

CSA (2
k
+1)

viC2

CSA (2k+1)

CSA (2k+1)

(a) (b)

J'

J'

J
1

CSA (2k+1)

J
2J

3
J

4

J 3
J

4

Figure 3: Hardware implementation of reduction of J ′ in
modulo 2k+1. C1 is equal to 4 and C2 is equal to 2. (a)
when 2k-2ti+1, (b) when 2k-2ti-1.

AreaMRS−RNS=

MA(2k+1)+3CSA(2k+1)
m−1∑
i=2

(MA(2k+1)+4CSA(2k+1))

AFA

(23)

3.3.2 Reduction in Modulo 2k+1-1

Based on Equation (13) we have

xi=

∣∣∣∣∣∣
v1 + (2k − 2t1 ± 1)(v2+

(2k−2t2± 1)(v3+(2k−2t3± 1)v4︸ ︷︷ ︸
I

+· · ·)· · ·)

∣∣∣∣∣∣
2k+1−1

(24)
Calculation of I as the basic operation is

I =
∣∣vi + (2k − 2ti ± 1)vi+1

∣∣
2k+1−1

(25)

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 123

(k+1)-bit CSA with EAC

v
1

iv
1

i+1v
2
i+1v

3
i+1

(k+1)-bit CSA with EAC

MA (2
k+1

-1)

I

Figure 4: Hardware implementation of reduction of I in
modulo 2k+1-1.

Using Lemma1 and 2 result in

I =
∣∣v1i + v1i+1 + v2i+1 + v3i+1

∣∣
2k+1−1

(26)

Where

v1i = 0vi
v1i+1 = vi+1,00vi+1,k−1 · · · vi+1,1

v2i+1 = v̄i+1,k−ti · · · v̄i+1,01v̄i+1,k−1 · · · v̄ii+1,k−ti+1

v3i+1 =

{
1v̄i+1

0vi+1

if pi= 2n−2ti − 1
if pi= 2n−2ti + 1

By replacing I in Equation (24) with (k+1)-bit in
binary form, vi + (2k - 2ti±1)×I must be calculated.
Therefore v1i , v1i+1, v2i+1 and v3i+1 in Equation (26)
changed to

v1i = 0vi
v1i+1 = I0Ik−1 · · · I1
v2i+1 = Īk−ti · · · Ī0Īk · · · Īk−ti+1

v3i+1 =

{
Ī
I

if Pi= 2k−2ti − 1
if Pi= 2k−2ti + 1

Hardware implementation of Equation (26) is shown in
Figure 4.

Based on Figure 3, hardware requirements for calcula-
tion of I consists of two levels of CSA with end around
carry (EAC) followed by the MA(2k+1-1). Therefore de-
lay and area of conversion from MRS to RNS can be cal-
culated as

DelayMRS−RNS=

(
m−1∑
i=1

(MA(2k+1− 1)+ 2)

)
DFA (27)

AreaMRS−RNS=

(
m−1∑
i=1

(MA(2k+1−1)+2CSA(2k+1−1))

)
AFA

(28)

k-bit CSA with EAC

viv
1
i+1v

2
i+1

MA (2
k
-1)

MA (2
k
-1)

viv
1

i+1

(a) (b)

I

I

Figure 5: Hardware implementation of reduction of I in
modulo 2k-1, (a) when Pi = 2k−2ti+1, (b) when Pi= 2k−
2ti − 1.

3.3.3 Reduction in modulo 2k-1

Based on Equation (13) we have

xi=

∣∣∣∣∣∣
v1+(2k−2t1 ± 1)(v2+
(2n−2t2± 1)(v3+(2n− 2t3± 1)v4︸ ︷︷ ︸

I

+· · ·)· · ·)

∣∣∣∣∣∣
2k−1
(29)

Calculation of I as the basic operation is

I =
∣∣vi + (2k − 2ti ± 1)vi+1

∣∣
2k−1

(30)

The values of 2k−2ti−1 and 2k−2ti+1 in modulo 2k-1
are equal to −2ti and −2ti + 2, respectively. Therefore
Equation (30) can be rewritten as

I =

{
|vi − 2tivi+1|2k−1 if Pi =2k−2ti−1

|vi + (−2ti + 2)vi+1|2k−1 if Pi =2k−2ti+1
(31)

Using Lemma1 and 2 result in

I =

{ ∣∣vi + v1i+1

∣∣
2k−1

if Pi =2k−2ti−1∣∣vi + v1i+1 + v2i+1

∣∣
2k−1

if Pi =2k−2ti+1

(32)
Where

v1i+1 = v̄i+1,k−ti−1 · · · v̄i+1,0v̄i+1,k−1 · · · v̄i+1,k−ti

v2i+1 = vi+1,k−2 · · · vi+1,0vi+1,k−1

Hardware implementation of Equation (32) is shown in
Figure 5. Worse case delay and area of conversion from
MRS to RNS in modulo 2k-1 can be calculated as

DelayMRS−RNS =

(
m−1∑
i=1

(MA(2k − 1) + 1)

)
DFA (33)

AreaMRS−RNS=

(
m−1∑
i=1

(MA(2k−1) + CSA(2k−1))

)
AFA

(34)

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 124

3.3.4 Reduction in Modulo 2k−1-1

Based on Equation (13) we have

xi=

∣∣∣∣∣∣
v1 + (2k − 2t1 ± 1)(v2+

(2k−2t2± 1)(v3+(2k−2t3± 1)v4︸ ︷︷ ︸
I

+· · ·)· · ·)

∣∣∣∣∣∣
2k−1−1

(35)
The value of 2k−2ti −1 and 2k−2ti +1 in modulo 2k−1-1
are equal to −2ti +1 and −2ti +3, respectively. Therefore
Equation (35) can be rewritten as

I=

{
|vi+(−2ti+1)vi+1|2k−1−1 if Pi =2k−2ti−1
|vi+(−2ti+3)vi+1|2k−1−1 if Pi =2k−2ti+1

(36)
Using Lemma1 and 2 result in

I=


∣∣∣∣ v1i +v2i +v1i+1+v2i+1+
v3i+1 + v4i+1

∣∣∣∣
2k−1−1

if Pi =2k−2ti−1∣∣∣∣ v1i +v2i+ v1i+1 +v2i+1+
v3i+1+ v4i+1+v5i+1+v6i+1

∣∣∣∣
2k−1−1

if Pi =2k−2ti+1

(37)
Where

v1i = vi,k−2 · · · vi,0
v2i = 0 · · · 0︸ ︷︷ ︸

k−2

vi,k−1

v1i+1 = 1 · · · 1︸ ︷︷ ︸
k−ti−2

v̄i+1,k−1 · · · v̄i+1,k−ti−1

v2i+1 = v̄i+1,k−t−2 · · · v̄i+1,0 1 · · · 1︸ ︷︷ ︸
ti

v3i+1 = vi+1,k−2 · · · vi+1,0

v4i+1 = 0 · · · 0︸ ︷︷ ︸
k−2

vi+1,k−1

v5i+1 = vi+1,k−3 · · · vi+1,00
v6i+1 = 0 · · · 0︸ ︷︷ ︸

k−3

vi+1,k−1vi+1,k−3

Hardware implementation of Equation (37) is shown in
Figure 6. After calculation of I as (k-1)-bit in binary
form in Equation (39), I ′ = vi + (2k - 2ti± 1)×I must be
calculated. Therefore variables in Equation (37) can be
rewritten as

I ′ =
∣∣v1i + v2i + I1 + I2 + I3

∣∣
2k−1−1

(38)

Where

v1i = vi,k−2 · · · vi,0
v2i = 0 · · · 0︸ ︷︷ ︸

k−2

vi,k−1

I1 = Ik−3 · · · I0Ik−2

I2 = Īk−ti−3 · · · Ī0Īk−2 · · · Īk−ti−2

I3 =

{
Ī if Pi= 2k−2ti − 1
I if Pi= 2k−2ti + 1

Hardware implementation of I ′ is shown in Figure 6.c.
The delay and area of conversion from MRS to RNS in
modulo 2k−1-1 in worse case can be calculated as

DelayMRS−RNS=(
MA(2k−1−1)+4+

m−1∑
i=2

(MA(2k−1−1)+3)

)
DFA

(39)

AreaMRS−RNS= MA(2k−1−1)+6CSA(2k−1−1)+
m−1∑
i=2

(MA(2k−1−1)+3CSA(2k−1− 1))

AFA
(40)

3.4 Reduction of Weighted Number in
Moduli 2k-ci

As mentioned before in [4] moduli in the form of 2k-2ti±
1 are used in order to achieve small hamming weight for
both moduli and multiplicative inverses. Since for one
bases in this paper such as proposed in [4] the modulus
in the form of 2k-2ti± 1 where 0 < ti < k/2 are used
to design efficient RNS bases, the binary to residue con-
verter for this moduli is presented. In [4] to calculate the
residue numbers from MRS in five moduli set based on
Equation (5) the following operation must be considered:

xj=

∣∣∣∣∣∣v1+p1(v2+ P2(v3+P3 (v4+ P4v5)︸ ︷︷ ︸
H

))

∣∣∣∣∣∣
2k−2tj±1

(41)

The delay of H is addition of n bit words where ω(ci)
and ω(c′j) is the hamming weight of 2k-2ti±1 and 2k-
2tj±1, respectively. In [4] total delay for m moduli is
reported as

DelayMRS−RNS=

m−1∑
i=1

max
j=1,m

(ω(ci)+2ω(c′j) +2))kDFA (42)

For designing binary to residue converter in modulo 2k-
2tj±1 for M -bit dynamic range we have

X =

M/k−1∑
i=0

2ikxi (43)

In this work, M=4k and 5k-bit dynamic ranges are con-
sidered. Therefore in the worse case we have

X =
4∑

i=0

2ikxi = 24kx4 +23kx3 +22kx2 +2kx1 +x0 (44)

The above equation can be rewritten as

X = 2k(2k(2k (2kx4 + x3)︸ ︷︷ ︸
z

+x2) + x1) + x0 (45)

Unlike the calculation needed in Equation (42), the ham-
ming weight of ci in calculation of z as the basic operation
in Equation (45) is equal to zero. Therefore the delay of
reduction in moduli 2k-2tj±1 reported in Equation (42)
for the proposed RNS bases is changed to

DelayWeighted−RNS = (
m−1∑
i=1

(2ω(c′j) + 2))kDFA (46)

Therefore less addition is needed in the process of for-
ward converter.

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 125

(k-1)-bit CSA with EAC

v
1

i

MA (2
k-1

-1)

v
2

iv
1
i+1v

2
i+1v

3
i+1v

4
i+1v

5
i+1v

6
i+1v

1
i

MA (2
k-1

-1)

v
2
iv

1
i+1v

2
i+1v

3
i+1v

4
i+1

(a)
(b)

(k-1)-bit CSA with EAC

v
1

iv
2

iI
1

I
2

(k-1)-bit CSA with EAC

MA (2
k-1

-1)

(k-1)-bit CSA with EAC

I
3

(c)

(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC

(k-1)-bit CSA with EAC

I

I

I

Figure 6: Hardware implementation of reduction of I in modulo 2n−1-1, (a) when Pi = 2k − 2ti + 1, (b) when
Pi = 2k − 2ti − 1, (c). Calculation of I ′.

4 Complexity of Modular Multi-
plication and Comparison

The efficiency of arithmetic operation is the main advan-
tages of this work. In the first line of RNS Montgomery
modular multiplication algorithm presented in Section
2.2, the operations di = |ai × bi|Pi

and d′i = |a′i × b′i|P ′
i

for i = 1,..., m and in the fourth line computation of

r′i =
∣∣∣(d′i − q′i ×N ′

i)
∣∣M−1

∣∣
P ′

i

∣∣∣
P ′

i

are required. In [4]

these operations in the first line have the cost of 2m
products of k-bit words and 2m reductions with cost of∑m

i=1 (2ω(ci) + 2) +
∑m

j=1 (2ω(c
′
j) + 2) additions of k-bit

words. The operations in fourth line have the cost of
2m products of k-bit words and 2m reductions with cost
of 2

∑m
j=1 (2ω(c

′
j) + 2) additions of k-bit words. Since the

second basis of our approach are the moduli sets {2k-1, 2k,
2k+1, 2k−1-1} and {2k-1, 2k, 2k+1, 2k+1-1, 2k−1-1}, the
reduction in these moduli sets can be implemented with
more simple process. For an instance for numbers in the
dynamic ranges of 4k and 5k bits, several levels of CSA
followed by MA(2k± 1) is needed [11]. Therefore the de-
lay in reduction

∑m
j=1 (2ω(c

′
j) + 2) can be eliminated and

replaced by delay of some levels of CSA and MA(2k± 1).
It is worth mentioning that in the second basis the re-
quired product can be produced more efficiently than the
RNS basis with moduli in the form of 2k-ci [13, 34, 37].
The delay of RNS to RNS conversion in [4] assuming m,
k-bits arithmetic unit is

DelayRNS−RNS=DelayRNS−MRS+DelayMRS−RNS (47)

Where

DelayRNS−MRS =

(
m−1∑
i=1

max
j=2,m;i<j

(ω(|P−1
i |Pj) + 2ω(cj) + 4))kDFA

DelayMRS−RNS =
m−1∑
i=1

max
j=1,m

(ω(ci) + 2ω(c′j) + 2))kDFA

With using the moduli sets {2k-1, 2k, 2k+1, 2k−1-1} and
{2k-1, 2k, 2k+1, 2k+1-1, 2k−1-1} in second basis, the delay
of MRS to RNS conversion in second basis is removed in
Equation (47) and replaced by

DelayMRS−RNS =

(
m−1∑
i=1

(MA(2k + 1) + 3)

)
DFA (48)

AreaMRS−RNS=

(
m−1∑
i=1

(MA(2k+1)+4n)

)
AFA (49)

In conversion from second to first basis, the delay of
RNS to MRS is removed and replaced by delays reported
in Table 1 for four and five moduli sets. Conversion
from weighted number to RNS in next basis is improved
by (

∑m−1
i=1 (2ω(c′j) + 2))kDFA computation instead of the

computation required for MRS to RNS in Equation (47).
Therefore noticeable increase in speed in Montgomery
modular multiplication is achieved. In [4], performance
comparison is based on cost of RNS to RNS conversion
which is based on the number of required 64-bit FA. In
the proposed RNS bases, the moduli sets {2k-1, 2k, 2k+1,
2k−1-1} and {2k-1, 2k, 2k+1, 2k+1-1, 2k−1-1} with their
reverse converters are employed as the second basis. Re-
verse converters structure of these moduli sets mainly
consists of CSA tree followed by MA(2k-1). Therefore
comparison based on the number of required 64-bit FA
would not be a fair comparison. In order to achieve a
fair comparison, critical path delay is considered with the
following assumptions. Calculation of mixed radix num-
bers is considered with serial process (Equation (47)). In
order to compute residue in next basis, bearing in mind
that the forward conversion in each moduli is independent
from the other moduli, the delay of critical and slowest
moduli must be considered for this part. Table 3 shows
the comparison delay of RNS to RNS conversion of the
proposed RNS bases comparing to [4]. As shown in Table
3, the proposed RNS basis has achieved noticeable im-
provement in delay of RNS to RNS conversion required
in modular multiplication and therefore the overall per-
formance of the modular multiplication is improved.

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 126

Table 3: Comparison delay of different RNS bases
RNS bases Total delay Improvement (%)

4 moduli bases (P-S) [4] (6976)DFA -
4 moduli -Proposed (4938)DFA (P-S) 29%

5 moduli bases (P) [4] (13848)DFA -
5 moduli bases (S) [4] (11840)DFA -
5 moduli -Proposed (9512)DFA (P) 31%

(S) 20%

In [4] to show the efficiency of modular multiplication
with its proposed RNS bases, comparison with standard
Montgomery algorithms [12, 25] and its RNS versions
[2, 35] are done and shown to be more efficient. Also
comparison with Karatsuba implementation [12] is done
and has achieved the same efficiency with more straight-
forward architecture. Since the proposed RNS bases has
achieved noticeable increase in speed in modular multipli-
cation comparing to [4], we can conclude that comparing
to [2, 35] and [12] more efficient design of modular multi-
plication is achieved by the proposed RNS bases.

5 Conclusions

This paper has proposed the RNS bases for public key
cryptography and especially for ECC. With using arith-
metic friendly moduli sets in the second basis, multipli-
cation in each moduli can be done with more speed. Fast
conversion from one basis to another leads to an increase
in the overall performance of the system. Comparison
with the best RNS bases in literature achieved 29% im-
provement in delay of RNS to RNS conversion for four
moduli RNS bases and 20% improvement in speed of RNS
to RNS conversion in five moduli RNS bases. Therefore
noticeable improvement in speed of the modular multipli-
cation is achieved by the proposed RNS bases.

References

[1] J. Bajard, L. Didier, and P. Kornerup, “An rns mont-
gomery’s modular multiplication algorithm,” IEEE
Transactions on Computers, vol. 47, no. 2, pp. 167–
178, 1998.

[2] J. Bajard, L. Didier, and P. Kornerup, “Modular
multiplication and base extensions in residue number
systems,” in Proceedings of the 15th IEEE Sympo-
sium on Computer Arithmetic (ARITH ’01), pp. 59–
65, 2001.

[3] J. C. Bajard and L. Imbert, “A full rns implemen-
tation of rsa,” IEEE Transactions on Computers,
vol. 53, no. 6, pp. 769–774, 2004.

[4] J. C. Bajard, M. Kaihara, and T. Plantard, “Se-
lected rns bases for modular multiplication,” in 19th
IEEE International Symposium on Computer Arith-
metic (Arith ’09), pp. 25–32, 2009.

[5] S. Basu, “A new parallel window-based implemen-
tation of the elliptic curve point multiplication in

multi-core architectures,” International Journal of
Network Security, vol. 13, no. 3, pp. 234–241, 2011.

[6] T. Blum and C. Paar, “High-radix montgomery mod-
ular exponentiation on reconfigurable hardware,”
IEEE Transactions on Computers, vol. 50, pp. 759–
764, 2001.

[7] V. Bunimov, M. Schimmler, and B. Tolg, “A
complexity-effective version of montgomery’s algo-
rithm,” in Proceedings of the 29th Annual Inter-
national Symposium Computer Architecture (ISCA
’02) Workshop Complexity Effective Designs, pp. 1–
7, May 2002.

[8] B. Cao, C. H. Chang, and T. Srikanthan, “A residue-
to-binary converter for a new five-moduli set,” IEEE
Transactions on Circuits and Systems-I, vol. 54,
no. 5, pp. 1041–1049, 2007.

[9] B. Cao, T. Srikanthan, and C. H. Chang, “Efficient
reverse converters for the four-moduli sets {2n-1, 2n,
2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n−1-1},” IEE
Proceeding on Computers and Digital Techniques ’05,
vol. 152, pp. 687–696, 2005.

[10] G. C. Cardarilli, A. Nannarelli, and M. Re, “Residue
number system for low-power dsp applications,” in
Proceedings of the 41nd IEEE Asilomar Conference
on Signals, Systems, and Computers ’07, pp. 1412–
1416, 2007.

[11] R. Chaves and L. Sousa, “Improving residue num-
ber system multiplication with more balanced moduli
sets and enhanced modular arithmetic structures,”
IET Computers and Digital Techniques, vol. 1, no. 5,
pp. 472–480, 2007.

[12] J. P. David, K. Kalach, and N. Tittley, “Hardware
complexity of modular multiplication and exponen-
tiation,” IEEE Transactions on Computers, vol. 56,
no. 10, pp. 1308–1319, 2007.

[13] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Mod-
ified booth modulo 2n-1 multipliers,” IEEE Trans-
actions on Computers, vol. 53, no. 2, pp. 370–374,
2004.

[14] S. E. Eldridge and C. D. Walter, “Hardware im-
plementation of montgomery’s modular multiplica-
tion algorithm,” IEEE Transactions on Computers,
vol. 42, no. 6, pp. 693–699, 1993.

[15] M. Esmaeildoust, K. Navi, and M. Taheri, “High
speed reverse converter for new five-moduli set {2n,
22n+1-1, 2n/2-1, 2n/2+1, 2n+1},” IEICE Electronics
Express, vol. 7, no. 3, pp. 118–125, 2010.

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 127

[16] M. Hedabou, “A frobenius map approach for an effi-
cient and secure multiplication on koblitz curves,”
International Journal of Network Security, vol. 3,
no. 3, pp. 233–237, 2006.

[17] M. S. Hwang and C. Y. Liu, “Authenticated encryp-
tion schemes: Current status and key issues,” Inter-
national Journal of Network Security, vol. 1, no. 2,
pp. 61–73, 2005.

[18] M. S. Hwang and P. C. Sung, “A study of micro-
payment based on one-way hash chain,” Interna-
tional Journal of Network Security, vol. 2, no. 2,
pp. 81–90, 2006.

[19] M. Kaihara J. C. Bajard and T. Plantard. “Re-
port: Selected rns bases for modular multiplication,”.
tech. rep., http://www.lirmm.fr/ bajard/ MesPub-
lis/BKP09Report.pdf.

[20] K. M. Kalantari, S. P. Mozafari, and B. Sadeghiyan,
“Improved RNS for RSA hardware implementa-
tion,” Journal on Computer Science and Engineer-
ing, vol. 2, no. 2&4 (b), pp. 31–39, 2004.

[21] C. McIvor, M. McLoone, A. Daly J. V. McCanny,
and W. Marnane, “Fast montgomery modular mul-
tiplication and rsa cryptographic processor architec-
tures,” in Proceedings of the 37th Annual Asilomar
Conferences on Signals, Systems, and Computers
’03, pp. 379–384, 2003.

[22] C. McIvor, M. McLoone, and J. V. McCanny, “Mod-
ified montgomery modular multiplication and rsa ex-
ponentiation,” IEE Proceeding on Computers and
Digital Techniques’04, vol. 151, pp. 402–408, 2004.

[23] P. V. A. Mohan and A. B. Premkumar, “RNS-
to-binary converters for two four-moduli set {2n-1,
2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n+1+1},”
IEEE Transactions on Circuits and Systems-I,
vol. 54, no. 6, pp. 1245–1254, 2007.

[24] A. S. Molahosseini, K. Navi, O. Kavehei C. Dad-
khah, and S. Timarchi, “Efficient reverse converter
designs for the new 4-moduli set {2n-1, 2n, 2n+1,
22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} based on new
CRTs,” IEEE Transactions on Circuits and Systems-
I, vol. 57, no. 4, pp. 823–835, 2010.

[25] P. Montgomery.
[26] S. Moon, “A binary redundant scalar point multipli-

cation in secure elliptic curve cryptosystems,” Inter-
national Journal of Network Security, vol. 3, no. 2,
pp. 132–137, 2006.

[27] K. Navi, M. Esmaeildoust, and A. S. Molahosseini,
“A general reverse converter architecture with low
complexity and high performance,” IEICE Transac-
tions on Information and Systems, vol. E94-D, no. 2,
pp. 264–273, 2011.

[28] K. Navi, A. S. Molahosseini, and M. Esmaeildoust,
“How to teach residue number system to computer
scientists and engineers,” IEEE Transactions on Ed-
ucation, vol. 53, no. 3, pp. 156–163, 2010.

[29] B. Parhami. “Computer arithmetic: Algorithms and
hardware design,”. tech. rep., Oxford University
Press, 2000.

[30] F. Pourbigharaz and H. M. Yassine, “A signed digit
architecture for residue to binary transformation,”
IEEE Transactions on Computers, vol. 46, no. 10,
pp. 1146–1150, 1997.

[31] D. M. Schinianakis, A. P. Fournaris, H. E. Michail,
A. P. Kakarountas, and T. Stouraitis, “An rns im-
plementation of an fp elliptic curve point multi-
plier,” IEEE Transactions on Circuits and Syatems-
I, vol. 56, no. 6, pp. 1206–1213, 2009.

[32] D. M. Schinianakis, A. P. Kakarountas, and
T. Stouraitis, “A new approach to elliptic curve cryp-
tography: An rns architecture,” in Proceedings of
the IEEE Mediterranean Electrotech, pp. 1241–1245,
May 2006.

[33] A. Skavantzos and M. Abdallah, “Implementation is-
sues of two level residue number system with pairs
of conjugate moduli,” IEEE Transactions on Signal
Processing, vol. 47, no. 3, pp. 826–838, 1999.

[34] L. Sousa and R. Chaves, “A universal architecture for
designing efficient modulo 2n + 1 multipliers,” IEEE
Transactions on Circuits and Systems-I, vol. 52,
no. 6, pp. 1166–1178, 2005.

[35] R. Szerwinski and T. Gneysu, “Exploiting the power
of gpus for asymmetric cryptography,” in Proceed-
ings of the 10th International Workshop on Crypto-
graphic Hardware and Embeded Systems (CHES ’08),
vol. LNCS 5154.

[36] A. F. Tenca and C. K. Koc, “A scalable archi-
tecture for modular multiplication based on mont-
gomery’s algorithm,” IEEE Transactions on Com-
puters, vol. 52, no. 9, pp. 1215–1221, 2003.

[37] H. T. Vergos and C. Efstathiou, “Design of efficient
modulo 2n+1 multipliers,” IET Computers and Dig-
ital Techniques, vol. 1, no. 1, pp. 49–57, 2007.

[38] Y. Wang, X. Song, M. Aboulhamid, and H. Shen,
“Adder based residue to binary numbers converters
for {2n-1, 2n, 2n+1},” IEEE Transactions on Signal
Processing, vol. 50, no. 7, pp. 1772–1779, 2002.

[39] R. Zimmerman, “Efficient VLSI implementation of
modulo (2n±1)addition and multiplication,” in Pro-
ceedings of the 14th IEEE Symposium on Computer
Arithmetic (Arith ’99), pp. 158–167, Apr. 1999.

Mohammad Esmaeildoust is Ph.D. candidate in
Computer architecture at Shahid Beheshti University
of Technology (Tehran, Iran). He received his M.Sc.
degree in Computer architecture at Shahid Beheshti
University of Technology (Tehran, Iran) in 2008. He
received his B.Sc. degree in 2006 from shahed University
in Hardware Engineering. His research interests include
reconfigurable computing, public key cryptography and
computer arithmetic especially on residue number system.

Shirin Rezaei was born in Tehran, Iran, in 1986. She
received the B.Sc. degree from Islamic Azad University
(IAU), South Tehran Branch, Tehran, Iran in 2009 and
the M.Sc. degree in Computer Architecture at IAU,
Science and Research Branch in 2011. Her research
interests include computer arithmetic especially on

International Journal of Network Security, Vol.16, No.2, PP.118-128, Mar. 2014 128

residue number system.

Marzieh Gerami was born in Shahr e kord, Iran,
in 1985. She received the B.Sc. degree from Shahid
Bahonar University Of Kerman, Iran in 2007 and the
M.Sc. degree in Computer Architecture at IAU, Science
and Research Branch in 2011. Her research interests
include public key cryptography with emphasis on elliptic
curve cryptography.

Keivan Navi received the B.Sc. and M.Sc. degrees in
computer hardware engineering from Beheshti University,
Tehran, Iran, in 1987 and Sharif University of Technol-
ogy, Tehran, Iran, in 1990, respectively. He also received
the Ph.D. degree in computer architecture from Paris XI
University, Paris, France, in 1995. He is currently Asso-
ciate Professor in faculty of electrical and computer en-
gineering of Beheshti University. His research interests
include VLSI design, single electron transistors (SET),
carbon nano tube, computer arithmetic, interconnection
network and quantum computing. He has published over
50 ISI and research journal papers and over 70 IEEE, in-
ternational and national conference paper.

