International Journal of Network Security, Vol.15, No.6, PP.465-470, Nov. 2013

465

Design of an Intelligent SHA-1 Based
Cryptographic System: A CPSO Based Approach

Monjur Alam and Sonai Ray

(Corresponding author: Mongur Alam)

Research & Development Division
Cadence Design Systems (I) Pvt. Ltd., Noida 201305, UP, India
(e-mail:{alammonjur, sonai.ray }@gmail.com)

(Received May 9, 2011; revised and accepted July 13, 2011)

Abstract

The paper puts forward the design of an intelligent
SHA-1 based crypto system. For a given 512-bit message
stream the intelligence of the system lies in its power
of predicting the probable-colluders. Along with the
conventional SHA-1 architecture, our scheme employs a
predictor control block which takes the message stream
from the user, and provides the log-list of the equal
length bit-streams that are most likely to produce colli-
sions with the message stream. The predictor controller
uses Canonical Particle Swarm optimization (CPSO)
algorithm. Besides proposing the algorithm itself, the
paper also surveys the performance of the predictor when
employed with different hardware platforms.
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1 Introduction

In recent years, unprecedented advancement in the field
of computing power has seen the decline of DES or triple
DES [7, 12], as cryptographic algorithms. Also, with
the advent of E-commerce, Internet Banking, the concept
of digital signature or message authentication [2, 6] has
been one of the core issues in the mind of a crypto sys-
tem designer. Secured Hash Function algorithm-1(SHA-
1) [1, 8, 13, 15, 20] is one of the most successful and used
hashing function employed till date to provide message
authenticity. Compared to Message Digest Algorithm
(MD) versions tt has been proved to be less vulnerable
towards cryptanalytic attacks.

However despite having satisfied the necessary strong
and weak collision [18] properties, the SHA1 based real
time crypto systems are not free from collisions. So over
the years, the presence of a predictor which can provide
the designer with the list of bit patterns which are ca-

pable of colliding with the message bit streams has been
incumbent in the conventional SHA1 architecture [23]. In
a normal SHA-1 the message stream is 512 bit long. So
employment of a brutal force method would involve 2512
iterations to get the complete list.

In this paper we have explored a hitherto untouched
area of SHA-1 and CPSO synergism. Here our proposed
predictor scheme employs CPSO based algorithm, which
takes fur few steps to give the designer a comprehensive
list of the so-called “probable colluders”.

Our paper is organized as follows. In Section 2 we
discuss the general architecture of SHA1 along with its
properties. Section 3 explores CPSO based algorithm. In
Section 4 we provide the building blocks and the algo-
rithm of our proposed predictor-attached SHA-1 system.
Section 5 contains all the relevant experimental results
and a brief overview of our s/w resources. Section 6 con-
cludes our paper.

2 General Architecture of SHA-1
and its Properties

There are three basic modules or blocks in SHA-1 hashing.
They are given as below:

e Padding Block: The message is initially padded so
that its length is congruent to 448 modulo 512. Then
a 64-bit representation of the length in bits of the
original message is appended to this one, so that the
message stream is ultimately 512 bit long.

e Initialization of MD buffer: In our case we as-
signed the buffers with these initial values. A =
67452301, B = EFCDAB89, C = 98BADCFE,
D =10325476, E = C3D2FE1FO0.
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Figure 1: Basic modules of SHA-1

e Message Processing: The message is further pro-

cessed as below:

CVgr1 =
o()

Y& (z)mod23?
F(CV,,(ABCDE),,

where C'Vy = Initialized Buffer value, L = Number
of blocks in the message, MD = Final hash value,
(ABC’DE)q = o/p of ¢! message block. A single
execution of MD5 involves 20 steps of operations per-
formed on the initial buffers. Each step is of the fol-
lowing form:
A,B,C,D,E = (E+f(taB7OaD)+S5(A)

+Wt + Kt); Aa 530(3)’ Ca Da

where A, B, C, D, E = the five buffer words; t = a
step number (0 < t < 79); s¥ = circular left shift by
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k bits; Wy = A 32 bit word derived from the 512-bit
message; K; = An additive constant.

Figure 1 presents basic building block of SHA-1. The
compression functions used in SHA-1 are of form shown
in Table 1.

2.1 Secure Hash Properties

The Secure Hash Algorithm (SHA) was designed by the
National Institute of Standards and Technology (NIST)
along with the NSA (National Security Agency) to be
used with the Digital Signature Standard. SHA was
modelled closely after the M D family of message digest
algorithms developed by Rivest. SHA takes a 512 bit
input and produces a 160 bit output. SHA also has a
160 bit Initialization Vector (I'V) which can be modified
but there is a standard setting for this vector which is be-
lieved to give good security. SHA was designed to make
the process of digitally signing messages more practical.
In particular the idea is that instead of signing the entire
message, you first apply SH A to the message, get an out-
put of shorter length than the input, and then sign this
shorter value which would take less time than signing the
original larger message.

We denote by SHA(IV, x) the 160 bit output produced
by SHA on a 512 bit user specified input x and the stan-
dard IV. SHA is strongly believed to have several fun-
damental properties which make it an excellent building
block for cryptographic protocols and algorithms:

e SHA behaves like a random function: If some signifi-
cant portion of the input is kept secret, then there is
no computationally feasible mechanism for correlat-
ing the remaining input bits with the output bits of
SHA.

e SHA is collision resistant. That is, it is computation-
ally infeasible to find two distinct 512 bit values, x;
# xg such that SHA(IV,z1) = SHA(IV, x2)

e SHA is one way. That is, given SHA(IV,xz) it is
computationally infeasible to find any x’ such that
SHA(IV,z) = SHA(IV,2').

e SHA acts as a secure Message Authentication Code:
If there is a relatively large (greater than say 128
bits) secret value s, then any adversary who gets
to see pairs (mq,t1),...,(ma,t2) where each t; =
SHA(IV,m;,s) will not be able to come up with a
pair (m/,t') where t' = SHA(IV,m',s) and where
m’ is different from each of the m}s. Moreover, the
adversary will be unsuccesful even if this attack is
mounted adaptively; e.g. the adversary can pick a
message mi, be given the corresp onding tag t; =
SHA(IV,m,s), and from this information can pick
ma, see the corresponding ¢ and so on; it will still be
impossible for the adversary to come up with a valid
(m/,t') pair where m’ is different from the other m;.
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Table 1: The compression functions used in SHA-1

Step Primitive Function (g) g(t,-B,C,D)
0<t<19 F (£,B,C,D) (B C)U(B'@ D)
20 <t <39 F, (t,B,C,D) (BeCa® D)
40 <t <59 F; (t,B,C,D) (BeC)U(B"@D)uU(Ca D)
60 <t <79 Fy (t,B,C,D) (BeCa® D)
These are all well accepted and widely believed prop- tion.
erties of SHA. To this day, no one has been able to violate
even a single one of these hallowed properties. v(t+1) = o) +alt+1) (1)
z(t+1) = =z@)+ov(Et+1), (2)

3 CPSO Based Algo

There are a number of population based evolutionary
computing techniques such as: Evolution strategies [3,
5, 19, 21], genetic algorithms [11, 16]. Particle Swarm
Optimization (PSO) is a versatile population-based op-
timization technique, in many respects similar to evolu-
tionary algorithms. PSO has been shown to perform well
for many static problems [17]. As a new stochastic al-
gorithm with quick rate of convergence, CPSO [9] has
enjoyed paramount popularity off late.

Optimization with particle swarms has two major in-
gredients, the particle dynamics and the particle infor-
mation network. The particle dynamics are derived from
swarm simulations in computer graphics, and the in-
formation sharing component is inspired by social net-
works [4, 22]. These ingredients combine to make PSO
a robust and efficient optimizer of real-valued objective
functions (although PSO has also been successfully ap-
plied to combinatorial and discrete problems too). PSO
is an accepted computational intelligence technique, shar-
ing some qualities with Evolutionary Computation [10].

In PSO, population members (particles) possess a
memory of the best (with respect to an objective func-
tion) location that they have visited in the past, pbest,
and of its fitness. In addition, particles have access to
the best location of any other particle in their own net-
work. These two locations (which will coincide for the
best particle in any network) become attractors in the
search space of the swarm. Each particle will be repeat-
edly drawn back to spatial neighborhoods close to these
two attractors, which themselves will be updated if the
global best and/or particle best is bettered at each par-
ticle update. Several network topologies have been tried,
with the star or fully connected network remaining a pop-
ular choice for unimodal functions. In this network, every
particle will share information with every other particle
in the swarm so that there is a single gbest global best at-
tractor representing the best location found by the entire
swarm.

Particles possess a velocity which influences position
updates according to a simple discretion of particle mo-

where a, v, x and t are acceleration, velocity, position and
time (iteration counter) respectively. Equations (1), (2)
are similar to particle dynamics in swarm simulations, but
PSO particles do not follow a smooth trajectory, instead
moving in jumps, in a motion known as a flight [14] (notice
that the time increment dt is missing from these rules).
The particles experience a linear or spring-like attraction,
weighted by a random number, (particle mass is set to
unity) towards each attractor.

Explicitly, the acceleration of particle ¢ in Equation (1)
is given by:

a; = x[ne.(Py — X;) + ne.(P; — X;)] — (1 = x)vi,

where € are vectors of random numbers drawn from the
uniform distribution U0, 1], > 2 is the spring constant
and F;, P, are particle and global attractors.

4 Our Proposed Algorithm for the
Predictor

In our proposed scheme, the canonical particle swarm op-
timization algorithm (CPSO) is based on the following
mathematical relation:

v = oM ey — xi)eayy — i)
Tip1 = xp v,
where
c1 = (cif —c) * (iter /M) + ¢y
ca = (caf —co)* (iter/M) + co
where, x; = The present output of the controller. =x;

= The 512 bit transient vector that needs to be bitwise
added with the present z;; y4, denotes global maxima and
y; denotes local maxima.

Figure 2 depicts the building block of our proposed
algorithm. Before we embark upon describing our algo-
rithm, we first provide a brief anecdote of our objective
function F. A formal mathematical representation of our
function is given as:
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Table 2: Performance comparison between our architecture and conventional one

CPU Performance in Mb/Sec Maximum CPU Utilization
Normal SHA-1 | Our Scheme | Normal SHA-1 | Our Scheme
ARMT7TDMI 1.92 2.02 82.4% 85.9%
ARM9ITDMI 2.08 2.29 78.7% 83.2%
ST22 2.38 2.53 74.3% 78.6%
Pentium III 2.64 2.78 67.8% 71.5%

Feedback Path
Input Predictor MDS5 Building
512-bit Module
List of Colluders
Hash Values —

Figure 2: Our proposed predictor based block diagram of
SHA-1

where h(z;) = 160 bit hash value generated by MD5 when
input is 512-bit output of the i'* swarm. F(h(x;)) =
Decimal equivalent of the 128 bit binary value obtained
by bit-wise XNOR-ing h(z;) with that of the hash value
of the original message. M is expressed in normalized
scale. Also Y, = Global maxima, or in other words dur-
ing any iteration it is that 512-bit binary stream which
has recorded maximum M value among all the agents in
all the iterations up to that. Y; = Local maxima, or in
other words during any iteration it is that 512-bit binary
stream which has recorded maximum M value among all
the agents in that particular iteration. Now in below we
propose our algorithm for the controller of the predictor
system.

5 Experimental Results

For simulation and experimental purpose we used 'C’
based pseudo-codes for SHA-1 and CPSO algorithms.
The stand alone PC used by us was a Pentium4 ma-
chine, with a speed of 2.4 GHZ and 248 MB of RAM.
First we provide the performance of our novel predictor
based scheme, when implemented in different CPU. We
compare our architecture with that of a normal SHA-1
architecture.

Table 2 tabulates the performance comparison between
our proposed architecture and conventional architecture.
Form the Table 2 we can see that employment of our
scheme decreases the system speed and increases the CPU
utilization to a small extent. But in a trade-off scenario

Algorithm 1 Computing number of colluders I"

Input: 512 bit Message Stream
Output: Log-List of possible colluders
r
1: Begin
2: Create a population of 512 swarms.
3: Initiate each of the swarm content with 512-bit long
random values.
4: Let F be the optimization function and 7 is threshold
(0.95 here) value
5: Let (0 is terminating value (100 here)
for Each iteration do
Apply PSO Algorithm, each of the node content is
subjected to optimization function F
8 if The bit stream for which resultant value M > 7

N

then
9: Note it into log-list
10:  end if
11:  if Number of colluders > 3 then
12: end for
13:  else
14: Continue
15:  end if
16: end for T
17: End

we can overlook them as our scheme can in fact generate
the probable colluders list in a surprisingly small number
of iteration.

We have tried our scheme with 32 randomly selected
512-bit long message streams. And at the same time we
have noted the number of probable colluders it generate
after 2°, 219, 216 jterations and this is presented in Ta-
ble 3.

The messages used were shown in Table 4

we can see the predictor generates a substantial number
of potential colluders in a very small number of iterations.

6 Conclusion

From the experimental results and other relevant data,
it can be vouchsafed that although incorporation of our
predictor controller does hamper the system performance
and CPU utilization a bit but, with only 26 (compared to
2512 in case of brute force analysis) iterations the scheme
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Table 3: Number of probable colluders in different itera-
tions

Message | After 2° | After 210 | After 216
Number | iterations | iterations | iterations
1 5 61 112
2 3 46 101
3 2 39 90
4 2 58 104
5 4 56 129
6 7 43 145
7 9 52 122
8 3 38 137
9 6 49 143
10 4 70 129
11 3 61 99
12 1 42 106
13 5 56 102
14 4 34 113
15 9 45 129
16 1 56 115
17 1 39 149
18 2 46 138
19 3 53 120
20 1 53 101
21 3 41 110
22 4 58 129
23 6 61 103
24 1 72 150
25 2 59 116
26 3 67 92
27 2 53 108
28 1 36 126
29 3 50 111
30 5 47 142
31 2 29 156
32 4 58 123

is able to generate a substantial log list (of about 100-
150 components) of potential colluders. Thereby within
a very small time it gives the user the power to identify
the possible bit-streams which can produce close enough
hash values to generate potential hazards such as authen-
tication failure in feature. Although the work is still in
progress but it can be expected that in near future pre-
dictors which are incorporating stochastic algorithms such
as PSO, CPSO, and TVAC-PSO in their controllers will
create a whole new avenue in the design of cryptographic
hash function.
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Table 4: Used messages as input

Message in Hex
1 04881D0585845DD1F61E2562242070DB
2 26891E0585845FE3F64F2593042070DB
3 59572D0785845DD1F61F2561232070DE
4 23881E068745AD1FT72E2562242070AF
5 07532E3F95845D51F61F2563212DFEGS
6 45982F1542315ED1D52E4572242070DB
7 14991A0585845ED1A31F2462143072AC
8 95111F2563745ED1F41D2562741929AA
9 36541E058584543A A64F 159304390317
10 | F7537E82BD31F2352AD7D2BBEB86D391
11 F4292244432AFF97AB9423A7FC93A039
12 | 34563287DFEAD23451DDEADECB23546A
13 | 345167DEAC23AACDEAEACABC456367FA
14 F61E2562C040B340698D5122455AE905
15 | 4686C62AD9A2E5514ADBCFA9289ATFC5H
16 | 154DFEACBEB768192673EACBBAFCB41
17 | 518723539FEABCDEB9102837BAEACBDD
18 60423D0795545EDCA42F2561290075AD
19 8B43F6AE6B912219FA579418B6FA5561
20 | 2381913456 ADCEAF27612EACD6187TAEC
21 | 9911234165483ADEEACDEBEAC345127E
22 A9E34563F7523451A123EACABAEA4123
23 | 214AECC6FA751ADDAG655B58C4613F02D
24 | A4321738ACCBAEC59572D0785845DD1F
25 BECBADCE2345123881E068745AD1F451
26 | S8FOBCBE324171FEAC21E1CD34289B7FB
27 24982E068745A45632EE42194207052
28 325BECC6FA751433C21E2C534279B712
29 3219834165483432A3219DEA03240335
30 23881E068745AD1F71E2562242070AF
31 23881E068745AD1F71E2562242070AF
32 10291E2687456534251E55761E20EE32

quality of this paper.

References

[1] Advances in Cryptology-Crypto’ 99. Springer-Verlag,
1999.

[2] R. Atkinso. “Security architecture for the internet
protocol,”. tech. rep., FTF Network working group.

[3] T. Back. “Evolutionary algorithms in theory and
practice,”. tech. rep., Newyork Oxford University
Press.

[4] F. V. D. Bergh and A. P. Englebrecht, “A coopera-
tive approach to particle swarm optimization,” IEEFE
Transactions on Evolutionary Computation, pp. 225—
239, 2004.

[5] H. G. Beyer, The Theory of Ewolution Strategies.
Springer-Verlag, 2001.

[6] A. Bosselaers, R. Govaerts, and J. Vandewalle, “Fast
hashing on the pentium,” in Proceedings of the 16th



International Journal of Network Security, Vol.15, No.6, PP.465-470, Nov. 2013

Annual International Cryptology Conference on Ad-
vances in Cryptology, pp. 298-312, 1996.

D. Coppersmith, “The data encryption standard
(des) and its strength against attack,” IBM Journal
of Research and Development, vol. 38, pp. 243-250,
May 1994.

P. A. DesAutels.
tech. rep., 1997.

R. C. Eberhart and J. Kennedy, “A new optimizer us-
ing particle swarm theory,” in 6th Symposium of Mi-
cro Machine and Human Science, pp. 39-43, Nagoya,
Japan, 1995.

A. Engelbrecht, Computational Intelligence.
Wiley and Sons, 2002.

D. Goldberg, Genetic Algorithms in Search, Opti-
mazation and Machine Learnin. Wesley, 1989.

H. Heys and C. Adams, Selected Areas in Cryptogra-
phy. Springer Publications, 2000.

B. Lamacchia, S. Lange, M. Lyons, R. Martin, and
K. T. Price, .Net Framework Security. Addison-
Wesley, 2002.

B. Mandelbrot. “The fractal geometry of nature,”.
tech. rep., W. H. Freeman and Company, 1983.

A. Menezes. “Handbook on applied cryptography,”.
tech. rep.

Z. Michalewicz, Genetic Algorithms: Data Structure,
Evolution Programs. Springer-Verlag, 1994.

K .E. Parsopoulos and M. N. Vrahatis, “Recent ap-
proaches to global optimization problems through
particle swarm optimization,” Natural Computing,
pp- 235-306, 2002.

B. Preneel, “The state of cryptographic hash func-
tions,” in Lectures on Data Security, vol. LNCS 1561,
pp- 158-182. Springer-Verlag, 1999.

I. Rechenberg, Evolution Strategy in Compuitational
Intelligence: Imitating Life. IEEE Press, 1995.

M. Robshaw. “Md2, md4, md5, sha and other hash
functions,”. Tech. Rep. TR-101, RSA Laboratories
technical report, 1995.

H. Schwefel, Numerical optimization of Computer
models. Wiley, 1981.

Y. Shi and A. Khrohling, “Co-evolutionary particle
swarm optimization to solve min-max problems,” in
Congress on Evolutionary Computation, pp. 1682—
1687, 2002.

J. Touch. “Report on mdb performance,”. tech. rep.,
1994.

“Shal: Secure hash algorithm,”.

John

470

Monjur Alam is presently working as an R & D
engineer at Cadence Design Systems (I) Pvt. Ltd.
from March 2008. He obtained his B.Tech from the
department of Information Technology, Haldia Institute
of Technology, Haldia, West Bengal, India in 2005.
Subsequently he obtained his M.S. Degree in 2008 from
the department of Computer Science and Engg, Indian
Institute of Technology Kharagpur. He has published
more than 12 technical papers in International Journals
and Conferences and has served as Reviewers of several
International Conferences and Journals. Monjur was
awarded Instant Recognation Award several times from
Cadence Design Systems. His research interests include
cryptography and network security, artificial intelligent,
foundation of computer science, etc.

Sonai Ray received his B.Tech degree in Computer
Science and Engineering from Jadavpur University, Ja-
davpur, West Bengal, India in 2005. He has been work-
ing in several EDA industries since then. His research
interests include EDA tools development, cryptography
and network security, artificial intelligent, etc. He has
authored about 8 technical papers in International Con-
ferences.



