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Abstract

In recent years, an increasing number of cryptographic
protocols based on bilinear pairings have been developed.
With the enhancement of implementation efficiency, the
algorithms of pairings are usually embedded in identity
aware devices such as smartcards. Although many fault
attacks and countermeasures for public key and elliptic
curve cryptographic systems are known, the security of
pairing based cryptography against the fault attacks has
not been studied extensively. In this paper, we present an
improved fault attack against the Eta pairing and gener-
alize the attack to general loop iteration. We show that
whatever the position of the secret point is, it can be re-
covered through solving the non-linear system obtained
after the fault attack.
Keywords: Eta pairing, fault attack, Miller’s algorithm,
pairing based cryptography

1 Introduction

In 1984, Shamir proposed a challenge for the cryptog-
rapher community to design a protocol based on user’s
identity [18]. This challenge was solved almost twenty
years later by Boneh and Franklin in 2001, who proposed
the first practical identity based encryption (IBE) scheme
based on pairings [3]. Since then, bilinear pairings have
become an important tool in cryptography, and pairing
based cryptography (PBC) has been developed to be a
vital research field. Pairings also have been used as build-
ing blocks by numerous schemes, such as attribute based
encryption [8], short signatures [4], and anonymous group
signatures [5]. Through the past years research, pairings
can be implemented efficiently on identity aware and re-
source constrained devices such as smartcards [17].

Since Kocher gave a number of remarkably simple tim-
ing attacks in his seminal work [11] in 1996, an increas-
ingly popular form of attack known as side-channel anal-
ysis has been developed. Fault attacks which exploit the
leakage of information through the faulty outputs of the
cryptographic device have evolved at the same time. The

fault attacks against the traditional cryptographic proto-
cols have been extensively studied. However, in the con-
text of pairing based cryptography there are only a few
works about the fault attacks [7, 14, 16, 20]. The fault
attacks against pairing based cryptography differ funda-
mentally from the fault attacks known in the elliptic curve
cryptography. In the elliptic curve cryptography, the se-
cret is usually the scalar which affects the sequence of
operations. Thus, the secret may be easily computed
through timing or power analysis. In contrast, the se-
cret in the pairing based cryptography is a point on the
elliptic curve used as one of the arguments of the pairing.
The secret influences neither the execution time nor the
sequence of the pairing algorithm. As mentioned in [16],
this may be the main reason why the fault attacks had
not been considered against pairing based cryptography
for a long time.

Page and Vercauteren [16] presented the first fault at-
tacks against pairing algorithms. They introduced two
similar fault attacks against pairing algorithms based on
Duursma and Lee’s algorithm [6]. The fault attacks con-
sisted in modifying the algorithm iterations number. By
inducing extra iterations they were able to isolate a sin-
gle contribution to the Miller loop. Later this idea was
further applied to the Miller’s algorithm by Mrabet [14].
The vulnerability of several algorithms for the Weil, Tate
and Eta pairings in presence of fault attacks was stud-
ied in [20]. Whelan and Scott described the fault attacks
against the Weil and Eta pairings by injecting faults into
intermediate values in the last loop iteration of the algo-
rithms.

Mrabet [14] promised that for all the coordinate sys-
tems (i.e. affine, projective, Jacobian and Edwards coor-
dinates) a fault attack against Miller’s algorithm could be
done through the resolution of a nonlinear system. She
made an assumption that the adversary was able to read
the intermediate states of the device before the final expo-
nentiation through some microelectronic methods [1, 21],
but it may be unrealistic nowadays. A fault attack against
the Tate pairing in Edwards coordinates was presented
in [7]. The authors assumed that the adversary was able
to inject fault at loop variable, so the Miller’s algorithm
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would execute for only one iteration. Recently, Mrabet et
al. [15] recalled different types of fault attacks against the
pairing algorithms and gave a good overview of counter-
measures to foil the attacks.

In this paper, we are especially interested in the fault
attack against an algorithm for the Eta pairing. Our con-
tribution is to improve the fault attack against the Eta
pairing, not only for the last iteration, but for possible
iterations. Whelan and Scott consider if a fault is in-
jected into the coordinates, the non-linear equation ob-
tained may be difficult to solve. According to this, we
make an assumption to inject a specified fault into the
coordinates and describe precisely the way to realize this
fault attack independently of the position of secret point.

The outline of this article is as follows. First we give the
definition of the Eta pairing and recall the algorithm of
Whelan and Scott to compute the Eta pairing in Section
2. In Section 3 we present our fault attack against the
Eta pairing to improve the result of [20] and finally, we
conclude in Section 4.

2 The Eta Pairing

Traditionally two types of pairings have been considered
in the literature, the Weil pairing and the Tate pairing.
In general, the Tate pairing is always regarded as more ef-
ficient than the Weil pairing for ordinary elliptic curve at
common levels of security [9, 13]. However, other related
pairings are available which are more efficient in certain
situations, for example the Eta pairing on certain super-
singular elliptic curve. In this section, we firstly give the
formal definition of the Eta pairing restricted to the case
of elliptic curves of characteristic two. Then we introduce
the algorithm of [20] to compute the Eta pairing.

Supersingular elliptic curves over finite fields F2m for
some odd m are given by the equation

E : y2 + y = x3 + x + b,

with b = 0, 1. The embedding degree of these curves
is equal to 4 and the order of E(F2m) is equal to 2m +
1 ± 2

m+1
2 . So we need the extension field F24m of F2m .

There exists s ∈ F22 with s2 = s + 1 which is a zero
of the irreducible polynomial x2 + x + 1 over F2m . Thus
F22m ∼= F2m(s) ∼= F2m [x]/(x2+x+1). Further there exists
t ∈ F24 with t2 = t + s which is a zero of the irreducible
polynomial x2 +x + s over F22m . Thus F24m ∼= F22m(t) ∼=
F22m [x]/(x2 + x + s). Hence the elements of F24m can be
also represented in the form

c0 + c1s + c2t + c3st,

with ci ∈ F2m .
Further for the supersingular elliptic curves over a fi-

nite field with characteristic 2, there exists a distortion
map:

ψ :

{
E(F2m) → E(F24m)
(x, y) 7→ (x + s + 1, y + sx + t).

Definition 1. Let n|#E(F2m), P, Q ∈ E(F2m)[n] and
f2m,P be some function with divisor: div(f2m,P ) =
2m(P )−(2mP )−(2m−1)(O). The Eta pairing η is defined
to be

η :

{
E(F2m)[n]× E(F2m)[n] → F24m

(P, Q) 7→ f2m,P (ψ(Q)).

In general, this definition will not give a non-degenerate
bilinear map, but for some special cases it is. In the case
of characteristic 2 for N = 22m + 1 and M = 22m − 1,
Barreto et al. [2] deduced that

η(P, Q)M2m+1
= tN (P, ψ(Q))M ,

where tN is the Tate pairing. Hence, this pairing is a
non-degenerate bilinear pairing for the given parameters.
Next, we consider the algorithm given in [20] for the Eta
pairing, and present the complete description out.

The field F24m is constructed as extension of F2m by
the irreducible polynomial x4 + x + 1. Let α be a zero
of this polynomial. Thus, an element a ∈ F24m can be
represented as a = a0 +a1α+a2α

2 +a3α
3 with ai ∈ F2m .

We assume that all coefficients are stored in four different
memory cells, and denote the element by [a0][a1][a2][a3].
Furthermore, we give the multiplication in F24m in above
representation form by using the relation α4 = α + 1,
α5 = α2 + α and α6 = α3 + α2. Let a, b ∈ F24m , then we
have the following formulas:

a · b = (a0 + a1α + a2α
2 + a3α

3)(b0 + b1α + b2α
2 + b3α

3)

= a0b0 + α(a0b1 + a1b0) + α2(a0b2 + a1b1 + a2b0)

+ α3(a0b3 + a1b2 + a2b1 + a3b0)

+ α4(a1b3 + a2b2 + a3b1) + α5(a2b3 + a3b2) + a3b3α
6

= [a0b0 + a1b3 + a2b2 + a3b1]
[a0b1 + a1b0 + a1b3 + a2b2 + a3b1 + a2b3 + a3b2]
[a0b2 + a1b1 + a2b0 + a2b3 + a3b2 + a3b3]
[a0b3 + a1b2 + a2b1 + a3b0 + a3b3]

Algorithm 1 gives the algorithm of Whelan and Scott
to compute the Eta pairing.

Algorithm 1. Algorithm to compute the Eta pairing
Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m)[n];
Output: η(P, Q);
1: l ← [1][0][0][0], v ← [1][0][0][0]
2: T ← P
2: for j = m− 1 to 0 do
3: λ = x2

T + 1
4: lj ← [yQ + yT + λ(xQ + xT + 1)][λ + xQ + 1][λ + xQ][0]
5: l ← l2 · lj
6: T ← 2T
7: vj ← [xQ + xT + 1][1][1][0]
8: v ← v2 · vj

9: end for
10:return l/v

Next, we give a theorem which will be used in Section
3.
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Theorem 1. Let E be an elliptic curve defined over F2

in the form:

E : y2 + y = x3 + x + b,

then we have for any P ∈ E\{O}:

−P = (xP , yP + 1)

and
2iP = (x22i

P + i, y22i

P + i · x22i

P + τ(i))

with

τ(i) =

{
0 i ≡ 0, 1 mod 4
1 i ≡ 2, 3 mod 4

Proof : For the proof see Section 3.5.5 in [12].

3 Fault Attack against the Eta
Pairing

In this section, we will consider fault attack against the
Eta pairing. By corrupting the data the algorithm works
on or by interfering with the algorithm execution, the
adversary produces corrupted outputs and uses these to
recover the secret. We assume that the pairing is imple-
mented on an electronic device. We restrict this study
to the case where the secret is used as the first argument
of the pairing. If the secret is used as the second argu-
ment, a similar attack can be applied. This attack needs
a very precise positioning and expensive apparatus to be
performed. However, a random value error and specific
values (i.e. all 0s or 1s) are realistic to induce [10, 19].
For simplicity, we do not deliberately distinguish lj and
vj in algorithm 1, and denote them as l and v uniformly.

3.1 Description of the Fault Attack

At first we briefly present the idea of the fault attack
against the Eta pairing. The algorithm 1 computes the
Eta pairing iteratively as

η(P,Q) =
m−1∏

j=0

fj(P, Q)2
m−1−j

,

where fj is appropriate function.
The idea behind the fault attack is to involve a fault in

one of the function values fj(P, Q). Let η(P, Q)
′
denote a

function value in which a fault has been injected. Dividing
the faulty pairing value η(P, Q)

′
by a valid pairing value

η(P,Q), we get the following relationship

η(P,Q)
′

η(P, Q)
=

(
fj(P, Q)

′

fj(P, Q)

)2m−1−j

.

There are a number of possible locations into which
the fault can be injected. A fault can be injected into
any cell of l or v, or any of the coordinates xT , yT , xQ,

yQ, or the slope λ. In [20], the authors think if a fault
is injected into any cell of l or v in the last iteration, the
effect will be local, and they present the detail result in
this case. According to the case in [20] that a fault is
injected into any cell of l or v in the last iteration, we
generalize it to arbitrary loop iteration. For simplicity,
we assume that we can inject a fault randomly into l0 at
i loop iteration of algorithm 1. Moreover, we can know
the value i through timing or simple power analysis. As
fi(P, Q), fi(P,Q)

′ ∈ F24m , we can get

(
η(P, Q)

′

η(P,Q)

)21+i+3m

=
fi(P, Q)

′

fi(P, Q)
=

[l0]
′
[l1][l2][l3]

[l0][l1][l2][l3]
.

So we can obtain the similar equation as for the fault
attack in the last iteration [20], and recover the secret
point.

However, if the faults are injected into one of the coor-
dinates or λ, all locations and all subsequent operations
in which that coordinate is used may be affected. If the
fault affects λ or xQ, and if the fault is injected in a loop
prior to the final loop, the non-linear equation obtained
will be more difficult to solve.

In the following section, we will improve the fault at-
tack against the Eta pairing in two directions. On the one
hand, in order to reduce the complexity of the equation,
we make a stronger assumption. We assume that a spec-
ified fault is injected into λ, for example altering λ to 0
in the last iteration. And we show that the secret can be
recovered whether P or Q is private. On the other hand,
making use of the idea of Page and Vercauteren in [16], we
generalize the fault attack to the general loop iteration.

3.2 Fault in the Value λ in the Last Iter-
ation

We consider at first a fault in λ in the last iteration. If the
fault affects λ, then the cells l0, l1, l2 will be corrupted.
Therefore, the division of faulty and valid pairing will not
cancel the function l, leaving a relationship of form

η(P, Q)
′

η(P, Q)
=

(l
′
/v)

(l/v)
=

[l0]
′
[l1]

′
[l2]

′
[l3]

[l0][l1][l2][l3]
= [N0][N1][N2][N3].

Given η(P, Q)
′

and η(P, Q), the adversary can compute
N0, N1, N2 and N3. According to the algorithm 1, we get
the following equations:

λ = x2
T + 1, (1)

l1 = λ + xQ + 1, (2)
l0 = yQ + yT + λ(xQ + xT + 1), (3)

where T has the form 2iP for some i ∈ {0, ..., m− 1}.
In addition, due to assuming altering λ to 0, we can



International Journal of Network Security, Vol.16, No.1, PP.71-77, Jan. 2014 74

obtain the following equation

[N0][N1][N2][N3]

=
[yQ + yT ][xQ + 1][xQ][0]

[yQ + yT + λ(xQ + xT + 1)][λ + xQ + 1][λ + xQ][0]

=
[l0 + λ(xQ + xT + 1)][l1 + λ][l1 + λ + 1][0]

[l0][l1][l1 + 1][0]

Using the knowledge of the multiplication in F24m in Sec-
tion 2, we can get the equation system below





(N0 + 1)l0 + (N2 + N3)l1 + λ(xQ + xT + 1) = N2,

N1l0 + (N0 + N2 + 1)l1 + λ = N2 + N3,

N2l0 + (N0 + N1 + N3 + 1)l1 + λ = N0 + N3 + 1,

N3l0 + (N1 + N2)l1 = N1.

(4)

Solving the given system of equations above, we can com-
pute l0, l1, λ and λ(xQ + xT + 1).

In the last loop iteration we have

T = 2m−1P = (x22m−2

P , y22m−2

P + τ(m− 1))

according to the Theorem 1 in Section 2.
In order to compute the x-coordinate of P , we use the

following formula

xT = x22m−2

P = (x2m−2

P )2
m

= x2m−2

P = (x2m

P )2
−2

= x
1/4
P .

That is
xP = x4

T = (λ− 1)2.

In order to compute the y-coordinate of P , we can use
the elliptic curve equation

E : y2 + y = x3 + x + b.

So we can get yP through solving the quadratic equation
over finite field F2m . Alternatively, we can also use the
following equations





l0 = yQ + yT + λ(xQ + xT + 1),
xT = x2m−2

P ,

yT = y2m−2

P + τ(m− 1).

So we can get

y2m−2

P = l0 + yQ + λ(xQ + xT + 1) + τ(m− 1).

That is

yP = (l0 + yQ + λ(xQ + xT + 1) + τ(m− 1))4.

Note: If Q is secret point and knowing P , we can also
recover it using the same method, altering λ to 0 in the
last loop iteration. Using the Equation (2), we can get
xQ : xQ = λ + l1 + 1. In order to compute yQ, we have
gotten the value λ(xQ + xT + 1) from Equation (4) and
use the following equations

{
l0 = yQ + yT + λ(xQ + xT + 1),
yT = y2m−2

P + τ(m− 1).

So we can get

yQ = l0 + y2m−2

P + τ(m− 1) + λ(xQ + xT + 1).

Besides, one example of our attack is given in appedix.

3.3 Fault in the General Loop Iteration

In this section we generalize the fault attack to the gen-
eral loop iteration using the idea of Page and Vercauteren
in [16]. Assuming we can inject the fault randomly at
∆ = m−1−j (0 ≤ j ≤ m−1) loop iteration of algorithm
1. Using the ability, we calculate many erroneous pairing
values with the aim of collecting a pair (altering λ to 0 at
∆ and ∆ + 1 loop iteration respectively)

η(P, Q)
′
=

∆−1∏

i=0

fi(P, Q)2
m−i−1 ·

m−1∏

i=∆

(fi(P,Q)
′
)2

m−i−1
,

η(P, Q)
′′

=
∆∏

i=0

fi(P, Q)2
m−i−1 ·

m−1∏

i=∆+1

(fi(P, Q)
′
)2

m−i−1
.

The attack will naturally require many faulty execu-
tions until appropriate values are found. The number of
necessary faults will depend on the concrete architecture
of the device and the accuracy of the fault. We can know
the value of ∆ through timing or simple power analysis.

Dividing the faulty pairing value η(P, Q)
′
by η(P, Q)

′′
,

we get the following relationship

η(P,Q)
′

η(P, Q)′′
=

(
f∆(P,Q)

′

f∆(P, Q)

)2m−1−∆

.

Thus we can get

(
η(P,Q)

′

η(P, Q)′′

)2∆+1+3m

=
f∆(P, Q)

′

f∆(P,Q)

=
[l0]

′
[l1]

′
[l2]

′
[l3]

[l0][l1][l2][l3]
= [M0][M1][M2][M3]

(5)

Given η(P, Q)
′

and η(P, Q)
′′
, the adversary can com-

pute
(

η(P, Q)
′

η(P, Q)′′

)2∆+1+3m

,

and further get M0, M1,M2 and M3. Expanding the
Equation (5), we can obtain a similar system of equa-
tions like Equation (4). So we can also compute l0, l1, xT

and λ(xQ + xT + 1). According to the algorithm 1, we
also have Equations (2) and (3), but now the point T is
T = 2∆P = (x22∆

P + ∆, y22∆

P + ∆ · y22∆

P + τ(∆)).
In order to compute the xP we use the Equation (2)

xP = (l1 + ∆2 + xQ)2
m−2∆−1

= (l1 + ∆ + xQ)2
m−2∆−1

.
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Similarly we can derive yP from the Equation (3)

yP = (l0 + yQ + λ(xQ + xT + 1) + ∆ · x22∆

P + τ(∆))2
m−2∆

.

Thus we can completely recover the secret point P . Sim-
ilarly, if Q is secret point, we can also recover it using the
same method.

Comparing to [20], we generalize the fault attack to
general loop iteration of Miller loop, which enhances the
ability to attack. Moreover, when a fault is injected
into λ, the system of equations obtained using our at-
tack method is also easy to solve. Our fault attack can
also be used to corrupt the coordinate xQ, so whether the
faults are injected into the cells of l and v, the coordinates
or the slope λ, and whether the secret point is P or Q,
we can extract the secret.

4 Conclusions

We have presented an improved fault attack against the
Eta pairing for any arbitrary loop iteration in this paper.
This attack also gives a good solution to the problem that
Whelan and Scott consider consequence of corrupting co-
ordinates will not be local and lead to a difficult modular
non-linear equation. We assume a specified fault is in-
jected into the coordinates and describe precisely the way
to realize this fault attack. Moreover, our idea has impor-
tant significance for fault attacks against other pairings.
As we all know, there are several countermeasures [16, 20]
proposed to prevent the fault attacks, for example com-
plex final exponentiation, point blinding and fault detec-
tion mechanism. However, it is still an open problem to
propose new countermeasures to ensure the efficient and
secure implementation of the pairing based cryptography
at the same time.
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Appendix:

We perform our experiment using Magma software
package.

Field parameters

Elliptic curve: y2 + y = x3 + x + 1
Reduction polynomial: x379 + x315 + x301 + x287 + 1
Input points:
P:
(0x38791B1721C5109810ADDBED960AAD4FE68709EF
85A8C67B997A6A5D82D4358F0F2F908601A6299CC31
C6BD91D2F216, 0x2B9BCF3F190BC53D5C20B9B5E1D
476644866E9122B122409702055CA166DFEC19A5F1ED
3591920267D1A65D3953F319)
Q:
(0x3E36A5A789E2D2A19F09F4FCE2A7044AE2695DA6
CC3D4FA136E740705BA9993E56AB1AF73F0B5EE0305
C4B6BCD7398F, 0x12FB2A298BC843483C5FC6C19BE
D5CE938B851FFB065453272B6CC6E067A95796C8117B
AFE30486FC2287EBB643E22D)

We consider a fault in λ in the last iteration, and
we get two outputs from two (valid, faulty) pairing
executions.

Output from valid execution
{0x4498523382F27F697585C8BBBCE708BC61A82A939
DB9EF7EFE22D02BC199D5C292DA9DE0BA398AC338
FD3FF1C6C5B53, 0x99FF313813DEAA7F845333923F5
0D5B09C97D4D12EE93A656050FB4BC2A7F183E26B5
CFC86519C47CE4ACA76EB0F01, 0x71E919046D1EE7
B200DE7BD743C4016335D05B18D6D5FFB8701FAE79B
E9E71F5E3D697CC2E55F201D6CC916E5585FE6, 0x4B
D987B8F89A42F339AB7A4385163AE841D79056B9E26
E2E1C804437D5B3210EA438CB13A0864739664A24F08
013E1F}
Output from faulty execution
{0x48CD2AA1D9F7528E8E0FABD4F3302503AFD73377
377AF91031675147470B7BD3714C2CC6D6479CF3E7F3
E3F80D9113D, 0x4BAFAABAD7399A64A464EFD1EE19

113359B8539103B4CA571DD3E5E79715DB1B5C7669122
A01B3AA4EF8A16AAA20012, 0xE117EF4235D06410F2
1D4BEE7A0F72B5D4B92A995CCC111E7316BCC94ED
A4C738CD1DD9B22FF884F9C2980DF889A4F, 0x60D4
FB4199200F26A76B6ADF21A5C67630B669DC32541C3
B254C04FC6F99A8483685EAB766735D59F22B192E899
C564}
Divide the valid pairing by the faulty pairing
{0x149C10C7D1C377D76273839A712667EE85571A7BB
C87E9A5CF051B35B12F023049F3FAF6374DA79A8E178
5D40B49C38, 0x6326FAA67F8C60A4DEE0E1F7E8F2F0
B8404919683A551CEA4998035F1F265AC9BE3DDF0673
88B2EFC5BE604A96C08A4, 0x4EB74566CFE16D6852C
026D846D4D883712A3EE4E802EDD2BC66AD91AC312
354D2E28D4ED94A714E41331D9F173DE89, 0x1436182
50F0C74A857668CD59907D175A105A59E6163161B74F6
A1DFE3B47B9AC24F118180D90DEC20B0650567F3FC2}
Solving the system (4), we get
l1=0x5807EDADE1A0F31D7CADAE5514C729356782B0
7D9E8DA9B0714FB78341D419D0DAC7D8424D37672CF
D5403319706549;
l0=0x14EBF98F6F3796237818A9245F42742B0376303A8
CBB016B9ED9A4485B28EF99EA1F20644F3D73FBF31
6D3AB4DF5346;
λ=0x6631480A684221BCE3A45AA9F6602D7F85EBEDD
B52B0E61147A8F7F31A7D80EE8C6CC2B5723C39CCC
D08485A5A75CC7;
λ(xQ+xT +1)=0x7B49EDD40B89405B17221D0A4C9FB
A02962262F442C9161B560C89D5148C4FDD13850E931E
D180D40232C9DDF64C295.

When the secret point is Q

xQ = λ+l1+1=0x3E36A5A789E2D2A19F09F4FCE2A70
44AE2695DA6CC3D4FA136E740705BA9993E56AB1AF7
3F0B5EE0305C4B6BCD7398F
Since P is known and we have gotten the value of
λ(xQ + xT + 1), then
yT = y2m−2

P +1=0x7D593E72EF769530536572EF883092C
0ADEC03317E175242BA63E1F349DE353D951B394DAF
DCBB40330C64CDDF873FE
yQ = l0 + YT + λ(xQ + xT + 1)=0x12FB2A298BC843483
C5FC6C19BED5CE938B851FFB065453272B6CC6E067A
95796C8117BAFE30486FC2287EBB643E22D

When the secret point is P

xP = x4
T = (λ−1)2=0x38791B1721C5109810ADDBED96

0AAD4FE68709EF85A8C67B997A6A5D82D4358F0F2F
908601A6299CC31C6BD91D2F216
yP = (l0+yQ+λ(xQ+xT +1)+τ(m−1))4=0x2B9BCF3F
190BC53D5C20B9B5E1D476644866E9122B12240970205
5CA166DFEC19A5F1ED3591920267D1A65D3953F319
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