
International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 29

Provably Secure Online/Off-line Identity-based
Signature Scheme for Wireless Sensor Network

Jayaprakash Kar

Department of Information Systems, Faculty of Computing and Information Technology,
King Abduaziz University, Jeddah-21589, P.O.Box-80221, Kingdom of Saudi Arabia

(Email: jayaprakashkar@yahoo.com)

(Received Mar. 27, 2012; revised and accepted July 29, 2012)

Abstract

This paper describes an efficient and secure online and off-
line signature scheme for wireless sensor network (WSN).
Security of the proposed scheme is based on difficulty
of breaking Bilinear Diffie-Hellman problem (BDHP).
WSN systems are usually deployed in hostile environ-
ments where they encounter a wide variety of malicious
attacks. Information that is the cooked data collected
within the sensor network, is valuable and should be kept
confidential. In order to protect this transmitted informa-
tion or messages between any two adjacent sensor nodes,
a mutual authentication and key establishment protocol
is required for wireless sensor networks. Because some
inherent restrictions of sensor nodes which include low
power, less storage space, low computation ability and
short communication range most existing protocols at-
tempt to establish a pairwise key between any two ad-
jacent sensor nodes by adopting a key pre-distribution
approach. In order to further reduce the computational
cost of signature generation, online/off-line is suitable for
WSN. In on-line/off-line signature scheme, the signing
process can be broken into two phases. The first phase,
performed off-line, is independent of the particular mes-
sage to be signed; while the second phase is performed
on-line, once the message is presented.
BDHP, bilinear pairing, multi-signature, online/off-line
identity-based signature scheme

1 Introduction

Wireless sensor networks consist of small nodes also called
motes that monitor physical or environmental conditions
around them such as temperature, sound, vibration etc. It
process data, and communicate through wireless links [1].
A wireless sensor network (WSN) generally consists of a
base station, which holds the ability to communicate with
a number of wireless sensors present nearby by use of a
radio link. Once the data is collected by some intermedi-
ate node, it is then compressed, and transmitted to the

gateway directly or, if not directly connected then uses
other wireless sensor nodes to forward data to the gate-
way. Once this data reaches at the base-station then it is
presented to the system by the gateway connection [15].
Wireless Sensor Networks are widely used these days and
are very popular in research for use of embedded systems
in our daily life. WSNs are used in applications involv-
ing monitoring, tracking, or controlling such as habitat
monitoring, robotic toys, battlefield monitoring, packet
insertion [7], traffic monitoring, object tracking and nu-
clear reactor control.

2 Preliminaries

2.1 Notation

Definition 1 (Bilinearity). Let G1 and G2 be two
cyclic groups of same prime order q. G1 is an additive
group and G2 is a multiplicative group. Let e be a com-
putable bilinear map e : G1XG1 → G2, which satisfies the
following properties:

• Bilinear: e(aP, bQ) = e(P, Q)ab, where P,Q ∈ G1

and a, b ∈ Z∗q and for P, Q,R ∈ G1, e(P + Q, R) =
e(P, R)e(Q,R).

• Non-degenerate: If P is a generator of G1, then
e(P, P) is generator of G2. There exists P, Q ∈ G
such that e(P, Q) 6= 1G2 .

• Computability: There exists an efficient algorithm
to compute e(P, Q) for all P, Q ∈ G1.

We call such a bilinear map e is an admissible bilinear
pairing.

2.2 Mathematical Assumption

Definition 2 (Bilinear Parameter Generator). A
bilinear parameter generator G is a probabilistic polyno-
mial time algorithm that takes a security parameter k as

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 30

input and outputs a 5-tuple (q,G1,G2, e, P) as the bilin-
ear parameters, including a prime number q with |q| = k,
two cyclic groups G1,G2 of the same order q, an admis-
sible bilinear map e : G1XG1 → G2 and a generator P of
G1.

Definition 3 (Bilinear Diffie-Hellman Problem).
Let (q,G1,G2, e, P) be a 5-tuple generated by G(k), and
let a, b, c ∈ Z∗q . The BDHP in G is as follows: Given
(P, aP, bP, cP) with a, b, c ∈ Z∗q , compute e(P, P)abc ∈
GT . The (t, ε) -BDH assumption holds in G if there is
no algorithm A running in time at most t such that

AdvBDH
G (A) = Pr[A(P, aP, bP, cP) = e(P, P)abc] ≥ ε,

where the probability is taken over all possible choices of
(a, b, c). Here the probability is measured over random
choices of a, b, c ∈ Z∗q and the internal random operation
of A.

More formally, for any PPT algorithm A consider the
following experiment:
Let G be an algorithm which on input 1k outputs a (de-
scription of a) group G of prime order q (with |q| = k)
along with a generator P ∈ G. The computational Diffie-
Hellman (CDH) problem is in the following:

1) (G, q, P) ← G(1k)

2) a, b, c ← Z∗q
3) U1 = aP,U2 = bP, U3 = cP

4) if W = e(P, P)abc return 1 else return 0.

We assume that BDHP is a hard computational prob-
lem: letting q have the magnitude 2k where k is a security
parameter, there is no polynomial time (in k) algorithm
which has a non-negligible advantage (again, in terms of
k) in solving the BDHP for all sufficiently large k.

Definition 4 (Decisional Diffie-Hellman Problem).
Let (q,G,GT , e, P) be a 5-tuple generated by G(k), and let
a, b, c, r ∈ Z∗q . The DBDHP in G is as follows: Given
Given (P, aP, bP, cP, r) with some a, b, c ∈ Z∗q , Output is
yes if r = e(P, P)abc and no otherwise. The (t, ε)-HDDH
assumption holds in G if there is no algorithm A running
in time at most t such that

AdvDBDH
G (A) = |Pr[A(P, aP, bP, cP, e(P, P)abc)) =

1]− Pr[A(P, aP, bP, cP, r) = 1]| ≥ ε,

where the probability is taken over all possible choices of
(a, b, c, h).

Definition 5 (Hash Decisional Diffie-Hellman
Problem). Let (q,G,GT , e, g) be a 5-tuple generated
by G(k),H : {0, 1}∗ → {0, 1}l be a secure cryptographic
hash function, whether l is a security parameter, and
let x, y ∈ Z∗q , h ∈ {0, 1}l, the HDDH problem in G is as
follows: Given (P, aP, bP, cP, h), decide whether it is a
hash Diffie-Hellman tuple ((P, aP, bP, cPH(e(P, P)abc)).
If it is right, outputs 1; and 0 otherwise. The (t, ε)-HDDH
assumption holds in G if there is no algorithm A running
in time at most t such that

AdvHDDH
G (A) = |Pr[A(P, aP, bP, cPH(e(P, P)abc)) =

1]− Pr[A(P, aP, bP, cP, h) = 1]| ≥ ε,

where the probability is taken over all possible choices of
(a, b, h).

2.3 Online/Off-line ID-based Signature
Scheme

Online/Off-line signature schemes [8] divide the process
of message signing into two phases, the Off-line phase
and the Online phase. The Off-line phase, which consists
of complex computations are performed before the mes-
sage to be signed becomes available. Once the message is
known, the Online phase starts. This phase retrieves the
partial signature calculated during the Off-line phase and
performs some minor quick computations to obtain the
final signature. The Online phase is assumed to be very
fast, consisting of small computations. The Off-line phase
can be performed by a resourceful device. Online/Off-line
allows a resource constrained sensor node to sign a mes-
sage quickly, once it has some critical event to report.

2.4 Framework of ID-based Online/Off-
line Signature Scheme

An ID-based online/off-line signature (IBS) scheme com-
prises the following five probabilistic polynomial time
(PPT) algorithms:

• Setup. (param, msk) ← Set(1k) takes a security
parameter k ∈ N and generates param, the global
public parameters and msk, the master secret key of
the KGC.

• Extract. DID ← Ext(1k, param,msk, ID) takes a
security parameter k, the global parameters param, a
master secret key msk and an identity ID to generate
a secret key DID corresponding to this identity.

• Off-lineSign. σoff ← Sgnoff (1k, param) takes
a security parameter k and the global parameters
param to generate an off-line signature σoff .

• OnlineSign. σon ← Sgnon(1k, param, m, σoff , ID)
takes a security parameter k, the global parameters
param, a message m, an off-line signature σoff , an
identity ID to generate a signature σ.

• Verify. (“accept”, “Reject”) ← V er(1k, param,
σoff , DID) takes a security parameter k, the global
parameters param, a signature σ, a secret key of the
receiver DID to generate the outputs “accept” if σ is
valid and outputs “reject” otherwise.

3 Previous Work

In modern cryptography, the notion of digital signature
is one of the most fundamental and useful goal. Since

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 31

the public key cryptography was introduced, various sig-
nature schemes have been proposed to meet various re-
quirements in practical circumstances. In order to re-
duce the computational cost of signature generation, the
notion of on-line/off-line signatures was first introduced
by Even, Goldreich and Micali [8] in 1989. It is used
in a particular scenario where the signer must respond
quickly once the message to be signed is presented. The
idea is to perform the signature generating procedure in
two phases. The first phase is performed off-line (with-
out knowing the signed message) and the second phase
is performed online (after knowing the signed message).
The on-line phase should be very fast and require only
very light computation, such as integer multiplication or
hashing. Other heavier computation such as exponenti-
ation should be avoided in the online phase. This is the
basic characteristic of online/off-line signature schemes.
In this way, online/off-line signature schemes are partic-
ularly useful for low-power devices such as smart card,
wireless sensor network (WSN) application.

Shi et al. proposed an efficient identity based signature
scheme [6] with batch verification. Though the scheme
in [6] achieves efficiency in computation with just two
pairing operations and linear exponentiation operations,
it is required to pass all the signatures separately and
hence increases the communication complexity. Also a
universal forgery of the signature of any singer is possible
in this scheme as shown in [14].

Wang et al designed an identity based aggregate sig-
nature and it is claimed to be the most efficient scheme.
It uses constant pairing operation for signature verifica-
tion. But the aggregate signature in this scheme is not
secure since universal forgery of signature of any user is
possible in this scheme. Also, the scheme achieves only
partial aggregation. The attack in Wang et al. scheme
is shown in [14]. Xiangguo et al. gave a aggregate sig-
nature scheme [5] which uses the BLSR scheme [3] as
the base signature scheme. In this scheme all the sign-
ers have to broadcast their own random values used for
singing to all the co-signers so that everyone agrees upon
a common randomness before the generation of aggre-
gate signature. This results in quadratic communication
complexity which is a big overhead. Mutual interaction
between all the signers is not a desirable step in aggregate
signatures. Hyo et al. gave a number of batch verifica-
tion techniques [18]. During verification it requires linear
number of pairings which also increases the computation
complexity considerably. Yiling et al. proposed an ef-
ficient aggregate signature scheme with full aggregation
and constant pairing operations in [16].

Javier Herranz came up with an identity based sig-
nature scheme [10] with partial aggregation. But his
scheme produces deterministic signature where the sig-
nature component on a message will always be the same.
This is a major draw back in real world scenarios. It
also uses linear number of pairing operations leading to
inefficiency in computation.

Xu et al. in [17] proposed an identity based aggre-

gate signature scheme. This scheme uses Sakai et al.
signature construct as the base signature scheme. This
achieves only partial aggregation and also requires linear
number of pairings during signature verification. Gentry
and Ramzan proposed an efficient identity based aggre-
gate signature scheme [9]. This scheme achieves both full
aggregation and also constant number of pairing opera-
tions during signature verification. But the scheme in [9]
has certain weaknesses which makes it unsuitable for real
life scenarios. The weaknesses of the scheme are briefly
reported in the appendix. Boldyreva et al. proposed an
identity based sequential signature scheme [2]. Hwang et
al. proposed an attack on [2] and claimed that the only
existing efficient aggregate signature scheme is of Gentry
and Ramzan [9] which involves interaction between all the
signers whose signatures are to be aggregated. The design
of an efficient identity based aggregate signature scheme
without any interaction between the signers was left open
by Hwang et al. [11].

3.1 Security Model

The attacks against signature schemes are of without mes-
sage attack and chosen-message attack. The strong one
is an adaptive chosen-message attack. In this scenar-
ios the attacker can ask the signer to sign any message
that he/she chooses. He also knows the public key of the
signer. Then he can customize his queries according to
the previous message.

Definition 6 An identity-based online/off-line signature
is defined by the four tuples
IBS = (Setup,Extract,OfflineSign,OnlineSign) is
said to be existentially unforgeable under chosen-message
attacks if no probabilistic polynomial time adversary has
a non-negligible advantage in the following game played
between a challenger C and an adversary A.

• Setup. The challenger C runs this algorithm to gen-
erate the system parameters and sends to the adver-
sary A.

• The adversary A performs the following queries
adaptively:

1) Key Extraction Oracle. when A requests the
private key on an identity ID, C runs the Ex-
tract algorithm to obtain the DID and returns
to the adversary A.

2) Off-line Signing Oracle. when A requests
the off-line signature on an identity ID, C runs
the Off-Sign algorithm to obtain the σoff and
returns to the adversary A.

3) Online Signing Oracle. when A requests the
online signature on the message m for an iden-
tity ID, C runs the On-Sign algorithm to obtain
the σon and returns to the adversary A.

• After a polynomial number of queries, A outputs a
signature (ID∗,m∗, σ∗off , σ∗on) such that

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 32

1) ID∗ has been requested as one of the key ex-
traction queries.

2) (ID∗,m∗) has not been requested as one of
the off-line signing queries and online signing
queries.

3) (ID∗,m∗, σ∗off , σ∗on) is a valid ID-based
online/off-line signature.

The success probability of an adversary A wins the above
game is defined by

SussEF−IBS−CMA
A (k) ≤ 1

2 + ε.

ε is called advantage for the adversary in the above game.

Definition 7 A win the game if σ∗ is a valid signature of
m∗. An adversary is said to be an (ε, t, qe, qs, qh)-forger if
it has advantage at leat ε in the above game, run in time
at most t, and make at most qe, qs and qh extract, signing
and random oracle queries, respectively.

An identity based online/off-line signature scheme
(ε, t, qe, qs, qh) is secure if no (ε, t, qe, qs, qh)-forger exists.

3.2 Liu et al.’s Online/Off-line ID based
Signature for WSN

The scheme consists of the following 5 phases.

• Setup. Let G be a multiplicative group of prime
order q. The PKG selects a random generator g ∈ G
and randomly chooses x ∈ Z∗q at random. It sets X =
gx. Let H : {0, 1} → Z∗q be a cryptographic hash
function. The public parameters param and master
secret key msk are given by param = (G, q, g, X, H),
msk = x.

• Extract. To generate a secret key for identity ID,
the PKG randomly selects r ∈ Z∗q at random, com-
putes R ← gr s ← r + H(R, ID)x mod q. The user
secret key is (R, s). Note that a correctly generated
secret key should fulfill the following equality:

gs = R ·XH(R,ID).

• Off-line Sign. At the off-line stage the signer com-
putes: Ŷi ← g2i∀i = 0, 1 . . . |q| − 1.

• Online Sign. At the online stage, the signer ran-
domly selects y ∈ Z∗q . Let y[i] be the ith bit of y.
Define Y ⊂ {1, 2 . . . |q|} to be the set of indices such
that y[i] = 1. Computes Y ← ∏

i∈Y Ŷi−1, h ←
H(Y, R, m), z ← y + hs mod q. The signature is
(Y, R, z).

• Verification. The signature is valid only if the fol-
lowing equation holds

gz = Y RhX(R,ID).

At the off-line stage the signer computes: Ŷi ← g2i∀i =
0, 1 . . . |q| − 1 and at the online stage, the signer ran-
domly selects y ∈ Z∗q . Let y[i] be the ith bit of y. Define
Y ⊂ {1, 2 . . . |q|} to be the set of indices such that y[i] = 1.
Computes Y ← ∏

i∈Y Ŷi−1, h ← H(Y, R, m), z ← y +
hs mod q. For computation of Y , let us consider the fol-
lowing three cases.

• Claim-1. The position of 1 in the string is in odd or
even place i.e alternately 1s. Consider the random
number y ∈ Z∗ of length 6 in binary 101010. Here
the set Y = {1, 3, 5} which is in a proper sequence,
we can compute Y = Ŷ0Ŷ2Ŷ4. So it is easy for an
attacker to compute Y which is the partial signature
(Y, R, z). Therefore it can be forged.

• Claim-2. The string contains all 1s. Consider y of
length 6 in binary 111111. Set Y = {0, 1, 2, 3, 4, 5}.
Also the attacker can compute directly as Y =
Ŷ0Ŷ1Ŷ2Ŷ3Ŷ4Ŷ5.

• Claim-3. If the string contains all 0s, then it is not
possible to computes Y which is understood for an
attacker that Y consists of all 0’s is having 0s only.

The proposed scheme has not suggested for all these above
cases.

4 Proposed Online/Off-line ID-
based Signature on Bilinear
Pairings

We have considered all the above cases and suggested a
provably secure scheme on random oracles. The scheme
comprises the following five PPT algorithms.

• Setup. Given security parameters k, the PKG
chooses groups G1 and G2 of prime order q. A gen-
erator P of G1, a bilinear map ê : G1XG1 → G2 and
collision resistant hash function H0 : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z∗q . It chooses a master-key s ∈ Z∗q
and computes Ppub = sP . the system public param-
eters are given by

P = (G1,G2, q, ê, P, Ppub,H0,H1).

• Extract. This algorithms follows of the following
steps:

– Given an identity ID ∈ {0, 1}∗ the secret key is
dID = s ·QID, where QID = H0(ID).

• Off-line Sign. During this phase, the signer com-
putes the followings:

– α̂i = ê(P, Ppub)2
i

, ∀i = 0, 1 . . . |q| − 1. During
this off-line phase we neither require the knowl-
edge of the message nor the secret key.

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 33

• Online Sign. During this phase the signer follows
the following steps:

– Select randomly β ∈ Z∗q . Let β[i] be the ith bit
of β;

– Define D ⊂ {1, 2 . . . |q|} be the set of indices
such that β[i] = 1 and C ⊂ {1, 2 . . . |q|} be the
set of indices such that β[i] = 0.

– Computes

ψ1 =
∏

i∈D
α̂i−1

ψ2 =
∏

i∈C
α̂i−1;

– Computes α = ψ1ψ2;

– Selects γ ∈ Z∗q , computes U = γ · P , r =
H1(ID, U‖m);

– V = (γ + β) · Ppub + rdID.

The signature is σ = (α, U, V).

• Verify. To verify the signature (α, U, V) for the mes-
sage m and the identity ID, the verifier follows the
following steps.

– Computes r = H1(ID,U‖m);

– Checks whether the following equation holds

ê(V, P) ?= αê(QID, Ppub)r ê(U,Ppub).

Nest we proof the correctness of the proposed scheme.
First computes r = H1(ID, U‖m) and verify the follow-
ing equation:

ê(V, P) ?= αê(QID, Ppub)r ê(U,Ppub).

Also check

α = ê(P, Ppub)β

α = α̂0α̂1 . . .

= ê(P, Ppub)2
0
ê(P, Ppub)2

1
. . .

= ê(P, (20 + 21 + . . .)Ppub)
= ê(P, βPpub) = ê(P, Ppub)β

ê(V, P) = ê((γ + β)Ppub + rdID)
= ê((t + β)Ppub, P)ê(rdID, P)
= ê(Ppub, (t + β)P)ê(rdID, P)
= ê(Ppub, tP)ê(Ppub, βP)ê(rdID, P)
= ê(Ppub, U)ê(Ppub, P)β ê(rdID, P)
= αê(Ppub, U)ê(rdID, P)
= αê(Ppub, U)ê(rsQID, P)
= αê(Ppub, U)ê(rQID, sP)
= αê(Ppub, U)ê(rQID, Ppub)
= αê(Ppub, U)ê(QID, Ppub)r.

5 Security and Performance Anal-
ysis

The computational cost if this proposed scheme is as fol-
lows:

• The sender needs to compute a point multiplication,
a pairing evaluation, an encryption, as well as a hash
evaluation. In addition, the most expensive compu-
tation is to be perform is the use of a public-key
digital signature algorithm.

• Since the receiver and the sender stand in the sym-
metric position, so the receiver shares the same com-
putation costs. The communication cost of the pro-
posed protocol is that the sender and the receiver
carry out two rounds for communications in order
for the receiver to obtain a message from the sender.

For practical implementation, we can use some existing
tools for these computations including point multiplica-
tion, bilinear pairing evaluation, and hash function eval-
uation over elliptic curves. The protocol is based on the
elliptic curve cryptography (ECC) and thus it has high
security complexity with short key size.

5.1 Security Analysis

Theorem 1 In random oracle model, Let G1 and G2 be
(ε∗, t∗)-BDH two cyclic group of same prime order q. P
be a generator of G1. G1 is an additive group and G2 is a
multiplicative group. Let e be a computable bilinear map
e : G1XG1 → G2. The proposed scheme is (ε, t, qe, qs, qh)-
secure with respect to EF -IBS-CMA, where for any t
and ε satisfying

ε ≥ e(qe + 1)ε∗, t ≤ t∗ − tm(2qH0 + qe + 4qs),

where e is the base of the natural logarithm, and T is the
time of computing a scalar multiplication in G1 and an
inversion in Z∗q . and qe, qs, qH0 are the number of extrac-
tion, signing and hashing queries respectively the adver-
sary is allowed to make and tm is the time for computing
scalar multiplication.

Proof. Suppose thatA is a forger who breaks the scheme
IBS. A CDH instance (P, xP, yP) is given for x, y ∈ Z∗q .
By using the forgery algorithm A, we will construct an
algorithm B which outputs the CDH solution xyP in G1.
This performs the following simulation by interacting with
the forger A.

• Setup. Algorithm B sets Ppub = xP and starts
by giving A the system parameters params including
(P, Ppub). At any time, A can make query on the ran-
dom oracles H0 H1 and Extract and Sign queries.
To answer these queries, B does the following:

• Queries on Oracle H0: To respond H0-queries,
B maintains a list of tuples (ID, ω, b, c) denoted
by L0. When A queries the oracle H0 at a point
ID ∈ {0, 1}∗, B responds as follows:

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 34

1) If the query ID already appears on the L0-list
in a tuple (ID, ω, b, c) then B responds with
H0(ID) = ω ∈ G1.

2) Otherwise, B picks a random coin c ∈ {0, 1}
with Pr[c = 0] = 1

(qe+1) .

– If c = 0 then B computes ω = b(yP) for a
random b ∈ Z∗q .

– If c = 1 then B computes ω = bP for a
random b ∈ Zq.

B adds the tuple (ID, ω, b, c) to the L0-list and
responds to A with H0(ID) = ω.

• Queries on Oracle H1. To respond to H1-queries,
B maintains a list of tuples (ID,U,m, r) denoted by
L1. When A queries the oracle H1 at (ID,U,m), B
responds as follows:

1) If the query (U,m) already appears on the L1-
list in a tuple (ID, m,U, r) then B responds with
H1(ID, U‖m) = r ∈ Z∗q .

2) Otherwise, B picks a random r ∈ Z∗q and adds
the tuple (ID, m,U, r) to the L1-list and re-
sponds to A with H1(ID, U‖m) = r.

• Extract Queries. When A queries the private key
corresponding to ID, B first finds the corresponding
tuple (ID, ω, b, c) from the L0-list:

1) If c = 0 then B fails and halts.

2) Otherwise, B computes dID = b ·Ppub = b(xP)
by using the tuple (ID, ω, b, c) in theH0-list and
responds to A with dID.

• Off-line & Online Signing Query. Suppose A
makes queries qs a off-line and online signing algo-
rithms on message m with the signer’s identity ID,
B finds the corresponding tuple (ID, ω, b, c) from the
H0-list and chooses a random r, γ, β ∈ Z∗q and com-
putes U = γrP −βP −rω. If the tuple (ID, m,U, r)
already appears on the L1-list, B chooses another
r, γ, β ∈ Z∗q and tries again. Otherwise, B computes
V = r ·γPpub and stores (ID, m,U, r) in the H1-list.
Then, B responds to A with σ = (α, U, V). All re-
sponses to Sign queries are valid; indeed, the output
(α, U, V) of Sign query is a valid signature on m for
ID, to see this,

αê(QID, Ppub)r ê(U,Ppub)
= ê(P, Ppub)β ê(QID, Ppub)r ê(U,Ppub)
= ê(βP + rQID + U,Ppub

= ê(βP + rω + U,Ppub)
= ê(γrP, Ppub)
= ê(γrPpub, P)
= e(V, P).

• Output. If B does not abort as a result of A’s
Extract query then A’s view is identical to its view

in the real attack. By Forking Lemma (Pointcheval
and Stern, 2000), after replaying A with the same
random tape, B obtains two valid signatures σ =
(ID∗, m, r, α, U, V) and σ

′
= (ID∗,m, r

′
, α, U, V

′
)

within a polynomial time, where V = (γ+β) ·Ppub +
rdID∗ and V

′
= (γ +β) ·Ppub +rdID∗ . Then B finds

the corresponding tuple (ID, R) from the list L0, if
c = 1 then B fails and halts. Otherwise, B com-
putes V − V ′ = (r − r′)dID∗ . Finally, B outputs
xyP as a solution to the CDH instance by comput-
ing (r − r

′
)(r − r

′
)−1sQID∗ = xyP .

• Probability Analysis. B solves the given instance
of the CDH problem with probability at least ε∗. We
analyze three independent events needed for B to suc-
ceed:

– E1. B does not abort as a result of any A’s Ex-
tract query.

– E2.A generates a valid and non-trivial signature
forgery σ = (α, U, V) on m for ID.

– E3. Event E2 occurs and c = 0 for tuples con-
taining ID on the L0-list.

B succeeds if all these events happen. The probability
is Pr[E1 ∧ E2 ∧ E3]:

Pr[E1 ∧ E2 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 |
[E1 ∧ E2].

– Claim 1: The probability that A does not
abort as a result of A’s Extract query is at least
(1− 1

qe+1)qe .

– Claim 2: If A does not abort as a result of A’s
Extract query than A’s view is identical to its
view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

– Claim 3: The probability that B does not abort
after A outputs a valid and nontrivial forgery is
at least (1

(qe+1) . Algorithm B will abort only if
A generates a forgery such that c = 1. Hence
Pr[E3 | E1 ∧ E2] ≥ 1

(qe+1) .

So Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥
(1− 1

qe+1)qe · ε · 1
(qe+1) ≥ 1

e · ε
(qe+1) ≥ ε∗.

¤
Algorithm B’s running time is equal to the sum of the

running time of s A’s and the time it takes to respond to
qH0 hash oracle H0 queries, qe key extract queries, and qs

online/off-line signature queries. Each H0 query requires
one scalar multiplications in G1. Each key extract query
needs one scalar multiplication in G1. Each online/off-
line signature requires 4 scalar multiplications in G1. If
we assume one scalar multiplications in G1 takes time tm,
the total running time is at most t + (2qH0 + qe + 4qs)tm.
Therefore we can write

t + (2qH0 + qe + 4qs)tm ≤ t∗.

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 35

5.2 Performance Evaluation

We can estimate the computational cost and memory re-
quirements i.e the bit size required in this scheme. Con-
sider the following notation.

• TM : The time for point scalar multiplication on EC.

• TPO: Time for pairing execution.

• TH : Time taken for execution of hash function.

Total time for Key extraction, signature generation and
verification is given by

T = 4TM + 3TPO + 2TH .

6 Extension for Aggregation

D. Boneh et al. [4] proposed the aggregate signature
scheme.

Definition 8 Let there are n distinct users U =
{u1, u2 . . . un} having signing public key-private key
(pki, ski)1≤i≤n pair. To aggregate signatures on subsets
of users U , each user generates a signature σi, for all
i = 1, 2 . . . n on any message mi. These signatures are
aggregated by an aggregating party in to a single signature
σagg, which is the same length of the signature (σi)1≤i≤n.

The main goal in the design of such protocols is that
the length of σagg be constant, independent of the num-
ber of messages and signers. To check correctness of an
aggregate signature, the verifier will also need the mes-
sages mi and the public keys pki, but this is not taken
into account when considering the length of σagg. In
the identity-based framework, the only proposal which
achieves constant length aggregation is that of [9] how-
ever, this scheme only works in a more restrictive scenario
where some interaction or sequentiality is needed among
the signers of the messages, which later will be aggregated
(in the same direction as [13] for the PKI-based scenario).
With respect to non-interactive aggregate signatures in
the identity-based setting, the most efficient proposal is
from [10]that does not achieve constant-length aggrega-
tion: the length of the aggregate signature does not de-
pend on the number of signed messages, but on the num-
ber of different signers. Using the approach of this work,
we can achieve exactly the same level of partial aggre-
gation for identity-based signatures. In effect,let us con-
sider our generic construction, and let us assume that the
employed PKI-based signature scheme S allows constant-
length aggregation. The the input of the aggregation algo-
rithm would be {(idi, sigmsk(idi‖pki), pki,mi, sigi}1≤i≤n,
where sigi and sigski(mi) are signatures resulting from
scheme S, and can therefore be aggregated into a PKI-
based aggregate signature σagg, of constant length. Then
the final identity-based aggregate signature would be
σIB

agg = (σagg, pki)1≤i≤n. This aggregate signature, along
with the n messages and the n identities, is sufficient to

verify the correctness of the n signatures. Therefore the
length of the identity-based aggregate signature σIB

agg is
linear with respect to the number of different signers.

It would be useful if a (single) sensor node can sign
multiple messages, say n messages, but the size of re-
sulting signature is significantly smaller than n times the
size of a single signature. Such an aggregated (short-
ened) signature is of great importance in WSNs as re-
ducing communication overheads in WSNs is crucial for
resource-constrained sensor nodes. As an extension to our
online/off-line IBS scheme, we propose the following ag-
gregation technique when a single user (node) wants to
sign multiple messages.

6.1 Framework of Aggregate Signatures

An ID-based online/off-line signature(IBS) scheme con-
sists of the following five probabilistic polynomial time
(PPT) algorithms:

• Setup. (param,msk) ← Set (1k). The private key
generator PKG provides the security parameter as
the input to this algorithm, generates the system pa-
rameters params and the master private key msk.
PKG publishes params and keeps msk secret.

• Extract. DIDi ← Ext(1k, param, msk, IDi). The
user Ui provides his identity IDi to PKG. The PKG
runs this algorithm with identity IDi, params and
msk as the input and obtains the private key DIDi .
The private key DIDi is sent to user Ui through a
secure channel.

• Off-lineSign. σoff ← Sgnoff (1k, param) takes
a security parameter k and the global parameters
param to generate an off-line signature σoff .

• OnlineSign. (σon)i= 1ton ←Sgnon(1k, param, m,
σoff , IDi). The algorithm takes a security parameter
k, the global parameters param, a message m, an
off-line signature σoff , an identity IDi to generate
a online signature σoni , for all i = 1, 2 . . . n. so the
Signature generated by all users Ui individually is the
pair σi = (σoff , σoni), for all i = 1, 2 . . . n.

• Verify. (“accept”, “Reject”) ← V er(1k, param, σ,
DID). This algorithm takes a security parameter k,
the global parameters param, a signature σ, a secret
key DID to generate the outputs “accept” if σ is valid
and outputs “reject” otherwise.

• Aggregate. σagg ← Agg(σi). For aggregation, the
algorithm receive the various signatures (σi)1≤i≤n

from different users (Ui)1≤i≤n, any third party or
one of the signers can run this algorithm and gen-
erate the aggregate signature σagg for the pairs
(mi, IDi)1≤i≤n.

• Aggregate Verify. (“V alid”, “Invalid”) ←
AggV er(σi, mi, IDi, param) This algorithm takes
on input of an aggregate signature σagg for pair

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 36

(mi, IDi)1≤i≤n and the param checks whether σagg

is a valid aggregate signature on mi by IDi for all
i = 1, 2 . . . n. If true, it outputs “V alid”, else out-
puts “Invalid”.

6.2 Security Model

6.2.1 Unforgeability

Gentry et al. in [9] proposed a formal model for aggregate
signature scheme. Their scheme used a common random-
ness. We follow the security model proposed by Gentry et
al. with slight variations since we do not have a common
random value.

Definition 9 An IBS scheme is secure against existen-
tial forgery under adaptive-chosen-identity and adaptive-
chosen-message attack if no probabilistic polynomial time
algorithm A has non-negligible advantage in the following
game.

• Setup phase. The challenger C runs the setup al-
gorithm and generates the params and msk. Chal-
lenger C gives params to adversary A.

• Training phase. After the setup, A starts interact-
ing with C by querying the various oracles provided
by C in the following way:

• KeyGen oracle. When A makes a query with IDi,
C outputs Di, the private key of IDi to A, provided
C knows the private key for the queried identity. Else
it aborts.

• Signing oracle. When A makes a signing query
with IDi, message mi, C outputs a valid signature
σi on mi by IDi.

• Forgery phase. The adversary A generates output
an aggregate signature σagg for signatures i = 1 to
n from the users (IDi)1≤i≤n on messages (mi)1≤i≤n

where there exists at least one target identity IDT ∈
{IDi}1≤i≤n, for which private key has not been
queried for. The adversary A wins the game if σagg is
a valid aggregate signature and A has not queried for
the signature from the signing oracle for (IDT ,mT)
pair on which it has generated the forgery.

AdvUF−IBS
A = {Pr[A(V erify(σagg))] = valid}.

6.2.2 Aggregate Signature Scheme

• Setup. Given security parameters k, the PKG
chooses groups G1 and G2 of prime order q. A gen-
erator P of G1, a bilinear map ê : G1XG1 → G2 and
collision resistant hash function H0 : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z∗q . It chooses a master-key s ∈ F∗q
and computes Ppub = sP . the system public param-
eters are given by

P = (G1,G2, q, ê, P, Ppub,H0,H1).

• Extract. This algorithms follows of the following
steps

– Given an identity ID ∈ {0, 1}∗ the secret key is
dID = s ·QID, where QID = H0(ID).

• Off-line Sign. During this phase, the signer com-
putes the followings

– α̂i = ê(P, Ppub)2
i

, ∀i = 0, 1 . . . |q| − 1.

• Online Sign. During this phase the signer follows
the following steps

– Select randomly βl ∈ Z∗q . Let βl[i] be the ith bit
of βl.

– Define Dl ⊂ {1, 2 . . . |q|} be the set of indices
such that βl[i] = 1 and C ⊂ {1, 2 . . . |q|} be the
set of indices such that βl[i] = 0.

– Computes

ψ1 =
∏

i∈D
α̂i−1

ψ2 =
∏

i∈C
α̂i−1.

– Computes α = ψ1ψ2.
– Selects γl ∈ Z∗q , computes Ul = γl · P , rl =
H1(IDl, Ul‖ml), ∀l = 1, 2 . . . n.

– Computes

V =
∑n

l= 1 Vl, Vl = (γl + βl) · Ppub + rldID.
∀l = 1, 2 . . . n.

The aggregate signature σ = (αl, Ul, V) for l =
1, 2 . . . n.

• Verify: To verify the signature (αl, Ul, V) for the
message ml and the identity IDl, l = 1, 2 . . . n, the
verifier follows the following steps.

– Computes rl = H1(IDl, U‖ml), ∀l = 1, 2 . . . n

– Checks whether the following equation holds

ê(V, P) ?=
n∏

l=1

αl ê(Ul, Ppub)
n∏

l=1

αl

n∏

l=1

ê(QID, Ppub)rl .

6.2.3 Proof of Correctness

First computes rl = H1(IDl, Ul‖ml)∀l = 1, 2 . . . n and
verify the following equation

ê(V, P) ?=
n∏

l=1

ê(Ul, Ppub)
n∏

l=1

αl

n∏

l=1

ê(QID, Ppub)rl .

Also check α = ê(P, Ppub)β as follows:

α = α̂0α̂1 . . .

= ê(P, Ppub)2
0
ê(P, Ppub)2

1
. . .

= ê(P, (20 + 21 + . . .)Ppub)
= ê(P, βPpub)
= ê(P, Ppub)β .

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 37

V =
n∑

l= 1

Vl,

Vl = (γl + βl) · Ppub + rldID,∀l = 1, 2 . . . n.

ê(V, P) = ê(
n∑

l= 1

Vl, P)

= ê(
n∑

l= n

(γl + βl) · Ppub + rldID, P)

= ê(
n∑

l= n

(γl + βl) · Ppub, P)
n∏

l= 1

ê(rldID, P)

= ê(Ppub,

n∑

l= n

(γl + βl) · P)
n∏

l= 1

ê(rldID, P)

= ê(Ppub, γlP)ê(Ppub,

n∑

l= n

(βl) · P
n∏

l= 1

ê(rldID, P)

= ê(Ppub, γP)ê(Ppub, P)
∑n

l= n(βl)
n∏

l= 1

ê(rldID, P)

=
n∏

l= 1

ê(Ppub, Ul)
n∏

l= 1

αl

n∏

l= 1

ê(rls ·QID, P)

=
n∏

l= 1

ê(Ppub, Ul)
n∏

l= 1

αl

n∏

l= 1

ê(rlQID, s · P)

=
n∏

l= 1

ê(Ppub, Ul)
n∏

l= 1

αl

n∏

l= 1

ê(rlQID, Ppub)

=
n∏

l= 1

ê(Ppub, Ul)
n∏

l= 1

αl

n∏

l= 1

ê(QID, Ppub)rl .

7 Security Analysis

Theorem 2 In random oracle model, Let G1 and G2 be
(ε∗, t∗)-BDH two cyclic group of same prime order q. P
be a generator of G1. G1 is an additive group and G2

is a multiplicative group. Let e be a computable bilin-
ear map e : G1XG1 → G2. The proposed scheme is
(ε, t, qe, qs, qh, ξ)-secure with respect to EF -IBS-CMA,
where for any t and ε satisfying

ε ≥ e(qe + ξ)ε∗, t ≤ t∗ − tm(2qH0 + qe + 4qs + 2ξ + 2),

where e is the base of the natural logarithm, and T is the
time of computing a scalar multiplication in G1 and an
inversion in Z∗q . and qe, qs, qH0 are the number of extrac-
tion, signing and hashing queries respectively the adver-
sary is allowed to make and tm is the time for computing
scalar multiplication.

Proof. Suppose thatA is a forger who breaks the scheme
IBS. A CDH instance (P, xP, yP) is given for x, y ∈
Z∗q . By using the forgery algorithm A, we will construct
an algorithm B which outputs the CDH solution xyP in
G1. Algorithm B performs the following simulation by
interacting with the forger A.

• Setup. Algorithm B sets Ppub = xP and starts
by giving A the system parameters params including
(P, Ppub). At any time, A can query the random
oracles H0 and H1 and Extract and Sign queries.
To answer these queries, B does the following:

• Queries on Oracle H0. To respond H0-queries, B
maintains a list of tuples (ID, ω, b, c) as explained
below. We refer to this list as the L0-list. When
A queries the oracle H0 at a point ID ∈ {0, 1}∗, B
responds as follows:

1) If the query ID already appears on the L0-list
in a tuple (ID, ω, b, c) then B responds with
H0(ID) = ω ∈ G1.

2) Otherwise, B picks a random coin c ∈ {0, 1}
with Pr[c = 0] = 1

(qe+1) .

– If c = 0 then B computes ω = b(yP) for a
random b ∈ Z∗q .

– If c = 1 then B computes ω = bP for a
random b ∈ Zq.

B adds the tuple (ID, ω, b, c) to the L0-list and
responds to A with H0(ID) = ω.

• Queries on Oracle H1 and Sign Queries. When
A makes H1-queries and sign queries. To re-
spond to H1-queries, B maintains a list of tuples
(IDi, Ui,mi, ri) for i = 1, 2 . . . n as explained be-
low. We refer to this list as the L1-list. When A
queries the oracle H1 at (IDi, Ui,mi), B responds as
follows:

1) If the query (Ui,mi) already appears on the
L1-list in a tuple (IDi,mi, Ui, ri) then B re-
sponds with H1(IDi, Ui‖mi) = ri ∈ Z∗q , for
i = 1, 2 . . . n.

2) Otherwise, B picks a random ri ∈ Z∗q and adds
the tuple (IDi,mi, Ui, ri) to the L1-list and re-
sponds to A with H1(IDi, Ui‖mi) = ri.

• Output. A returns an aggregate signature σ =
(α,Ui, V) for ID1, ID2 . . . IDn, where γ ∈ Z∗q , Ui =
γi · P , ri = H1(IDi, Ui‖mi), ∀i = 1, 2 . . . n

V =
∑n

i= 1 Vi, Vi = (γi + βi) · Ppub + ridID.
∀i = 1, 2 . . . n.

B finds the n-tuples (IDi, ωi, ai, bi, ci) for = 1, 2 . . . n
from H0 list and proceeds only ck = 0 and cj =
1, 2, . . . n, j 6= k. Here (IDk,mk) has never requested
to the sign oracle. Otherwise B fails and halts. when
Hk = ωk = bk(y · P) and H0(IDj) = ωj = bj · P
for j = 1, 2 . . . n, j 6= k. The aggregate signature σ
satisfies the following aggregate verification.

ê(V, P) =∏n
i=1 ê(Ui, Ppub)

∏n
i=1 αi

∏n
i=1 ê(ωi, Ppub)ri .

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 38

B finds the corresponding tuples (IDi,mi, U, ri) from
L1-list. Let Vi = bi · Ppub. Computes ê(Vi, P) =
ê(QIDi

, Ppub) for 1 ≤ i ≤ n, i 6= k. Finally B
constructs V ′ as V − ∑n

i= 1,i6=k Vi and V
′

= dk +∑n
i= 1 ri · γi · Ppub, for U

′
= (r∗k)−1

∑n
i= 1 ri · Ui.

Then B execute the hash value H1(IDk,mk‖U ′
) and

return r∗k, i.e H1(IDk,mk‖U ′
) = r∗k. If the tu-

ples exist in L1-list then tries another r∗k. Con-
tinue until such collision does not occur. Therefore
σ
′
= (U ′, V

′
, α) is a valid signature on mk for IDk.

Its verification equation ê(U
′
, Ppub)αê(ωi, Ppub)r∗

= ê((r∗k)−1
∑n

i= 1 ri · Ui, Ppub)= ê(dk +
∑n

i= 1 ri

· γi · Ppub, P) = ê(V
′
, P). Finally, B returns σ′ as a

forgery of the scheme.

¤

8 Probability Analysis

B solves the given instance of the CDH problem with
probability at least ε∗. We analyze three independent
events needed for B to succeed:

• E1: B does not abort as a result of any A’s Extract
query.

• E2: A generates a valid and non-trivial signature
forgery σ = (α, Ui, V) on mi for IDi, i = 1, 2 . . . n.

• E3: Event E2 occurs and ck = 0, ci = 1 for 1 ≤ i ≤
n, i 6= k, where for each i, ci is the c-component of
the tuples containing IDi on the L0-list.

B wins if all these events happen. The probability is
Pr[E1 ∧ E2 ∧ E3]:

Pr[E1∧E2∧E3] = Pr[E1]·Pr[E2 | E1]·Pr[E3 | [E1∧E2].

• Claim 1. The probability that A does not abort as
a result of A’s Extract query is at least (1− 1

qe+ξ)qe .

• Claim 2. If A does not abort as a result of A’s
Extract query than A’s view is identical to its view
in the real attack. Hence, Pr[E2 | E1] ≥ ε.

• Claim 3. The probability that B does not abort
after A outputs a valid and nontrivial forgery is at
least (1

(qe+ξ)ξ−1 . Algorithm B will abort only if A
generates a forgery such that c = 1. Hence Pr[E3 |
E1 ∧ E2] ≥ 1

(qe+1) .

So Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥
(1− 1

qe+1)qe · ε · 1
(qe+1) ≥ 1

e · ε
(qe+1) ≥ ε∗.

Algorithm B will abort unless A generates a forgery
such that ck = 0 and ci = 1 for 1 ≤ i ≤ n, i 6= k.
Therefore Pr[ck = 0] = 1

(qe+ξ) and the probability that
ci = 1, for 1 ≤ i ≤ n, i 6= k, is given by

Pr[ci = 1,∀1 ≤ i ≤ n, i 6= k] ≥ (1− 1
qe+ξ)ξ−1

⇒ Pr[E3 | [E1 ∧ E2] ≥ (1− 1
qe+ξ)ξ−1 · (1

qe+ξ).

Thus Pr[E1] · Pr[E2 | E1] · Pr[E3 | [E1 ∧ E2] ≥
(1− 1

qe+ξ)qe+ξ−1 · ε · 1
(qe+ξ) ≥ 1

e · ε
(qe+ξ) ≥ ε∗.

Algorithm B’s running time is equal to the sum of the
running time of A’s and the time it takes to respond to
qH0 hash oracle H0 queries, qe key extract queries, and qs

online/off-line signature queries. Each H0 query requires
one scalar multiplications in G1. Each key extract query
needs one scalar multiplication in G1. Each online/off-
line signature requires 4 scalar multiplications in G1. The
output phases requires 2ξ and one inversion operation. If
we assume one scalar multiplications in G1 takes time tm,
the total running time is at most t + (2qH0 + qe + 4qs +
2ξ + 2)tm. Therefore we can write

t + (2qH0 + qe + 4qs + 2ξ + 2)tm ≤ t∗.

9 Implementation on WSN

The signatures generated by the sensor nodes can be ver-
ified mutually by sensor nodes and by the base station.
In WSN application off-line phase can be executed at the
base station, while the online phase is to be executed in
the WSN node. Like the case for general WSNs, we as-
sume that the base station is powerful a sufficient amount
to perform computationally intensive cryptographic op-
erations, and the sensor nodes, on the other hand, have
limited resources in terms of computation, memory and
battery power. The sensor nodes may be one of the above
described. To implement the proposed signature scheme
on WSN, we can follow the similar method [12]. Let us
consider the system parameters param is generated by the
base station and is embedded in each sensor node when
they are deployed. The Signatures generated by the sen-
sor nodes can be verified either by the sensor nodes or by
the base station.

Let us consider n no of sensor nodes as
SN1, SN2 . . . SNn with identity ID1, ID2 . . . IDn.
The system parameters (G1,G2, q, ê, P, Ppub,H0,H1) is
generated by the base station and all parameters will be
embedded on each sensor node. Then signature (α, U, V)
will be generated by the nodes.

10 Conclusion

This paper proposes a secure and efficient online/off-line
signature scheme for WSN. The scheme is secure against
existential forgery on chosen message attack in random or-
acle model under the assumption of Computational Diffie-
Hellman Problem (CDH) is hard. Here we have shown the
vulnerability of Liu et al’s scheme and proposed a prov-
ably secure scheme.

International Journal of Network Security, Vol.16, No.1, PP.29-39, Jan. 2014 39

References

[1] F. Amin, A. H Jahangir, and H. Rasi fard. “Anal-
ysis of public-key cryptography for wireless sensor
networks security,”. tech. rep., World Academy of
Science, Engineering and Technology, 2008.

[2] A. Boldyreva, C. Gentry, A. Neill, and D. H.
Yum, “Ordered multi-signatures and identity-based
sequential aggregate signatures, with applications
to secure routing,” in Proceedings of ACM Confer-
ence on Computer and Communications Security,
pp. 257–273, 2007.

[3] D. Boneh, BLS Short digital signatures. Springer,
2005.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham,
“Aggregate and verifiably encrypted signatures from
bilinear maps,” in Proceedings of Eurocrypt ’03,
vol. LNCS2656, pp. 416–432, 2003.

[5] X. Cheng, J. Liu, and X. Wang, “Identity-based ag-
gregate and verifiably encrypted signatures from bi-
linear pairing,” in Proceedings of ICCSA, vol. LNCS
3483, pp. 1046–1054, 2005.

[6] S. Cui, P. Duan, and C. W. Chan, “An efficient
identity-based signature scheme with batch verifica-
tions,” in Proceedings of Infoscale, ACM Interna-
tional Conference, vol. 152, p. 22, 2006.

[7] J. Deng, R. Han, and S. Mishra. “Enhancing base
station security in wireless sensor netowrks: Uni-
versity of colorado, department of computer science.
technical report cu-us-951-03,”. tech. rep.

[8] S. Even, O. Goldreich, and S. Micali, “On-line/off-
line digital signatures,” in Proceedings of Advances
in Cryptology, vol. LNcs 435, pp. 263–180, Barlin,
June 1990.

[9] C. Gentry and Z. Ramzan, “dentity-based aggregate
signatures,” in Proceedings of PKC 2006, vol. LNCS
3958, pp. 257–273, 2006.

[10] J. Herranz, “Deterministic identity-based signatures
for partial aggregation,” The Computer Journal,
vol. 49, no. 3, PAGES =, 2006.

[11] J. Y. Hwang, D. H. Lee, and M. Yung, “Universal
forgery of the identity-based sequential aggregate sig-
nature scheme,” in ASIACCS, pp. 157–160.

[12] J. K. Liu, J. Baek, J. Zhou, Y. Yang, and J. W.
Wong. “Efficient online/offline identity-based signa-
ture for wireless sensor network,”. Tech. Rep. IACR
eprint-2010/03, 2010.

[13] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and
B. Waters, “Sequential aggregate signatures and
multi-signatures without random oracles,” in Pro-
ceedings of Eurocrypt ’06.

[14] S. S. D. Selvi, S. S. Vivek, J. Shriram, S. Kalaivani,
and C.Pandu Rangan. “Security analysis of ag-
gregate signature and batch verification signature
schemes,”. Tech. Rep. IACR eprint-2009/290, 2009.

[15] C. Townsend and S. Arms. “Wireless sensor net-
works: Principles and applications microstrain,”.
tech. rep.

[16] Y. Wen and J. Ma, “An aggregate signature scheme
with constant pairing operations,” in CSSE, vol. 3,
pp. 830–833, 2008.

[17] J. Xu, Z. Zhang, and D. Feng, “Id-based aggregate
signatures from bilinear pairings,” CANS, YEAR =.

[18] H. Yoon, J. H. Cheon, and Y. Kim, “Batch verifi-
cations with id-based signatures,” in Proceedings of
ICISC, vol. LNCS 3506, pp. 233–248, 2004.

Jayaprakash Kar has received his M.Sc and M.Phil
in Mathematics from Sambalpur University, M.Tech and
Ph.D in Cryptographic Protocols from Utkal University,
India. His current research interests are on develop-
ment and design of provably secure cryptographic pro-
tocols and primitives includes digital signature, Signcryp-
tion Scheme, Key management problem of broadcast en-
cryption, Deniable authentication protocols, Proxy Blind
Signature scheme using Elliptic Curve and Pairing based
Cryptography. He has more than 20 Journal papers and
Conference articles to his credit. Dr. Kar is mem-
ber of advisory committee and editorial board of many
peer reviewed Journals. He is life member of Cryptology
Research Society of India, International Association for
Cryptology Research (IACR), International Association
of Computer Science & Information Technology, Singa-
pore and International Association of Engineers, USA.

