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Abstract

The efficiency of decryption process of Multi prime RSA,
in which the modulus contains more than two primes, can
be speeded up using Chinese remainder theorem (CRT).
On the other hand, to achieve the same level of security
in terms integer factorization problem the length of RSA
modulus must be larger than the traditional RSA case.
In [9], authors studied the RSA public key cryptosystem
in a special case with the secret exponent d larger than
the public exponent e. In this paper, we show that how
such attack is performed in the multi-prime RSA case.
Keywords: Coppersmith technique, cryptanalysis, lattice
basis reduction, RSA

1 Introduction

The RSA cryptosystem [10] invented by Rivest, Shamir
and Adleman in 1978 is one of the most popular and prac-
tical public key cryptosystem in the history of cryptology.
In the RSA cryptosystem, let N = pq be an RSA modu-
lus, where p and q are primes of equal bit size. Let e be the
public exponent and d be the secret exponent satisfying
ed ≡ 1 mod (φ(N)), where φ(N), the Euler totient func-
tion. Multi-prime RSA [5] is a generalization of the stan-
dard RSA cryptosystem in which the modulus contains
more than two primes. In the traditional RSA decryp-
tion using Chinese remainder theorem requires two full
exponentiations modulo n

2 - bit numbers, whereas, in the
Multi prime RSA (where modulus is product of r primes)
the decryption with Chinese remainder theorem requires
r full exponentiations modulo n

r - bit numbers. Thus the
theoretical speed up of Multi prime RSA decryption is
r2

4 (= 2( n
2 )3

r.( n
r )3 ) times than the traditional RSA decryption.

Hence, the Multi-prime RSA might be a practical alter-
native to improve the efficiency of decryption process (for
a fixed RSA modulus size). As a consequence, the choice

of RSA parameters to achieve a certain level of security
is based on the estimated current and future performance
of integer factorization algorithms. In another words, nu-
merous attacks have been developed that are not related
to the “integer factorization problem (IFP)” and show
vulnerabilities of specific instances of the RSA cryptosys-
tem. Boneh [2] gave an excellent survey on this matter.

In [5, 6], a little work has been reported on how such
attacks apply to multi-prime RSA. Most practical interest
are the cases of 3- and 4-prime RSA. Commercial imple-
mentations of 3-prime RSA is given in [4]. In 2008, Luo et
al. [9] have shown that the RSA public key cryptosystem
with private exponent d larger than the public exponent e
may be insecure in some special cases. They have shown
that if N .25 ≤ e ≤ N .915, d > e, the cryptanalytic at-
tacks based on “Lenstra- Lenstra- Lov’asz (LLL)” [8] lat-
tice based reduction algorithm can be performed in RSA
cryptosystem under some assumption.

In this article, we discuss how the attack on RSA, given
in [9], can be extended to the multi prime RSA case, and
how they perform in the new setting. We see that RSA
is insecure if N .25 ≤ e ≤ N .915 for RSA 2-prime, if N .4 ≤
e ≤ N .7 for RSA 3-prime, if N .5 ≤ e ≤ N .6 for RSA
4-prime. Thus the range of encryption key e decreases if
number of factors in the RSA modulus increases. Thus
the multi prime RSA is less vulnerable to current attack
on RSA.

Rest of the Section is as follows. Section 2 gives pre-
liminaries about Multi prime RSA, and the Lattices. In
Section 3, we give an out look of small inverse problem.
Section 4 gives our main result. Finally we conclude our
result in Section 5.

2 Preliminaries

We introduce some notations and state some known facts
about Multi prime RSA and Lattices.
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Multi prime RSA [5]. This RSA variant is based on
modifying the structure of the RSA modulus. For
any integer r ≥ 2, r-prime RSA consists of the fol-
lowing three algorithms.

Key Generation. Let N be the product of r randomly
chosen distinct primes p1....pr. Compute Euler’s To-
tient function of N : φ(N) =

∏r
i=1(pi−1). Choose an

integer e, 1 < e < φ(N), such that gcd(e, φ(N)) =
1. The pair (N, e) is the public key. Compute the
integer d ∈ Z∗N such that ed ≡ 1 mod φ(N), here d
is the private key.

Encryption. For any message M ∈ ZN , the ciphertext
is computed as C ≡ me mod N .

Decryption. Decryption is done using the Chinese re-
mainder theorem. Let di ≡ d mod (pi − 1). To
decrypt the ciphertext C, one first computes Mi ≡
Cdi mod pi for each i, 1 ≤ i ≤ r. One then combines
the Mi’s using the CRT to obtain M ≡ Cd mod N .

We call N the Multi-prime RSA modulus, the RSA
modulus (when r = 2), or simply the modulus. The inte-
ger e is called the public (or encrypting) exponent and d is
called the private (or decrypting) exponent. When r = 2
we have the original RSA encryption scheme. Superfi-
cially, the only difference between RSA and Multi-prime
RSA with r > 2 is the number of primes in the modu-
lus. We now give some notations and assumptions about
Multi prime RSA.

For Multi-prime RSA with r- primes, the modulus,
N =

∏r
i=1 pi, is simply the product of r distinct primes.

As with RSA, we only consider Multi prime RSA with
balanced primes. That is, if we label the primes so that
pi < pi+1, for i = 1, ....r − 1, we assume that

4 <
1
2
N1/r < p1 < N1/r < pr < 2N1/r. (1)

The key generation algorithm for Multi-prime RSA is
essentially the same as for RSA, except that the modu-
lus requires r-random distinct balanced primes instead of
two. We will assume that the public and private expo-
nents are defined modulo φ(N) =

∏r
i=1(pi−1). Thus e

and d must satisfy

ed ≡ 1 mod φ(N),

which we call the key relation. From this equivalence, we
have the key equation

ed = 1 + k φ(N),

where k is some positive integer. As with RSA, we use
∧ to denote the difference between the modulus N and
Euler’s Totient function φ(N). That is, N = φ(N)− ∧.

Expanding φ(N) and defining the set Sr = 1, ..., r, we
can write ∧ as

∧ = N − φ(N) =
∑

i∈S

N

pi
−

∑
i,j∈Sr

i6=j

N

pipj
+ ... + (−1)r.

As is shown in [5], a simple computation using the
expression for ∧ and Equation (1) (condition for balanced
primes) shows that ∧ satisfies

| ∧ |< (2r − 1)N1−1/r.

Thus, φ(N) and N have roughly an (r − 1)/r fraction
of their most significant bits in common. The encryption
algorithm for Multi-prime RSA is identical to that of
RSA. The public (encrypting) exponent will usually be
denoted by e = Nα.

Lattices [3]: Let u1, ...., uw be linear independent vectors
in Rn. We define by

L(u1, ...., uw) = {
w∑

i=1

zi ui|zi ∈ Z},

the set of all linear integer combinations of the ui’s. This
set is called the lattice and u1, ...., uw a basis of that lat-
tice. Let u?

1, ......., u
?
w be the results of Gram-Schmidt or-

thogonolization on u1, ...., uw, then the determinant of the
lattice is defined by

det(L) =
w∏

i=1

||u?
i ||,

where ||.|| denotes Euclidean norm of the vectors. We
have the following lemma about the lattice basis reduc-
tion algorithm (L3).

Lemma 1. Let L be a lattice spanned by u1, ..., uw, then
the L3 algorithm produces a new basis b1, ..., bw of L sat-
isfying

(i) ||bj ||2 ≤ 2(i−1)||b?
i ||2, 1 ≤ j ≤ i ≤ w

(ii) ||b1|| ≤ 2(w−1)/4det(L)1/w.

We can find the bound on the norms of the other vec-
tors in the L3- reduced basis except b1, due to Jutla’s
contribution. For a basis u1, ..., uw of lattice L, define

u?
min := mini||u?

i ||,
then we have the following lemma:

Lemma 2. Let L be a lattice spanned by u1, ..., uw,
and let b1, ..., bw be the L3- reduced basis of L. Suppose
u?

min ≥ 1, then

(i) ||b2|| ≤ 2w/4det(L)1/(w−1)

(ii) ||b3|| ≤ 2w+1/4det(L)w−2.

3 Solving The Small Inverse Prob-
lem

Let e = Nα and d = N δ, where α, δ ∈ R+. Now fol-
lowing the work given by Luo et al. [9], with slight mod-
ifications, we begin with the public-private key equation
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ed − kφ(N) = 1. Letting s = φ(N) −N and A = N , we
have the following relation

ed− k(A + s) = 1.

To improve the boundary of Boneh and Durfee [3], Luo
et al. assumed the condition that d > e. Letting d ≡
d′ mod e and d′ ≈ eγ , we have the following result

ed′ − k(A + s) ≡ 1 mod e2.

Thus the problem is to find d′, s and −k such
that,|d′| < eγ , |s| < e1/2α & |k| = ed−1

φ(N) < ed
φ(N) < 2ed

N =

2e1+ δ−1
α , where φ(N) > N

2 .
In this section we solve the small inverse problem ed′−

k(A+s) ≡ 1 mod e2 stated as follows: given a polynomial
f(x, y, z) = ex + y(A + z)− 1, find (x0, y0, z0) such that

f(x0, y0, z0)) ≡ 0 mod e2, |x0| < X, |y0| < Y, |z0| < Z,
(2)

X = eγ , Y = e1+ δ−1
α +ε2 , Z = e

ar
α +εr . Here ε2 = ln 2 and

εr = ln(2r − 1), where ar = 1− 1
r . Notice that (d′,−k, s)

is a root of f(x, y, z) mod e2. Now, a result of Howgrave-
Graham [7] allows us to transform the modular equation
in Equation (2) into an integer equation. Here we define
the norm of a polynomial h(x, y, z) =

∑
i,j,k ai,j,kxiyjzk

by

(||h(x, y, z)||)2 =
∑

i,j,k

|a2
i,j,k|.

Lemma 3 [7]. Let h(x, y, z) ∈ Z[x, y, z] be a polynomial
which is the sum of w monomials. Suppose that

(a) h((x0, y0, z0)) ≡ 0 mod em,

for positive integer m, where |x0| < X, |y0| < Y and
|z0| < Z, and

(b) ||h(xX, yY, zZ)|| < em

√
w

,

then h(x0, y0, z0) = 0 holds over the integers.
This lemma shows that if a polynomial has a small

norm then all small roots of the polynomial modulo a
large modulus are also roots of the polynomial over the
integers. The goal is then to construct such a polynomial
that has (x0, y0, z0) as a root modulo e2m, for some m.
To this end, given a positive integer m and t, define the
polynomials

gi,j,k(x, y, z) = xiyjzke2(m−k), (3)

where k = 0, ...., m, and i+ j = 0, where r = 0, ....,m−k,
and

hi,j,k(x, y, z) = xizjfke2(m−k), (4)

where k = 0, ....,m, i = 0, ...., m − k and j = 1, ...t. No-
tice that (x0, y0, z0) is a root of all these polynomials
modulo e2m. We would like to find a low norm integer
linear combination of the polynomials gi,j,k(xX, yY, zZ)

and hi,j,k(xX, yY, zZ). To do this, we construct a lattice
that is spanned by the coefficient vectors of the polyno-
mials gi,j,k and hi,j,k for some parameters (i, j, k), that
contains some small vectors in it. By a small vector, we
mean that the norm of the polynomial corresponding to
the vector is small enough to apply Lemma-3. The LLL
lattice reduction algorithm can be used to find these small
vectors. Following the idea discussed in Luo et al. [9] for
given integers m and t, the dimension of the full rank
lattice is

w =
(m + 1)(m + 2)(m + 3)

6
+

t(m + 1)(m + 2)
2

.

Suppose that the first three vectors of the LLL- reduced
basis satisfy

|bi| < e2m

√
w

,

where i = 1, 2, 3. Then we can find the corresponding
polynomials g1, g2, g3 ∈ Z(x, y, z), such that

gi(x0, y0, z0) = 0,

where i = 1, 2, 3 hold over the integers, by Lemma 3. Now
computing the resultants

h1(y, z) = Res(g1, g2),
h2(y, z) = Res(g1, g3),

h′(z) = Res(h1, h2).

Then by solving h′(z) = 0, we can get one root such
that z0 = p+q

2 , which helps the factorization of N = pq.
The polynomials g1, g2, g3 are linearly independent, but
they may not be algebraically independent. In this case
the resultants h1(y, z) and or h2(y, z) are identically zero
and finding z0 becomes difficult.

4 Main Result

In the paper [3], Boneh and Durfee gave a low private ex-
ponent attack on RSA using lattice reduction techniques.
This attack renders 2-prime RSA insecure when the pri-
vate exponent is less than Nδ, where, in the most efficient
variant of the attack, δ = 0.292 as N → ∞. Hinek [5]
showed that how the Boneh-Durfee attack and a modified
approach due to Blomer and May [1] can be generalized to
r-prime RSA, and obtain corresponding asymptotic up-
per bounds on the private exponent. In this paper, we
discuss the attack given by Luo et al. [9] for the r- prime
RSA case.

Given integer m ≥ 1 and t ≥ 0, we construct the lattice
as follows. For k = 0, ....,m, use gi,j,k(x, y, z), for i +
j = 0, where r = 0, ...., m − k and hi,j,k(x, y, z), for i =
0, ...., m− k and j = 1, ...t as the basis vectors, with gi,j,k

and hi,j,k as in Equations (3) and (4). Now we calculate
det(L) of the lattice constructed. Since L is spanned by a
lower triangular matrix, its determinant only depends on
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the entries on the diagonal. Following [9], for the given
parameters m and t, we count the numbers of X,Y, Z and
e elements in these entries, and obtain

Xm,t =
(m + 1)(m + 2)(m + 3)

24
+

tm(m + 1)(m + 2)
6

, (5)

Ym,t =
m(m + 1)(m + 2)(m + 3)

12
+

tm(m + 1)(m + 2)
6

, (6)

Zm,t =
m(m + 1)(m + 2)(m + 3)

24
+

t(m + 1)(m + 2)(3t + 2m + 3)
12

, (7)

and

Em,t =
m(m + 1)(m + 2)(m + 3)

4
+

2tm(m + 1)(m + 2)
3

.

(8)
Hence, we have

det(L) = eEm,tXXm,tY Ym,tZZm,t . (9)

Now we required to satisfy the following inequalities

|bi| < e2m

√
w

, (10)

where i = 1, 2, 3. Now from Lemma 1 and Lemma 2, the
following inequalities holds

det(L) < e2m(w−2)/η, (11)

where η = 2(w+1)(w−2)/4w(w−2)/2. Since it is negligible
compared to e2m(w−2) when w is small. Substituting X =
eγ , Y = e1+ δ−1

α +ε2 and Z = e
ar
α +εr in to Equations (5),

(6), (7), (8), (9) and (11). We have the following,

Em,t + γXm,t + (1 +
δ − 1

α
+ ε2)Ym,t +

(
ar

α
+ εr)Zm,t ≤ 2m(w − 2). (12)

Now simplifying Equation (12), we have the following re-
sult:

6ar

α
t2 + (

6ar

α
+ 4mγ +

4mδ

α
− 4m− 4m

α
+

4arm

α
)t

+{m(m + 3)γ + 2m(m + 3)
δ

α
+

96m

(m + 1)(m + 2)

+
ar − 2

α
m(m + 3)} ≤ 0. (13)

For optimizing t, we have the following relation

t = topt

= − α

12ar
(
6ar

α
+ 4mγ +

4mδ

α
− 4m− 4m

α
+

4arm

α
).

Table 1: Boundaries for α, γ and δ with m →∞, ignoring
η

α γ 2-Prime 3-Prime 4-Prime
δmin δmax δmin δmax δmin δmax

.25 0 .75 .75 .75 .67 .75 .63
.3 0 .7 .752 .7 .667 .7 .628
.4 0 .6 .763 .6 .66 .6 .62
.4 .3 .6 .695 .6 .606 .6 .566
.5 0 .5 .705 .5 .68 .5 .63
.5 .3 .5 .692 .5 .59 .5 .552
.5 .4 .5 .662 .5 .56 .5 .525
.5 .5 .5 .634 .5 .543 .5 .5
.6 0 .6 .802 .6 .69 .6 .64
.6 .2 .6 .732 .6 .62 .6 .576
.7 0 .7 .838 .7 .71 .7 .662
.75 0 .75 .854 .75 .73 .75 .63
.75 .2 .75 .755 .75 .64 .75 .58
.915 0 .915 .916 .92 .78 .92 .72

Putting this value in Equation (13), and by taking
m →∞, we have

δ ≤ ar

2
+ 1 + α− αγ −

√
3

2
ar

√
1− 2

ar
(αγ − 2α).

Letting r = 2, we recover the bound

δ ≤ (α +
5
4
− αγ)−

√
3

4

√
1− 4αγ + 8α,

originally obtained in Luo et al. [9].
Also since d > e, we have δ ≥ max(α, 1 − α). We can

compare the range of weak keys for RSA r-prime (r =
2, 3, 4) in the Table 1 given below.

From the above table we see that RSA becomes
insecure if N .25 ≤ e ≤ N .915 for RSA 2-prime, if
N .4 ≤ e ≤ N .7 for RSA 3-prime, if N .5 ≤ e ≤ N .6

for RSA 4-prime, as the relation δ > α is satisfying
in the above region. Thus the range of encryption key
e decreases if number of factors in the RSA modulus
increases. Thus the Multi prime RSA is less vulnerable
to current attack on RSA.

Remark: Note that the above table is calculated by tak-
ing m → ∞ and neglecting the value of η. As per the
relation between w, m and η, if m is large then η can
not be neglected. For the moderate values of m and t
and considering η, the table given by Luo et al. [9], can
also be compared for the Multi-prime RSA and we expect
that the range of the encryption key may be decrease for
Multi-prime RSA case.

5 Conclusion

We have shown that how the attack given by Luo et al.
on RSA can be extended to the Multi prime RSA case,
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and how they perform in the new setting. If the number
of prime factors in the modulus increases, the attack be-
comes more complex or totally ineffective. So, we can say
that the Multi prime RSA is less vulnerable to current
attacks on RSA.
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