
International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 478

Secure Requirement Prioritized Grid Scheduling

Model
Manjot Kaur Bhatia

1
, S. K. Muttoo

2
, and M. P. S. Bhatia

3

(Corresponding author: Manjot Kaur Bhatia)

Research Scholar, Dept. of Computer Science, University of Delhi, Delhi
1

T Reader, Department of Computer Science, University of Delhi, Delhi
2

Professor, Dept. of Computer Engineering, Netaji Subhas Institute of Technology, Azad Hind Fauj Marg
3

Sector 3, Dwaraka, New Delhi-110078

(Email: manjot_bhatia@hotmail.com, skmuttoo@cs.du.ac.in, bhatia.mps@gmail.com)

(Received Oct. 17, 2011; revised and accepted May 5, 2012)

Abstract

Grid computing is a high performance computing

environment to solve larger scale computational demands.

Grid computing contains resource management, task

scheduling, security problems, information management

and so on. Task scheduling in an important aspect of

distributed computing. As grid computing is a form of

distributed computing with heterogeneous resources

working in a shared environment with no central control.

The main aim of Grid scheduling is to increase the system

throughput and to satisfy the job requirements from the

available resources. This work proposes a secure

requirement (SRP) prioritized task-scheduling algorithm

for grid computing. This algorithm is based on scheduling

the jobs based on the resource requirement of the jobs

which considers the memory requirement as the resource

requirement of the jobs. It is named as the secure

requirement prioritized (SRP) scheduling algorithm as the

jobs memory requirement is passed to scheduler in

encrypted form. It is compared with one of the widely used

grid scheduling algorithm MinMin and has been tested in

simulated grid environment. The experimental results

showed a significant improvement in terms of makespan

and system utilization.

Keywords: Distributed environment, grid computing,

requirement based scheduling, secure grid scheduling, task

scheduling

1 Introduction

Grid computing is a form of distributed computing in

which resources are geographically distributed and owned

by different individuals with different technologies. This

distributed environment allows sharing of geographically

distributed heterogeneous computers and resources. Users

can access and utilize the resources of multiple domains

participating in the grid network. It’s a new technology that

allows easier access to remote computational resources to

tackles complex computations. Grid computing aims to

maximize the utilization of an organization’s computing

resources by making them shareable across applications

and, potentially, provide computing on demand to third

parties as a utility service. It schedule the independent jobs

submitted by different users on dynamically distributed

resources that increases the overall throughput and also

utilizes the unused processors. These resources can be

shared by various applications depending upon their

availability and QOS requirement of the applications. As

grid computing allows user to access remote resources and

provide cooperative distributed computing environment, so

user jobs can be executed either on local or remote

computer systems. The job of the grid scheduler is to

automatically assign the suitable resources to the

independent jobs to maximize the system utilization. It also

reduces the average response time of the jobs. The efficient

utilization of grid computing resources can improve the

overall job-throughput due to load balancing of the tasks

between the grid resources.

The grid scheduling is divided into three phases [10].

These are Resource exploring, Machine selection and

Executing. The first phase recovers all the available

resources, the second phase deals with finding the best

match between the set of jobs and available resources. The

phase two is a NP-hard Problem [20]. The behavior of

computational grid is dynamic and unpredictable as it

depends upon various factors:

1) Network connection;

2) Availability & non-availability of resources at the

required time;

3) The number of resources joining & leaving the grid;

4) Performance of grid resources can vary from time to

time.

The jobs will take different execution time on different

machines. So, task scheduling as a part of grid scheduling

International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 479

is a problem to schedule a stream of applications from

different users to a set of computing resources to minimize

the total completion time. This scheduling requires the

matching of different jobs with the machines that satisfy

their resource requirement. There are two different goals

for task scheduling: (i) Increasing computing performance,

its aim is to minimize the execution time of each

application that is considered in parallel processing. (ii)

Increasing overall throughput, its purpose is to schedule a

set of independent tasks in such a way that it increases the

processing capacity of the systems for long period of time.

We have focused on the second goal and propose a new

task-scheduling algorithm for grid computing that provides

high throughput and efficient utilization of resources. This

grid-scheduling algorithm tries to minimize the total

turnaround time of the jobs. The resources in grid

environment are not only dedicated to grid applications, as

they have to handle their own local jobs also. So, the grid

jobs need to compete for the resources according to their

resource requirement. In this scheduling algorithm we are

considering the main-memory as the resource requirement

of the grid jobs. The scheduler considers the resource

requirement of the grid jobs and assigns the jobs to the

resources that satisfy their resource requirement. To secure

the requirements of the tasks, memory requirement of the

tasks is encrypted using RC5 algorithm and then passed to

the scheduler. Our Scheduling algorithm increases the

efficiency and utilization of grid resources by scheduling

the jobs based on their resource requirement and provides

secure communication with scheduler.

2 Literature Survey

In the past few years, researchers have proposed scheduling

algorithms for parallel system [4, 20, 22]. However, the

problem of grid scheduling is still more complex than the

proposed solutions. Therefore, large number of researchers

[2, 6, 12, 16, 17] is showing interest in it. Current systems

of grid resource management was surveyed and analyzed

based on classification of scheduler organization, system

status, scheduling and rescheduling policies [11]. However,

the characteristics and various techniques of the existing

grid scheduling algorithms are still complex particularly

with extra-added components.

Job scheduling on grid computing not only aims to find

an optimal resource to improve the overall system

performance but also to utilize the existing resources more

efficiently. Recently, many researchers have studied the

problem of job scheduling algorithm on grid environment.

Some of those are the popular heuristic algorithms, which

have been developed, are UDA, OLB, min-min, the fast

greedy, GA, SA, tabu search [1] and an Ant System [14].

These algorithms have several advantages and have some

drawbacks also. UDA assign too many jobs to a single grid

node. This leads to overloading and the increases the

response time of the jobs. The drawback of OLB is that it

does not achieve the load balance and leads to hard

calculation of minimum completion time for a job. The

algorithms GA, SA and GSA are difficult to implement.

The heuristic algorithms proposed for job scheduling in [1]

and [14] depend on static environment of system load and

the expected value of execution times. Li [13] proposed a

scheduling algorithm in which job will be moved from one

machine to another machine, so the traffic in the grid

system will be automatically increased. Yan Hui [7] has

taken into account communication cost and different ant

agents.

Currently available Grid Resource Management system

like: Condor, Globus, NetSolve, Nimrod/G, AppLeS uses

different Grid scheduling approaches. The Condor uses

centralized scheduler and designed to improve overall

throughput of the system in a controlled network

environment. Its scheduling algorithm does not consider

any QoS requirement of jobs. The AppLeS scheduling

algorithm focuses on efficient co-location of data and

experiments as well as adaptive scheduling. The Nimrod

uses decentralized scheduler and its scheduling approach is

based on predictive pricing model and Grid economy

model. The Netsolve has decentralized scheduler and

scheduling approach focuses on fixed application oriented

policy considering soft QoS. In our algorithm we consider

QoS in scheduling. Our proposed algorithm is different

from the above given algorithms; it considers the memory

requirement of the job and assigns the jobs to the available

resource accordingly. The above discussed algorithms are

not security aware and security is an important concern in

Grid Scheduling, considering security constraint modifies

the schedule of the scheduling algorithms. The secure grid

scheduler should meet the security requirements of the jobs

and also tries to minimize the makespan, average response

time of the jobs by utilizing the resources effectively.

Secure Grid Scheduling: In Grid computing resources

and data from different administrative domains work

together as virtual organization. Computations of tasks at

different resources of different administrative domains give

rise to security issues in Grid scheduling. Various

researchers have proposed and developed secure grid

scheduling model considering different security

requirements of Grid Scheduling. Ian Foster [5] proposed a

security architecture that addresses requirements like user,

resource, process authentication with each other and

dynamically varying resource requirements of the processes.

Wu and Sun [20] proposed a genetic algorithm addressing

heterogeneities of fault tolerant mechanism in

computational grid. Song [19] considers risk involved in

dispatching the jobs to remote nodes and proposed three

secure scheduling algorithms on different risk levels.

Kołodziej [9] formalizes the Grid scheduling problem as a

non-cooperative non-zero sum game of the Grid users in

order to address the security requirements. He considered

users’ cost of playing the game as a total cost of the secure

job execution in Grid and tries to minimize the total cost by

using four genetic-based hybrid meta-heuristics. Kashyap

[8], proposed a security-aware Grid scheduling model, in

this paper author quantifies, estimates security overhead

and considers security requirement as the main concern for

International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 480

scheduling tasks on the grid nodes. She incorporated this

idea of prioritizing security requirements on the existing

scheduling heuristics Min-Min and Max-Min. Xie and Qin

[21] proposed a scheduling algorithm SAHA, schedules

data intensive jobs considering their security requirements

on data grids. He introduced a concept of security

deficiency and also proposed strategy to enhance security

of jobs.

3 Proposed Model

3.1 Proposed Model Architecture

In this model, we assume a computing grid composed of a

number of independent non-dedicated sites with several

heterogeneous computational resources of various

organizations. As the sites are non-dedicated, no one has

full control on all the available resources and applications

(jobs). Each site has local users that submit jobs to its own

local job scheduler and the local job scheduler is

responsible for managing local jobs only. For this reason,

the job scheduling in this environment is complicated.

The independent users submit their jobs to the Grid

Scheduler. A grid job consists of n independent tasks. Each

task is characterized by file size and encrypted memory

requirement. The aim of this model is find the optimal

schedule for assigning the jobs to the processing nodes that

satisfies the memory requirement by providing the memory

requirement in encrypted form so that the intruders should

not be able to modify the requirement of the jobs and also

give minimum makespan. The memory requirement of the

jobs is encrypted using the RC5 algorithm. RC5 is

symmetric block cipher that uses the same cryptographic

key for encryption and decryption. It has the variable length

cryptographic key depending upon the level of security.

The scheduler retrieves the information of the grid

resources such as processing speed, memory capacity. The

data retrieved from the participating sites is used to find the

optimal resources according to job resource requirement for

processing of jobs. The scheduler decrypts the memory

requirement of the tasks and schedules the tasks depending

upon its requirement.

3.2 Terminologies Used

The major objective of our algorithm is to allocate the best

suitable machine to the tasks, arriving at the Grid Scheduler.

As our task scheduling algorithm is based on the

availability of memory required by the task.

Here is the list of terminologies and its definitions, used

in this paper:

Jlist is the list of all the task of the given job that is to be

scheduled. A task is characterized as Ti (sizei, mri) where,

sizei is the size of the task and mri is the encrypted memory

requirement of the task. A processing node is characterized

as Pj (psj, mcj, btj) where, psj is the processing speed of the

node, mcj is the maximum memory capacity of the

processing node and btj is the begin time at j
th

 node. Tw is

the waiting time of the node (time to execute tasks already

assigned to the node). Prs,i is the list of nodes satisfying the

memory requirement of i
th

 task i.e. on which the i
th

task can

be executed.

The time spent by the i
th

 process waiting for the j
th

 node

(Grid Scheduler) is

Twij =Max(min tpj (avail), min tmej (avail)),

where tpj is time that shows after how much time the i
th

task has got the j
th

 node, tmej is time i.e after how long

time the i
th

 task has got the j
th
 node that satisfy its memory

requirement(mei). Let ETij is defined as the amount of time

taken by processing node Pj, to execute task ti, given that Pj

has no load when task Ti is assigned.

ETij = outTimeij-inTimeij

Where outTimeij is the at which i
th

 process is

completed in the jth processor. inTimeij is the time at which

i
th

 process is submitted to the j
th

processor.

The completion time Cij of the i
th

process at j
th

 machine is:

Cij = Twij + ETij.

3.3 Scheduling Algorithm

Make span is a measure of the throughput of the

heterogeneous system. The aim of our grid scheduling

algorithm is to minimize the makespan. The heuristic can

be divided into two categories online mode and the other

batch mode. In online mode, whenever a job arrives to the

scheduler it is allocated to the first free machine. In this

method, the arrival order of the job is important. Each task

is considered only once for matching and scheduling. In

case of batch mode, the jobs are collected in a set and are

examined for mapping at prescheduled times called

mapping events. This independent event uses heuristic

approach to make better decision. This mapping heuristics

do better task/host mapping because the heuristics have the

resource requirement information for the meta-task, and

know the actual execution time of a larger number of tasks.

Several heuristics approaches like Min-min, Max-min,

UDA and GA are proposed for scheduling independent

tasks. Most of these algorithms consider the expected

execution time of each task as the criteria to make better

decision. The general scheduling algorithms does not

consider the resource requirement, which affects

scheduling process in a Grid. Regardless of their computing

power request, some tasks may require more memory

whereas others can be satisfied with less memory. For e.g.

If scheduler assigns a task that require less memory for

execution on the processor with high memory, tasks

requiring high memory will then have to wait. Considering

memory as the resource requirement in scheduling should

lead to a better scheduling algorithm. Based on this

requirement, a new scheduling algorithm considering

‘memory as resource requirement’ is proposed. It works as

follows:

International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 481

 Sort and make a list of tasks based on their

memory requirement as (Tsort) from complete list

of tasks Tlist.

 To avoid attack-in-the-middle encrypt the memory

requirement of the tasks in the Tsort list using RC5

algorithm as the maximum size would not exceed

16 bytes and make a list of tasks with their

encrypted memory requirement ETsort.

 Submit the list ETsort to the scheduler.

 After receiveing the ETsort list the scheduler

decrypt the memory requirement of the tasks and

create DTsort.

 For each task of updated DTsort, find the list of the

nodes (Nsatisfy) which satisfy the memory

requirement of the task.

Compute the computation time for each task of

DTsort on its entire node list Nsatisfy.

 For each task, mark the node from the Nsatisfy that

gives minimum completion time.

 For all such task-node pair, allocate the task

to the respective marked node.

 Remove the task from the DTsort list.

 Modify the waiting time of the resource.

 Repeat the entire process till DTsort list is

empty.

 After all the tasks from the DTsort are allocated

new Tsort is created and the entire process

begins again.

Algorithm 1: Scheduling algorithm

1. for all tasks Ti

2. create Tsort from Tlist

3. create ETsort from Tsort

4. end for

5. for all tasks in ETsort

6. create DTsort

7. endfor

8. do until (DTsort != NULL)

9. {

10. for each task ti in the DTsort

11. {

12. create Nsatisfy,i

13. for each node j from the node list Nsatisfy,i

14. compute

15. Twij=Max(min tpj (avail), min tmej (avail))

16. Cij = Twij+ ETij

17. find the completion time for each task and its

18. corresponding node.

19. Generate matrix CTi,j

20. }

21. From the matrix CT, find the task with

22. Minimum CT=(CTi,j)

23. Schedule task i on node j

24. Delete task ti from DTsort and Tlist

25. Modify Twij= Twij+CTij for the j
th

node

26. }

4 Experimental Testing

To evaluate the performance of newly proposed SRP

scheduling algorithm in Grid environment and to compare

it with existing algorithm Min-Min, a simulator is designed

in Java. The simulator consists of Nodes, Tasks and SRP

algorithm for generating heterogeneous grid nodes and

tasks sets randomly within the specified range. In the

experimental testing we used heterogeneous machines with

different processing speed, memory capacity and tested it

for different number of tasks (e.g. size of tasks, memory

requirement), shown in Table 1.

Table 1: Parameters for the simulation experiments

Parameters Values

No. of nodes 4

Processing speed of nodes(ps) 1-10 (MIPS)

Memory capacity of processing

nodes

200-350

(MB)

No. of tasks 10-20

Size of Tasks 10-200 (MB)

Memory requirements
150-300

(MB)

We compared the results of our SRP scheduling algorithm

with the most widely used min-min algorithm.

We compared the makespan of our algorithm with Min-

Min on heterogeneous environment by varying the

processing speed and memory capacity of the Grid nodes.

The experiments are conducted on different number of

tasks ranging from 10 to 20. It is observed that makespan

for the given number of tasks is either shorter or equal in

case of SRP based scheduling algorithm as compare to

Min-Min algorithm. Our algorithm has shown an

improvement over Min-Min algorithm. The results are

shown in Table 2 and Figure 1.

Table 2: Makespan(in secs) for SRP and Min-Min

No. of tasks Min-min SRP Improvement

12 74 65 12.1 %

16 70 60 14%

18 64 54 16.5 %

5 Conclusion and Future Work

In this paper we have proposed a scheduling algorithm that

considers the resource requirement of the jobs the Grid

environment. To secure the resource requirement of the

jobs so that it should not be modified by any intruder or any

other task, we are sending this information to the scheduler

in the form of encrypted data. The scheduler on the other

end decrypts the task’s memory requirement and schedules

the tasks accordingly.

International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 482

Figure 1: Makespan of min-min and SRP based scheduling

This newly proposed scheduling algorithm achieve high

throughput in the Grid computing. A simulation system

was developed to test the Secure Requirement Prioritized

scheduling algorithm in a simulated Grid environment. We

used the makespan time of batch jobs as the comparison

criteria. When Compared with Min-Min, the experimental

results show that SRP scheduling algorithm show a

noticeable increase in performance and provide security in

information exchange between jobs and scheduler as

compared to MIN-MIN algorithm. As memory is an

important resource, this research work considers memory

and securing resource requirement as an important factor of

the job. In future, research can be done on the Secure Grid

Scheduling of jobs by considering and securing multiple

requirements of the jobs.

References

[1] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, B. Yao, D. Hensgen and R. F. Freund, “A

comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous

distributed computing systems,” Journal of Parallel

and Distributed Computing, vol. 61, no. 6, pp. 810-837,

2001.

[2] E. Carsten, V. Hamscher, and R. Yahyapour,

“Economic scheduling in grid computing,” in

Proceedings of 8th International Workshop on Job

Scheduling Strategies for Parallel Processing, pp. 128-

152, Springer-Verlag London, UK, 2002.

[3] D. Fernandez-Beca, “Allocating modules to processors

in a distributed System,” IEEE transaction on Software

Engineering, pp. 1427-1436, 1989.

[4] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.

Sevcik, and P. Wong. “Theory and practice in parallel

job scheduling,” in 3
rd

 Workshop on Job Scheduling

Strategies for Parallel Processing, LNCS 1291, pp. 1-

34, 1997.

[5] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A

security architecture for computational grids,” in ACM

Conference on Computer and Communications

Security, pp. 83-92, 1998.

[6] V. Hamscher, U. Schwiegelshohn, A. Streit, and R.

Yahyapour, “Evaluation of job-scheduling strategies

for grid computing,” in Proceedings of First

IEEE/ACM International Workshop on Grid

Computing, LNCS 1971, pp. 191-202, Springer-Verlag,

Berlin, 2000.

[7] Y. Hui, X. Q. Shen, X. Li, and M. H. Mu, “An

Improved ant algorithm for Job Scheduling in Grid

Computing,” in IEEE Fourth International Conference

on Machine Learning and Cybernetics, pp. 18-21,

Guangzhou, Aug. 2005.

[8] R. Kashyap and D. P. Vidyarthi, “Security-aware

scheduling model for computational grid,”

Concurrency and Computation: Practice and

Experience, vol. 24, no. 2, pp. 1377-1391, 2011.

[9] J. Kołodziej and F. Xhafa, “Meeting security and user

behavior requirements in Grid scheduling,” Simulation

Modelling Practice and Theory, vol. 19, no. 1, pp. 213-

226, 2011.

[10] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour,

“On the design and evaluation of job scheduling

algorithms,” in 5th Workshop on Job Scheduling

Strategies for Parallel Processing, LNCS 1659, pp.

17-42, Spriger-Verlag, 1999.

[11] K. Krauter, R. Buyya, and M. Maheswaran, “A

taxonomy and survey of Grid resource management

systems for distributed computing,” Software: Practice.

Experince, vol. 32, pp. 135–164, 2002.

[12] K. Li, “Job scheduling and processor allocation for

grid computing on metacomputers,” Journal of

Parallel and Distributed Computing, pp. 1406-1418,

2005.

[13] L. Li, Y. Yang, L. Li and W. Shi, “Using ant

optimization for super scheduling in computational

grid,” in IEEE proceedings of the 2006 IEEE Asia-

pasific Conference on Services Computing, 2006.

[14] G. Ritchie and J. Levine, “A fast, effective local search

for scheduling independent jobs in heterogeneous

computing environments,” in Proceedings of the 22nd

Workshop of the UK Planning and Scheduling Special

Interest Group, pp. 178-183, 2003.

[15] R. L. Ronald, “The RC5 encryption algorithm,” in

Proceedings of the 1994 Leuven Workshop on Fast

Software Encryption, pp. 86-96, 1995.

[16] J. M. Schopf, “A general architecture for scheduling on

the grid,” Special issue of JPDC on Grid Computing,

Apr. 2002.

[17] H. X. Shan, X. H. Sun, and G. V. Laszewski, “A QoS

guided scheduling algorithm for grid computing,” in

proceddings of Int. Workshop on Grid and

Cooperative Computing, pp.745-758, Sanya, China,

2002.

[18] G. C. Sih and E. A. Lee, “A compile-time scheduling

heuristic for interconnection constrained heterogeneous

International Journal of Network Security, Vol.15, No.6, PP.478-483, Nov. 2013 483

processor architectures,” IEEE Transactions on

Parallel and Distributed Systems, vol. 4, pp. 175-187,

Feb.1993.

[19] S. Song, K. Hwang, and Y. K. Kwok, “Risk-resilient

heuristics and genetic algorithms for security-assured

grid job scheduling,” IEEE Transactions on Computer;

vol. 55, no. 6, pp. 703-719, 2006.

[20] C. C. Wu and R. Y. Sun, “An integrated security-

aware scheduling strategy for large-scale

computational grid,” Future Generation Computer

Systems, vol. 26, no. 2, pp. 198-206, 2010.

[21] T. Xie and Q. Xiao, “SAHA: A Scheduling algorithm

for security-sensitive jobs for data grids,” in

Proceedings of the Sixth IEEE International

Symposium on Cluster Computing and the Grid, pp. 22,

May 2006.

[22] B. Zhou and X. Qu “An efficient scheduling algorithm

for multiprogramming on parallel computing system,”

in Proceedings of the 20
th

 Australasian Computer

Science Conference, pp. 336-345, Sydney, Australia,

Feb. 1997.

Manjot Bhatia: She is a Research Scholar in Department

of Computer Science at University of Delhi, Delhi,India.

She is MPhil, MCA and pursuing her PhD (Computer

Science). She has more than ten years of teaching

experience in the areas of Operating system, Grid

computing, Linux atc. Her research areas include “Grid

Computing and Security” on which papers have been

published in International conferences and journals.

Various seminars, workshops and FDP (AICTE) have been

attended.

Sunil Kumar Muttoo: He is working as an Associate

Professor in Department of Computer Science at University

of Delhi, Delhi, India. He is M.Tech., M.Phil., Ph.D. and

from Delhi University. He has more than seventeen years

of teaching experience at Post Graduate and Doctoral level.

His teaching areas include Computer Security, Computer

Graphics, Steganography etc. His research areas include

Information Hiding and Coding Theory. He has published

more than thirty papers in various National and

International conferences and journals.

