
LETTER International Journal of Network Security, Vol.15, No.4, PP.313-316, July 2013 313

Attack Against Ibrahim’s Distributed Key
Generation for RSA

B lażej Brzeźniak, Lucjan Hanzlik, Przemys law Kubiak, and Miros law Kuty lowski
(Corresponding author: Lucjan Hanzlik)

Faculty of Fundamental Problems of Technology, Wroc law University of Technology

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

(Email: lucjan.hanzlik@pwr.wroc.pl)

(Received June 9, 2011; revised and accepted Nov. 15, 2011)

Abstract

Distributed RSA key generation protocols aim to gener-
ate RSA keys in such a way that no single participant
of the protocol can learn factorization of the RSA modu-
lus. In this note we show that two recent protocols of this
kind (Journal of Network Security, Vol. 7, No. 1, 2008, pp.
106-113 and Vol. 8, No. 2, 2009, pp. 139-150) fail their se-
curity target. We present an attack that can be launched
by any protocol participant after terminating distributed
key generation process.

Keywords: Attack, distributed RSA key generation, great-
est common divisor

1 Introduction

Many papers (see for example [1, 2, 3, 4, 6, 7, 11, 14]) are
devoted to distributed generation of RSA numbers. Their
goal is to generate RSA keys (e,N), d (i.e., N = pq for
some primes p, q, and e, d chosen to satisfy congruence
e·d ≡ 1 mod lcm(p−1, q−1)) in such a way that no single
participant learns the private key d. One motivation for
this kind of protocols is to generate RSA numbers in a
situation that a user cannot fully trust any single hard-
ware/software unit. Through distributing the process we
make sure that leaking the private key requires at least
some collusion between different units.

For e · d < N2 knowledge of the private key is known
to be polynomially equivalent to knowledge of the fac-
torization [5]. However, there is an efficient probabilistic
algorithm that factors N given any integers e and d such
that e · d ≡ 1 mod lcm(p− 1, q − 1), i.e., the probabilistic
algorithm does not impose constraints on the product e ·d
(for algorithm’s description see e.g. [12, Sect. IV.2]).

Consequently, the output of distributed RSA key gen-
eration algorithms is usually a public key (e,N) and a
set of private key components d1, . . . , dn, where different
key components di, i = 1, . . . , n, are stored privately on n
independent devices, and all of them (or some subset of

them in case of a threshold scheme) must be used cooper-
atively to perform the RSA signature/decryption opera-
tion. However, disclosure of all but one component di (or
a number of components that is lower than the threshold)
must not lead to compromise of the private RSA key.

From the point of view of practical applications a pro-
tocol of distributed RSA key generation must be effi-
cient regarding in particular its communication complex-
ity, storage demands and computational complexity. This
is a challenging task, since already RSA key generation
by a single participant leads to nontrivial computational
complexity (cf. efforts to accelerate the process on con-
strained devices [10, 13]).

This note concerns RSA key generation protocols pro-
posed in papers [8, 9]. We present a simple attack that
fully breaks these schemes. Namely, we show that after
executing the key generation protocol any participant can
factorize the modulus.

2 The Flaws

2.1 Protocol [8]

The protocol from [8] is a two-party protocol, it consists
of four stages. In the first stage (see Section 2.3 for some
details) numbers of the form (a1 + b1) are checked for
primality inside moduli of the form N1 = (a1 + b1)papb,
where a1, pa are chosen by Alice, b1, pb are chosen by Bob,
and pa, pb are primes freshly chosen for each new candi-
date (a1 + b1). Hence if a1 + b1 is prime, then N1 is a
three-prime modulus – to check if N1 is really a three-
prime the protocol executes distributed Fermat test. In
the second stage a similar work is done and moduli of
the form N2 = (a2 + b2)qaqb are examined. Next, dur-
ing the third stage (see Section 2.3 for some details) for
moduli N1, N2 that successfully completed Fermat test
the RSA modulus N = (a1 + b1)(a2 + b2) is calculated
in a distributed way. The fourth stage is composed of
computation of participant’s private shares to a private
exponent.

LETTER International Journal of Network Security, Vol.15, No.4, PP.313-316, July 2013 314

Let us observe that none of the “blinding” primes pa,
pb, qa, qb is incorporated into modulus N . We have

gcd(N1, N) = gcd((a1 + b1)papb, (a1 + b1)(a2 + b2)),

hence a1 + b1| gcd(N1, N). For large random numbers we
expect that gcd(papb, a2+b2) = 1, thus gcd(N1, N) = a1+
b1. As N1 and N are known to each protocol participant,
they can perform this computation and factorize N .

2.2 Protocol [9]

Paper [9] is an extension of [8] to the (t, n) threshold mul-
tiparty key generation. That is, the number of partici-
pants is n > 3t, t ≥ 1, and the protocol is claimed to be
t-private. This means that an adversary that successfully
eavesdrops no more than t participants must not be able
to factor N .

This protocol also proceeds in stages. In the first stage
moduli of the form N1 = p1(Πt+1

i=1qi) are examined, where
for each tested N1 value p1 is a distributively generated
candidate for a factor of N , qi is a prime number cho-
sen by the ith participant. The numbers qi are freshly
generated for each successive candidate p1. It is assumed
in [9] that only participants from a subset of cardinality
t + 1 generate primes in the product Πt+1

i=1qi. The first
stage terminates, if the test on N1 indicates that the cur-
rent candidate p1 is prime. The participants do not know
complete factorization of N1 (in particular they do not
know p1), although they know each tested N1. Note that
each participant knows at most one qi – a factor of N1,
but as long as no more than t participants collude, they
cannot extract all factors of N1. The second stage is anal-
ogous to the first one: moduli N2 are examined, and the
final N2 contains a prime factor p2. Again, no participant
knows complete factorization of N2 (in particular, no par-
ticipant knows p2), although each of them knows N2. In
the next stage RSA modulus N = p1p2 is calculated in a
distributed way.

It is easy to see that the protocol from [9] inherits the
flaw from its predecessor. Namely, in practice it suffices to
compute gcd(N1, N) to find a nontrivial factor of a large
RSA number N .

2.3 A Toy Example of the Attack on Pro-
tocol [8]

According to Subsect. 2.1 the protocol [8] has two partic-
ipants, say Alice and Bob. Below we present Alice’s view
to an exemplary execution of protocol’s components rel-
evant for the attack – we indicate data known to Alice.
Subsequently we show how Alice can perform the attack.

generating N1 the procedure applies mul-to-sum rou-
tine (see Appendix):

1) Alice chooses at random a number a1 = 25 and
a prime number pa = 17. Bob chooses b1 and
pb in a similar way.

2) Alice computes locally A = a1pa = 425. Bob
computes a similar value B = b1pb.

3) Alice and Bob both perform a mul-to-sum rou-
tine to share Apb in an additive way xa + xb,
where xa = 543 is held by Alice and xb by Bob.

4) Alice and Bob both perform a mul-to-sum rou-
tine to share Bpa = ya + yb, where ya = 378 is
held by Alice and yb is held by Bob.

5) Alice sends xa + ya = 921 to Bob and receives
xb + yb = 14362 from Bob.

6) Alice computes N1 = xa +xb +ya +yb = 15283.
This means that 15283 = (a1 + b1)papb = (25 +
b1) · 17 · pb.

testing N1: the idea is to apply Fermat test: if a1 +b1 is
a prime, then φ(N1) = (a1 + b1 − 1)(pa − 1)(pb −
1). So we may choose g at random and test if
g(a1+b1−1)(pa−1)(pb−1) equals 1:

1) Alice and Bob agree on an g ∈ Z∗
N1

, suppose
that they agreed on g = 14.

2) Alice sends Ga = g(pa−1)(a1−1) mod N1 =
11102 to Bob and receives Gb = g(pb−1)b1

mod N1 = 13718 from Bob.

3) Alice sends G
′

b = Gpa−1
b mod N1 = 12819 to

Bob and receives G
′

a = Gpb−1
a mod N1 = 4931

from Bob.

4) Alice and Bob compute G = G
′

aG
′

b mod N1

and they check if G = 1. Since indeed G =
1 mod N1 then, according to [8, Subsect. 8.1],
both parties assume that a1 + b1 is prime.

choosing and testing N2: Alice chooses at random a
new number a2 = 2 and a prime number qa = 31.
Bob chooses new values b2 and qb. Together they
compute N2 = 10013. Then Alice and Bob perform
similar steps as steps 1-4 of the test procedure.

computing N : step by step Alice and Bob remove the
blinding factors pa, pb, qa, qb from N1N2:

1) Alice sends Na = (N1N2)/(paqa) to Bob.

2) Bob sends Nb = (N1N2)/(pbqb) = 310403 to
Alice.

3) Alice computes N = Nb/(paqa) = (a1+b1)(a2+
b2) = 589.

After those steps Alice has enough data to factorize
N : she computes gcd(N1, N) = gcd(15283, 589) = 31 and
gcd(N2, N) = gcd(10013, 589) = 19.

3 Final Comments

The algorithms from [8, 9] are based on the principle of
separate generation of factors of N = p1p2. In order to
prevent the participants from learning the factors multi-
plicative blinding is applied: in this way the players see

LETTER International Journal of Network Security, Vol.15, No.4, PP.313-316, July 2013 315

N1 and N2, but not the factors p1 and p2 of, respectively,
N1 and N2. Unfortunately, multiplicative blinding MUST
fail, as existence of any protocol value that contains the
factor p1 but not p2 (or vice versa) leads immediately to
factorization of N by computing gcd(N,N1). Finally, we
are afraid that there is no way to avoid the presented
flaws, as long as these protocols are based on separate
primality testing of the factors of N .

Acknowledgments

This work has been supported by Polish Ministry of Sci-
ence and Higher Education, project O R00 0015 07 and by
Foundation for Polish Science, Programme “MISTRZ”.

References

[1] J. Algesheimer, J. Camenisch, and V. Shoup, “Effi-
cient computation modulo a shared secret with appli-
cation to the generation of shared safe-prime prod-
ucts,” in Crypto (M. Yung, ed.), vol. LNCS 2442,
pp. 417–432. Spriger-Verlag, 2002.

[2] S. R. Blackburn, S. Blake-Wilson, M. Burmester, and
S. D. Galbraith, “Weaknesses in shared RSA key gen-
eration protocols,” in IMA International Conference,
vol. LNCS 1746, pp. 300–306. Spriger-Verlag, 1999.

[3] D. Boneh and M. K. Franklin, “Efficient generation
of shared RSA keys (extended abstract),” in Crypto
(B. S. K. Jr., ed.), vol. LNCS 1294, pp. 425–439.
Spriger-Verlag, 1997.

[4] C. Cocks, “Split knowledge generation of RSA
parameters,” in IMA International Conference
(M. Darnell, ed.), vol. LNCS 1355, pp. 89–95.
Spriger-Verlag, 1997.

[5] J. S. Coron and A. May, “Deterministic polynomial-
time equivalence of computing the RSA secret key
and factoring,” Journal of Cryptology, vol. 20,
pp. 39–50, 2007.

[6] I. Damg̊ard and G. L. Mikkelsen, “Efficient, ro-
bust and constant-round distributed RSA key gen-
eration,” in TCC (D. Micciancio, ed.), vol. LNCS
5978, pp. 183–200. Spriger-Verlag, 2010.

[7] Y. Frankel, P. D. MacKenzie, and M. Yung, “Robust
efficient distributed RSA-key generation,” in PODC,
p. 320, 1998.

[8] M. H. Ibrahim, “Eliminating quadratic slowdown
in two-prime RSA function sharing,” International
Journal of Network Security, vol. 7, pp. 106–113,
2008.

[9] M. H. Ibrahim, “Efficient dealer-less threshold shar-
ing of standard RSA,” International Journal of Net-
work Security, vol. 8, pp. 139–150, 2009.

[10] M. Joye and P. Paillier, “Fast generation of prime
numbers on portable devices: An update,” in CHES
(L. Goubin and M. Matsui, eds.), vol. LNCS 4249,
pp. 160–173. Spriger-Verlag, 2006.

[11] M. Joye and R. Pinch, “Cheating in split-knowledge
RSA parameter generation,” in Workshop on Coding
and Cryptography (D. Augot and C. Carlet, eds.),
pp. 157–163, 1999.

[12] N. Koblitz, A course in number theory and cryptog-
raphy, vol. 2nd edition. Springer, 1994.

[13] C. Lu, A. L. M. dos Santos, and F. R. Pimentel, “Im-
plementation of fast RSA key generation on smart
cards,” in Proceedings of the 2002 ACM Symposium
on Applied Computing, pp. 214–220, 2002.

[14] E. Ong and J. Kubiatowicz, “Optimizing robustness
while generating shared secret safe primes,” in Pub-
lic Key Cryptography (S. Vaudenay, ed.), vol. LNCS
3386, pp. 120–137. Spriger-Verlag, 2005.

Appendix-The Mult-to-Sum Sub-
routine from [8]

Let R be a publicly known ring and let ρ = log |R|. Let
ℓ ≤ ρ. Alice holds an ℓ-bit secret value a ∈ R and Bob
holds an ℓ-bit secret value b ∈ R. Alice and Bob want to
additively share ab with no information revealed about a
or b. The protocol is as follows:

• Bob selects uniformly at random ℓ ring elements
c0, . . . , cℓ−1 and defines ℓ pairs of ring elements

(t
(0)
0 , t

(1)
0), . . . , (t

(0)
ℓ−1, t

(1)
ℓ−1). Namely, he sets t

(0)
i = ci

and t
(1)
i = 2ib + ci for i = 0, . . . , ℓ− 1.

• Let the binary representation of a be (aℓ−1 . . . a0)2,
Alice and Bob perform ℓ invocations of OT1

2 (1-out-
of-2 Oblivious Transfer protocol). In the i-th invoca-

tion Alice chooses t
(ai)
i from the pair (t

(0)
i , t

(1)
i).

• Alice sets x =
∑ℓ−1

i=0 t
(ai)
i while Bob sets y =

−
∑ℓ−1

i=0 ci.

As a result x + y = ab over R.

B lażej Brzeźniak received engineer degree in computer
science in 2011. He is currently studying at Wroc law
University of Technology. He is interested in cryptogra-
phy, mathematics and astronomy.

Lucjan Hanzlik received master degree in computer
science from Wroc law University of Technology in 2011.
Currently, he is an Ph.D. student at Wroc law University
of Technology. His main interest is Cryptography. More
specifically, working on the design of efficient and secure
cryptographic algorithms.

Przemys law Kubiak received master degree in math-
ematics in 1997 and Phd in 2001. He is an assistant
professor for computer science at Wroc law University
of Technology. His research interests are in public key
cryptography.

LETTER International Journal of Network Security, Vol.15, No.4, PP.313-316, July 2013 316

Miros law Kuty lowski is a full professor for computer
science at Wroc law University of Technology. He received
master degree in mathematics in 1980, PhD in 1986, Ha-
bilitation in 1992, from University of Wroc law. In 1999
he got professor title. Humboldt Fellow in TH Darmstadt
in 1987-88. He was affiliated with Wroc law University,
University of Paderborn, Adam Mickiewicz University in
Poznań. He is involved in e-government issues, serving
as adviser of different public institutions. In 2009 he re-
ceived prize “Mistrz” from Foundation for Polish Science
in technical sciences. Miros law Kuty lowski is a member
of Reasearch Council of Institute of Computer Science,
Polish Academy of Sciences.

