
International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 298

Rain: Reversible Addition with Increased
Nonlinearity

Jaydeb Bhaumik1, Debdeep Mukhopadhyay2, and Dipanwita Roy Chowdhury2

(Corresponding author: Jaydeb Bhaumik)

Dept. of ECE, Haldia Institute of Technology, Haldia, West Bengal, India, Pin-7216571

Dept. of CSE, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India, Pin-7213022

(Email: bhaumik.jayeb@gmail.com)

(Received Oct. 12, 2010; revised and accepted Mar. 28, 2011)

Abstract

This paper proposes a reversible, balanced and nonlin-
ear vectorial Boolean function called ‘Rain’. Traditional
integer addition modulo 2n has several features like re-
versibility, balancedness and nonlinearity. However, the
bias for the best linear approximation of the output bits
and their linear combinations is quite high. This leads to
several attacks on stream cipher like NLS, which employs
addition modulo 2n. In this paper, it has been proved
mathematically that the bias of the each output bit and
their non-zero linear combinations of the proposed vec-
torial Boolean function decreases exponentially with the
bit position. Also as a case study, it has been shown that
attacks against stream cipher NLS is prevented through
the incorporation of Rain.

Keywords: Boolean function, NLS and crossword puzzle
attack, nonlinearity, reversibility

1 Introduction

Boolean functions play an important role in the design
of symmetric key cryptographic algorithms. In case of
block ciphers like AES and DES, nonlinearity is provided
by the substitution boxes (S-box) solely. S-boxes are
the most important and complex part of many block ci-
phers. Implementation of S-box in software or hardware
requires either significant amount of memory or silicon
area. Therefore, S-boxes make the block ciphers unsuit-
able for light weight cryptography [6]. Also, recent find-
ings show that look up table based implementation of
S-boxes are prone to cache-timing and other side channel
attacks [4, 5]. Thus it may be prudent at this point to look
into Boolean circuits which provide high nonlinearity.

Addition modulo 2n has wide range of applications in
the design of many cryptographic primitives like stream
cipher, block cipher and hash function, because it is non-
linear, reversible and balanced function. Stream ciphers
like HC-128, Rabbit, Salsa20, NLS and Helix employ ad-

dition modulo 2n for key stream generation. In case of
block ciphers like IDEA, MARS, FEAL, SEA addition
mod 2n is used for round key mixing operation. Secure
hash algorithms SHA-0 and SHA-1 also employ addition
modulo 2n to compute hash value. Although addition
modulo 2n has wide range of applications but bias of the
best linear approximation of the output bit is quite high.
The bias of the best linear approximation for the output
bit of addition mod 2n has been studied in [9, 14]

Cho and Pieprzyk presented a linear distinguishing
attack called Crossword Puzzle Attack (CPA)[2] on the
stream cipher NLS [10], which has been submitted to eS-
TREAM project. In [8], MacDoland and Hawkes have
proposed an improved version of CPA on NLS by exploit-
ing the internal dependencies between NFSR and NLF.
Linear approximations based on adjacent bits are used
to build a distinguisher for the case Konst = 0 with bias
2−19.7 [8]. CPA [2] has been claimed to be prevented in [1]
using a vectorial Boolean function Slash instead of addi-
tion modulo 2n in the nonlinear filter (NLF) of NLS. The
function Slash [1] is nonlinear, reversible and has a strong
resistance against linear cryptanalysis. Also it has been
shown that hardware implementation cost and time delay
of Slash is less compared to additionmod 2n. However like
modular addition, Slash has the demerit that the bias [7]
of the XOR of consecutive output bit positions is held con-
stant at 1

4 . It is shown that NLS can still be attacked by
the CPA in spite of Slash, because of the property stated
above which makes Slash virtually equivalent to modular
addition. This motivates the study of highly nonlinear,
reversible and balanced vectorial Boolean function.

In this paper, a new vectorial Boolean function called
‘Rain’ (ReversibleAddition with IncreasedNonlinearity)
has been proposed which is nonlinear, balanced and also
reversible. The nonlinearity of each component function
has been computed using basic definition of nonlinearity
[13]. It provides better resistance against linear crypt-
analysis compared to addition and Slash. It has been
shown that the bias of the XOR of consecutive bits po-
sition in the output also decreases exponentially with bit

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 299

position. Such a strong reversible function may be em-
ployed to plague cryptanalysis like CPA against NLS ci-
pher on dint of the property that XOR of successive terms
have a low bias compared to either modulo addition in the
original NLS [10] proposal or Slash function suggested in
the protection scheme [1].

The rest of the paper is organized as follows. Sec-
tion 2 discusses some preliminaries required for this work.
The function Rain is elaborated in section 3. Performance
of the proposed function against linear cryptanalysis has
been discussed in section 4. In section 5, hardware and
time complexity of the scheme is given. Section 6 intro-
duces one application of the proposed Boolean function
and section 7 concludes the work.

2 Preliminaries

Some basic definitions and notations are discussed in this
section.

Definition 1. A function y = ξ(x) that maps a Boolean
vector to another Boolean vector is called a vectorial
Boolean function, where y is an m-bit output Boolean vec-
tor and x is an n-bit input Boolean vector.

Definition 2. A Boolean function ξ(x) : Zn
2 → Z2 is a

mapping from n-bit inputs to one bit output.

Definition 3. A Boolean function ξ(x), where x is an n-
bit input Boolean vector, can be uniquely written as a sum
(XOR) of products (AND). This is known as Algebraic
Normal Form (ANF).
ξ(x1, x2, ..., xn) = p0 ⊕ p1x1 ⊕ p2x2 ⊕ pnxn ⊕ p12x1x2 ⊕
...⊕ p12...nx1x2...xn, where p0, p1, ..., p12...n ∈ {0, 1}.

Definition 4. The Hamming weight of a binary string
x is the number of 1’s in the string and it is denoted by
wt(x).

Definition 5. The Hamming distance between two binary
strings (say x and y) of equal length is measured by wt(x⊕
y).

Definition 6. An n variables Boolean function ξ(x1, x2,
..., xn) is said to be an affine function if the ANF of ξ is
of the form ξ(x1, x2, ..., xn) = p0⊕p1x1⊕p2x2⊕...⊕pnxn,
where p0, p1, ...pn ∈ {1, 0}. If p0 is 0 then the function is
said to be linear.

Definition 7. Nonlinearity of an n variable Boolean
function ξ is defined as the minimum Hamming distance
from the set of all affine function of n variables.

Definition 8. The bias for best linear approximation [13]
is defined as pi− 1

2 , where pi is the probability of best linear
approximation.

Definition 9. If the biases of k of independent random
variables Xi1 , . . . , Xik are ϵi1 , . . ., ϵik respectively and
ϵi1,i2,...ik denotes the bias of the random variable Xi1 ⊕
...⊕Xik . Then ϵi1,i2,...ik = 2k−1

∏k
j=1 ϵij [13].

Definition 10. A Boolean function ξ(x) of n variables,
where n is even, is called a Bent function if it has a non-
linearity value 2n−1 − 2n/2−1 [12]. This is the highest
possible nonlinearity for an n variable Boolean function if
n is even.

Theorem 1. The nonlinearity of Boolean function
f(xn, ..., x1) ⊕ g(ym, ..., y1) is 2nnl(g) + 2mnl(f) −
2nl(f)nl(g), where f(xn, ..., x1) and g(ym, ..., y1) are the
two boolean functions of n and m variables respectively,
{xn, ..., x1}∩{ym, ..., y1} = ϕ and nl(f), nl(g) denote the
nonlinearity of f and g respectively [12].

3 Proposed Nonlinear Function

In this section, a new nonlinear, reversible and balanced
vectorial Boolean function denoted as ‘Rain’ and its in-
verse function denoted as ‘I-Rain’ are introduced.

Definition 11. Assume X = (xn−1 xn−2 . . . x0) and
K = (kn−1 kn−2 . . . k0) are two n−bit inputs and
Y = (yn−1 yn−2 . . . y0) is the n−bit output after mix-
ing X with K, where x0, k0 and y0 denote the LSBs
and xn−1, kn−1 and yn−1 denote the MSBs. The func-
tion Rain is denoted by the operator † and is defined as
Y = (X †K) = F(X,K), where

yi = xi ⊕ ki ⊕ ci−1; ci =
i⊕

j=0

xj · ki−j (1)

where ⊕ is modulo-2 sum, · represents AND operation,
0 ≤ i ≤ n−1, c−1 = 0 and ci is the carry term propagating
from i-th bit position to (i + 1)-th bit position. The end
carry cn−1 is neglected.

It is noted that ci−1 is a Boolean function of 2i vari-
ables and it is in the form of bent function and obviously
it is not balanced. Whereas, yi can be considered as a
combination of two functions: one linear function xi ⊕ ki
and a bent function ci−1. Therefore, yi is balanced.

Definition 12. Inverse function takes two n-bit inputs
Y = (yn−1 yn−2 . . . y0) and K = (kn−1 kn−2 . . . k0) and
produces an n−bit output X = (xn−1 xn−2 . . . x0). In-
verse function I-Rain is defined as X = F−1(Y,K), where

xi = yi ⊕ ki ⊕ di−1; di =

i⊕
j=0

xj · ki−j (2)

where ⊕ is modulo-2 sum, · represents AND operation,
0 ≤ i ≤ n − 1, d−1 = 0 and di is the carry term propa-
gating from i-th bit position to (i+1)-th bit position. The
end carry dn−1 is neglected.

3.1 Analogy Between Rain and Addition

Following four properties show the similarity of Rain with
integer addition.
Property 1: F(A,A) ̸= 0 if any ak ̸= 0, where 0 ≤ k ≤
⌊n−2

2 ⌋; F−1(A,A) = 0.
Analogy: A+A = 2A ̸= 0 ∀ A ̸= 0; A−A = 0.

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 300

Proof. Assume Y = F(A,A), where A and Y are two n-bit
variables. Then from the definition of F we can write

yi = ai ⊕ ai ⊕
i−1⊕
j=0

ajai−1−j

=
i−1⊕
j=0

ajai−1−j .

It is observed that y2k+1 = ak and y2k = 0, where 0 ≤ k ≤
⌊n−2

2 ⌋ i.e. even output bits are zero. Hence F(A,A) ̸= 0
if any ak ̸= 0, where 0 ≤ k ≤ ⌊n−2

2 ⌋
Assume X = F−1(A,A), where A and X are two n-bit
variables. Then from the definition of F−1, we can write

xi = ai ⊕ ai ⊕
i−1⊕
j=0

xjai−1−j

=
i−1⊕
j=0

xjai−1−j .

From definition of F−1, x0 = a0 ⊕ a0 = 0. Since x0 = 0
therefore x1 = 0. Now x2 = 0, because x1 = 0 and x0 = 0.
Similarly, it can be shown that output bit xi will be zero
if all xjs are zero, where 0 ≤ j ≤ (i − 1). Therefore,
F−1(A,A) = 0.

Property 2: F(A, 0) = A ; F−1(A, 0) = A.
Analogy: A+ 0 = A; A− 0 = A.

Proof. Let Y = F(A, 0) and X = F−1(A, 0), where A, X
and Y are three n-bit variables and A ̸= 0. From the
definition of F, it is noted that yi = ai, where 0 ≤ i ≤
n − 1. Therefore, F(A, 0) = A. From the definition of
F−1, it is observed that xi = ai, for 0 ≤ i ≤ n− 1. Hence
F−1(A, 0) = A.

Property 3: F−1 is the inverse of F i.e.
F−1(F(A,K),K) = F(F−1(A,K),K) = A.
Analogy: (A+K)−K = (A−K) +K = A.

Proof. Assume R = F (A,K) and S =
F−1(F (A,K),K) = F−1(R,K), where A, K, R and
S are four n-bit variables. From the definition of F, we
can write

ri = ai ⊕ ki ⊕
i−1⊕
j=0

aj · ki−1−j .

Since S = F−1(R,K), therefore si can be written as

si = ri ⊕ ki ⊕
i−1⊕
j=0

sj · ki−1−j

= ai ⊕
i−1⊕
j=0

(aj ⊕ sj) · ki−1−j .

Let ui =
⊕i−1

j=0(aj ⊕ sj) · ki−1−j , hence si = ri ⊕ ui,
where 0 ≤ i ≤ n − 1. It is noted that si will be equal

to ai if ui = 0 i.e. for kl ̸= 0 if am = sm, where 0 ≤
l,m ≤ i − 1. Now from the definition of F and F−1,
we can write r0 = a0 ⊕ k0 or a0 = r0 ⊕ k0 = s0 and
r1 = a1 ⊕ k1 ⊕ a0k0 or a1 = r1 ⊕ k1 ⊕ a0k0 = s1. Since
a0 = s0 and a1 = s1, therefore u2 = 0 i.e. s2 = a2. Now
s3 = a3 because s2 = a2, s1 = a1 and s0 = a0. Similarly,
it can be shown that si = ai for 0 ≤ i ≤ n−1. Therefore,
F−1(F(A,K),K) = A i.e. F−1 is the inverse function of
F.

Let P = F−1(A,K) and Q = F(F−1(A,K),K) =
F(P,K), where A, K, P and Q are four n-bit variables.
From the definition of F−1, we can write

pi = ai ⊕ ki ⊕
i−1⊕
j=0

pj · ki−1−j .

Since Q = F(P,K), so from the definition of F we can
write

qi = pi ⊕ ki ⊕
i−1⊕
j=0

pj · ki−1−j or

qi = ai ⊕ ki ⊕ ki ⊕
i−1⊕
j=0

pj · ki−1−j ⊕
i−1⊕
j=0

pj · ki−1−j

= ai.

Therefore, qi = ai for all 0 ≤ i ≤ n − 1 i.e. F−1

is the inverse function of F. Hence it is proved that
F−1(F(A,K),K) = F(F−1(A,K),K) = A.

Property 4: F satisfies but F−1 does not satisfy commu-
tative law
i.e. F(X,K) = F(K,X); F−1(Y,K) ̸= F−1(K,Y).
Analogy: X +K = K +X; X −K ̸= K −X.

Proof. Assume P = F(X,K) and Q = F(K,X), where X,
K, P and Q are four n-bit variables. From the definition
of F, pi can be expressed as

pi = xi ⊕ ki ⊕
i−1⊕
j=0

xj · ki−1−j

= ki ⊕ xi ⊕
i−1⊕
j=0

kj · xi−1−j = qi.

Because
⊕i−1

j=0 xj · ki−1−j =
⊕i−1

j=0 kj · xi−1−j . Therefore,
F satisfies commutative law.

Let R = F−1(Y,K) and S = F−1(K,Y), where Y , K,
R and S are four n-bit variables. From the definition of
F−1, it can be shown that

ri = yi ⊕ ki ⊕
i−1⊕
j=0

rj · ki−1−j

̸= ki ⊕ yi ⊕
i−1⊕
j=0

rj · yi−1−j = si.

Hence, F−1 does not satisfy commutative law.

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 301

4 Performance of Rain Against
Linear Cryptanalysis

In this section, performance of the proposed function
against linear cryptanalysis(LC) is discussed. The ap-
proach in LC is to determine linear expressions of the
form which have a low or high probability of occurrence.
Bias of best linear approximation for the output bit yi and
their linear combinations are computed in this section.

Theorem 2. The bias of best linear approximation for yi
of Rain is 2−(i+1), where 0 ≤ i < n.

Proof. From the definition of F, it is evident that the out-
put yi = xi ⊕ ki ⊕ ci−1, where ci−1 is the carry input into
the i-th bit position and it is the only nonlinear term in
yi. From the definition of F, ci−1 can be expressed as

ci−1 = x0ki−1 ⊕ x1ki−2 ⊕ . . . xi−1k0. (3)

Expression shows that ci−1 is a function of 2i variables
and it is in the form of bent function [11]. Since all the
xis and kis are independent. So nonlinearity in ci−1 is

Ni = 22i−1 − 2i−1. (4)

It is noted that yi is a combination of two functions: one
linear function (xi ⊕ ki) of two variables and a bent func-
tion ci−1 of 2i variables and of nonlinearity Ni. There-
fore, nonlinearity of yi is 22.Ni = 22(22i−1 − 2i−1) =
22i+1 − 2i+1[using Theorem 1]. Since yi is a function
of 2i + 2 independent variables, hence the number of
matches in the best linear approximation of yi is Nm =
22i+2 − 22i+1 + 2i+1. Hence, the probability of matches
pi =

Nm

22i+2 = 1− 1
2 + 1

2i+1 = 1
2 + 1

2i+1 and the bias of best
linear approximation is 1

2i+1 . It is noted that the bias
of best linear approximation of yi decreases exponentially
with the bit position i. A comparison of linear probabil-
ity bias of addition, Slash and Rain for the first six output
bits is shown in Table 1.

Table 1: Comparison of bias for best linear approximation
of yi

Bias for best
linear approximation

Output bit Addition Slash Rain
y0 0.50 0.50 0.50
y1 0.25 0.25 0.25
y2 0.25 0.125 0.125
y3 0.25 0.0625 0.0625
y4 0.25 0.0313 0.0313
y5 0.25 0.0156 0.0156

Theorem 3. The bias of best linear approximation for
yi ⊕ ym of Rain is 2−(m+1), where 0 ≤ i,m < n and
m > i.

Proof. The bias of best linear approximation of yi ⊕ ym
is derived here, where 0 ≤ i,m < n and i ̸= m. From the
definition of F we can write

yi ⊕ ym = (xm ⊕ km)⊕ ki ⊕ xi ⊕ ci−1 ⊕ cm−1. (5)

From the definition of F, xi ⊕ ki ⊕ ci−1 ⊕ cm−1 can be
expressed as

xi ⊕ ki ⊕ ci−1 ⊕ cm−1

=

i−1⊕
j=0

xj(ki−1−j ⊕ km−1−j)⊕ xi(km−1−i ⊕ 1)

⊕ki(xm−1−i ⊕ 1)⊕
m−1⊕

j=i+1;j ̸=m−1−i

xjkm−1−j

=

m−1⊕
j=0

zjsm−1−j , (6)

where sm−1−j = ki−1−j ⊕ km−1−j for 0 ≤ j ≤ i − 1,
sm−1−j = km−1−j ⊕ 1 for j = i, sm−1−j = km−1−j for
i + 1 ≤ j ≤ m − 1, zp = xp ⊕ 1, for p = m − 1 − i,
otherwise zp = xp. Also it may be observed from the
substitution that the bits sl for 0 ≤ l ≤ m − 1 are sta-
tistically independent if the bits kl for 0 ≤ l ≤ m − 1
are statistically independent and are uniformly chosen.
Therefore, xi ⊕ ki ⊕ ci−1 ⊕ cm−1 is also a bent function
of 2m variables. So, nonlinearity of xi ⊕ ki ⊕ ci−1 ⊕ cm−1

is 22m−1 − 2m−1. Hence, nonlinearity of yi ⊕ ym is
22(22m−1− 2m−1) = 22m+1− 2m+1 [using Theorem 1]and
it is function of 2m+2 number of variables. Therefore, the
number of matches with the best linear approximation is
22m+2− 22m+1+2m+1 and the corresponding probability
of the best linear approximation is 1

2 + 1
2m+1 . Therefore,

bias of best linear approximation is 1
2m+1 and thus reduces

exponentially with m.

Hence, applying this observation repeatedly we con-
clude that if more than two bit positions are included in
the linear combination, the resultant function will have
the highest nonlinearity corresponding to the greatest bit
position. This shows that linearly combining with other
bit positions at least does not reduce the nonlinearity of
the resultant function. A corollary of theorem 2 is as fol-
lows.
Corollary: The bias of best linear approximation for the
non-zero linear combination of the output bits is 2−(m+1),
where m is the largest bit position involved in the linear
combination.

These results show that the strength of Rain against lin-
ear cryptanalysis is high. The bias of best linear approxi-
mation for yi⊕yi+1 is obtained by substituting m = i+1
in the corollary and the bias value is 1

2i+2 . Table 2 shows
a comparison of bias of the best linear approximation of
yi ⊕ yi+1 for addition, Slash and Rain. Table 2 shows
that bias of best linear approximation remains fixed at
= 0.25 for addition and Slash. But bias value decreases
exponentially to zero for the proposed function Rain.

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 302

Table 3: Comparison of gate count and time complexity
Area (A)

Transfor- Mixing XOR OR AND NOT Time (T) A× T
mation Function Complexity

XOR n O(1) O(n)
Forward Addition 2n− 1 n− 2 2n− 3 O(n) O(n2)

Slash 3(n− 1) n− 1 O(n) O(n2)

Rain n(n+1)
2

n(n−1)
2 O(1) O(n2)

XOR n O(1) O(n)
Reverse Subtraction 2n− 1 n− 2 2(n− 2) n− 2 O(n) O(n2)

I-Slash 3(n− 1) 2n− 3 2(n− 1) O(n) O(n2)

I-Rain n(n+1)
2

n(n−1)
2 O(n) O(n3)

Table 2: Comparison of bias of best linear approximation
for yi ⊕ yi+1

Bias of best
linear approx. for

Output bit difference Addition Slash Rain
y0 ⊕ y1 0.25 0.25 0.25
y1 ⊕ y2 0.25 0.25 0.125
y2 ⊕ y3 0.25 0.25 0.0625
y3 ⊕ y4 0.25 0.25 0.0313
y4 ⊕ y5 0.25 0.25 0.0156

5 Hardware and Time Complexity

In this section we discuss the hardware and time complex-
ity of the proposed mixing function for n-bit block size. It
is found that yi contains i number of AND terms and two
linear terms. Therefore to implement yi, i numbers of two
input AND gates and i+1 number of two input XOR gates
are required. So implementation of an n-bit function re-

quires n(n−1)
2 two input AND gates and n(n+1)

2 two input
XOR gates. Table 3 shows a comparison of gate counts.
It is observed that area × time complexity is O(n2) for all
the three nonlinear function for forward transformation.
The area × time complexity I-Rain is O(n3) while com-
plexity of I-Slash and subtraction modulo 2n is O(n2).
Note:Both the encryption and decryption processes use
only forward transformation for generating key stream in
stream cipher NLS. It is noted that area × time complex-
ity of I-Rain is one order higher than I-Slash and subtrac-
tion but in the proposed application I-Rain does not play
any role. Therefore, disadvantage of I-Rain does not affect
the performance of modified NLS. Application of Rain is
described in the following section.

6 Application of Rain

In this section, we first give a brief description of stream
cipher NLS [10], Crossword Puzzle Attack(CPA) [2] and
modified CPA [8] against NLS. The weakness of modified
NLS, where modulo addition is replaced by Slash func-
tion [1] is explained next. Finally, the proposed counter-

measure is discussed and it is shown that Rain provides
better security against CPA.

6.1 Brief Description of NLS Stream Ci-
pher

NLS has two components: NFSR and NLF whose work
is synchronized by a clock. In NLS, key stream gener-
ator uses NFSR whose outputs are fed to the nonlinear
filter NLF that produces output key stream bits. Detailed
about NLS may be found in [10]. The state of NFSR at
time t is denoted by σt = (rt[0], ..., rt[16]), where rt[i] is
a 32-bit word. The state is determined by 17 words or
equivalently 544 bits. The transition from the state σt to
the state σt+1 is defined as follows:

1) rt+1[i] = rt[i+ 1] for i = 0, ..., 15;

2) rt+1[16] = f((rt[0] <<< 19) + (rt[15] <<< 9) +
Konst)⊕ rt[4];

3) rt[0] is abandoned;

4) if t = 0 (modulo f16), rt+1[2] = rt+1[2] + t.

Here f16 is 65537 and + is the addition modulo 232. The
Konst value is a 32-bit key dependent constant. The
function f : {0, 1}32 → {0, 1}32 is constructed using an
S-box with 8-bit input and 32-bit output and defined as
f(a) = S-box(aH)⊕ a where aH is the most significant 8
bits of 32-bit word a. Each output key stream word νt of
NLF is computed by

νt = NLF (σt)

= (rt[0] + rt[16])⊕ (rt[1] + rt[13])⊕ (rt[6] +Konst).

(7)

6.2 Overview of Crossword Puzzle At-
tack

In CPA [2], the attacker combines the linear approxima-
tion of both the NFSR and NLF to build a linear distin-
guisher which has high bias value. The basic steps of the
attack are as follows.

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 303

1) Find a linear approximation of the non-linear state
transition function used by NFSR: l1(σi) = σi+1 with
bias of ϵ1;

2) Find a linear approximation of the non-linear func-
tion applied by NLF: l2(σj)⊕ l3(νj) = 0 with bias of
ϵ2;

3) Obtain two sets of clock I and J such that∑
i∈I(l1(σi)⊕ σi+1) =

∑
j∈J l2(σj);

4) Build a distinguisher by computing
∑

i∈I(l1(σi) ⊕
σi+1) ⊕

∑
j∈J (l2(σj) ⊕ l3(νj)) = l3(νj) = 0, which

has bias of ϵ|I|.ϵ|J|.

6.3 Improved CPA Against NLS

An improved version of CPA on NLS by exploiting the in-
ternal dependencies between NFSR and NLF is presented
by MacDoland and Hawkes in [8]. Linear approximations
based on adjacent bits are used to build a distinguisher
for the case Konst = 0 with bias 2−19.7 [8]. In [8], au-
thors have derived the linear approximation for NLF out-
put bits considering the dependencies that exists between
the internal state registers used in the NFSR and NLF.
They have shown that it is possible to distinguish the NLS
stream from a random stream after approximately 2−40

keystream words. But improved CPA on NLSv2 is not
applicable, because Konst changes.

6.4 Existing Countermeasure Against
CPA Using Slash

In [1], Slash function has been used to thwart CPA against
NLS. In case of Slash, least significant bits are linear so
the following equation holds with probability one.

(r[x]⊘ r[y])(0) = r[x](0) ⊕ r[y](0). (8)

But for all i > 0 the linear combination of i-th and (i−1)-
th output bits can be expressed as

(r[x]⊘ r[y])(i) ⊕ (r[x]⊘ r[y])(i−1)

= r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1)

⊕r[x](i−1).r[y](i−1). (9)

where ‘⊘’ is the Slash operator. The bias of best linear
approximation is 2−2 and hence Slash function is equiva-
lent to modulo addition which is used in the original NLS.
Similarly from the definition of Slash function [1], it can
be shown that

(r[x]⊘ r[y])(i) ⊕ (r[x]⊘ r[y])(i−1)

⊕(r[x]⊘ r[y])(i−2) ⊕ (r[x]⊘ r[y])(i−3)

= r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2)

⊕r[y](i−2) ⊕ r[x](i−3) ⊕ r[y](i−3)

⊕r[x](i−1).r[y](i−1) ⊕ r[x](i−3).r[y](i−3).

(10)

The bias of the best linear approximation of equation (10)
is 2−3. Therefore, Slash function has exactly same bias
value for linear approximation as that of addition [3]. So,
Slash function can not thwart the cross word puzzle attack
on NLS and the complexity of the attack for the modified
NLS [1] is same as that against original NLS [3]. Thus,
although the bias of each output bit of Slash is small com-
pared to modulo addition but the bias value remains fixed
at 0.25 when successive output bits are linearly combined.

6.5 Countermeasure Against CPA Using
Rain

In this work, addition modulo 2n in NLF of NLS is re-
placed by Rain while NFSR remains unchanged. Hence
each modified key stream word ν′t of NLF is obtained as

ν′t = NLF (σt)

= (rt[0] † rt[16])⊕ (rt[1] † rt[13])⊕ (rt[6] †Konst)

(11)

where † is Rain operator.
Analysis of modified NLS: In this section, we show
how CPA can be thwarted using Rain. In the modified
version of NLS, the bias of the distinguisher decreases to
such a low value that any practical attack using this linear
distinguisher is impossible. Since, we have not changed
the NFSR, therefore the analysis of NFSR reported in [2]
is also valid for our scheme. According to the structure of
the non-linear shift register, the following equation holds
for the least significant bit.

αt,(0) ⊕ rt[0](13) ⊕ rt[15](23) ⊕Konst(0)

⊕rt[4](0) ⊕ rt+1[16](0) = 0, (12)

where αt is the 32-bit output of the S-box that defines the
transition function f , αt,(i) and xi are the i-th bits of the
32-bit words αt and x respectively. From [2], the linear
approximation for NFSR when Konst = 0 with bias of
2−5.35is given by

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt15

⊕rt[0](13) ⊕ rt[15](23) ⊕Konst(0)

⊕rt[4](0) ⊕ rt+1[16](0) = 0. (13)

Next we determine the bias of linear approximation for
modified NLF. We assume initially Konst is zero to make
our analysis simpler. Substituting Konst = 0 in Equa-
tion (11), we get

ν′t = (rt[0] † rt[16])⊕ (rt[1] † rt[13])⊕ rt[6]. (14)

From the definition of Rain, we know that the relation
between LSBs are linear so the equation (r[x] † r[y])(0) =
r[x](0)⊕r[y](0) holds with probability one. Therefore, the
following equation holds with probability one

ν′t,(0) = (rt0 ⊕ rt[16](0))⊕ (rt[1](0)

⊕rt[13](0))⊕ rt[6](0). (15)

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 304

But for i > 0, all bits of Rain (†) are nonlinear. Consider
the function (r[x]†r[y])(i)⊕(r[x]†r[y])(i−1). The function
has linear approximation of the following form

(r[x] † r[y])(i) ⊕ (r[x] † r[y])(i−1)

= r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1), (16)

which has the bias of 2−(i+1) (from Theorem 3). Using
the above approximation, we can determine the linear ap-
proximation of ν′t,(i) ⊕ ν′t,(i−1) as follows

ν′t,(i) ⊕ ν′t,(i−1)

= rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1)

⊕rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1)

⊕rt[13](i−1) ⊕ rt[6](i) ⊕ rt[6](i−1), (17)

with the bias of 2.(2−(i+1))2 = 2−(2i+1).
In case of Rain, applying approximation (17), for i > 2
the following expression holds

ν′t,(i) ⊕ ν′t,(i−1) ⊕ ν′t,(i−2) ⊕ ν′t,(i−3)

= rt[0](i) ⊕ rt[0](i−1) ⊕ rt[0](i−2) ⊕ rt[0](i−3)

⊕rt[16](i) ⊕ rt[16](i−1) ⊕ rt[16](i−2) ⊕ rt[16](i−3)

⊕rt[1](i) ⊕ rt[1](i−1) ⊕ rt[1](i−2) ⊕ rt[1](i−3)

⊕rt[13](i) ⊕ rt[13](i−1) ⊕ rt[13](i−2) ⊕ rt[13](i−3)

⊕rt[6](i) ⊕ rt[6](i−1) ⊕ rt[6](i−2) ⊕ rt[6](i−3), (18)

with bias 2−(2i+1) (from corollary), when Konst = 0.
Next we compute the complexity of CPA on modi-
fied NLS. The case for Konst = 0 has been studied at
first and then the attack has been extended toKonst ̸= 0.

Case for Konst = 0
We consider the linear approximation of αt,(0)

αt,(0) = rt[0](12) ⊕ rt[15](22), (19)

which has been reported in [2]. The bias of this linear
approximation is 2−5.46. By combining Equations (12)
and (19), we have the following approximation

rt[0](12) ⊕ rt[15](22) ⊕ rt[0](13) ⊕ rt[15](23)

⊕rt[4](0) ⊕ rt+1[16](0), (20)

which has same bias as Equation (19) because remaining
terms are linear. Approximation (20) has been divided
into two parts: the least significant bits and the other
bits as

l1(rt) = rt[4](0) ⊕ rt+1[16](0)

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23).

(21)

Since, l1(rt) contains only least significant bit variables
so approximation is true with probability one. From the
expression of l1(rt), we obtain the following system of

equations.

l1(rt) = rt[4](0) ⊕ rt+1[16](0)

= rt+40 ⊕ rt+170

l1(rt+1) = rt+1[4](0) ⊕ rt+2[16](0)

= rt+4[1](0) ⊕ rt+17[1](0)

l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0)

= rt+4[6](0) ⊕ rt+17[6](0) (22)

l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)

= rt+4[13](0) ⊕ rt+17[13](0)

l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)

= rt+4[16](0) ⊕ rt+17[16](0).

Adding all the approximations of Equation (22) and ap-
plying Equation (15), we get

l1(rt)⊕ l1(rt+1)⊕ l1(rt+6)⊕ l1(rt+13)⊕ l1(rt+16)

= ν′t+4,(0) ⊕ ν′t+17,(0). (23)

Substituting t = t, t+1, t+6, t+13, t+16 in the expression
of l2(rt) and after simplifying we get the following system
of equations:

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)

l2(rt+1) = rt[1](12) ⊕ rt[1](13) ⊕ rt+15[1](22) ⊕ rt+15[1](23)

l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23) (24)

l2(rt+13) = rt[13](12) ⊕ rt13 ⊕ rt+15[13](22) ⊕ rt+15[13](23)

l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23).

Combining the set of equations in (24) with Equa-
tion (17), we get

l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16)

= ν′t,(12) ⊕ ν′t,(13) ⊕ ν′t+15,(22) ⊕ ν′t+15,(23). (25)

Combining Equations (23) and (25) we get

l1(rt)⊕ l1(rt+1)⊕ l1(rt+6)⊕ l1(rt+13)⊕ l1(rt+16)

⊕ l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16)

= ν′t,(12) ⊕ ν′t,(13) ⊕ ν′t+15,(22) ⊕ ν′t+15,(23)

⊕ν′t+4,(0) ⊕ ν′t+17,(0)

= 0. (26)

The bias can be computed using the piling-up lemma.
As we use the approximation (20) five times and the
approximation (17) twice, therefore the bias of the ap-
proximation (26) is 27−1.(2−5.46)5.(2−27).(2−47) = 2−95.3

Therefore, complexity of the attack for the modified NLS
is 2190.6. Since, the specification of the NLS cipher allows
the adversary to observe up to 280 keystream words per
key/nonce pair [10], the attack is not successful for the
modified NLS as bias of the distinguisher is less than 2−40.

Case for Konst ̸= 0
Biases of linear approximations for αt,(0) and NLF
decreases with non-zero Konst and it has been explored

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 305

in [2]. According to [2], the Konst has been divided
into two parts as Konst = (Konst(H),Konst(L)). Here
we have explored only the case where Konst(H) ̸= 0
and Konst(L) = 0. It has been reported in [2]
that the average bias of the linear approximation for
(19) is 2−6.19. In case of modified NLS, combining
approximation (19) with bias 2−6.19 and the approx-
imation (17), the bias of distinguisher (26) becomes
26.(2−6.19)5.(2−27).(2−47) = 2−98.95, which is low enough
to thwart any linear distinguishing attack.

Therefore, It is possible to thwart the crossword puzzle
attack [2] against modified NLS, where addition modulo
232 is replaced by Rain. Moreover, the modified NLS can
thwart the improved crossword puzzle attack [8]. The at-
tack proposed in [8], exploits the significantly higher bias
for linear approximation of the NFSR and NLF using lin-
ear combination of adjacent bits. In NLS, only modular
addition is used to provide nonlinearity in both NFSR
and NLF. It is shown in [8] that bias for linear approxi-
mation of adjacent bits of input and output variables is
significantly high. But in case of Rain, it is proved in Sec-
tion 4 [Theorem3] that bias of best linear approximation
for yi ⊕ ym is 2−(m+1), where 0 ≤ i,m ≤ (n − 1) and
m > i. Also the bias of best linear approximation for the
non-zero linear combination of the output bits is 2−(m+1),
where m is the highest bit position involved in the linear
combination. Hence, modified CPA [8] will not succeed
against modified NLS.

7 Conclusion

In this paper, a new nonlinear, balanced and reversible
vectorial Boolean function called ‘Rain’ has been pro-
posed. It has been shown that the nonlinear property of
the Rain improves the resistance against linear cryptanal-
ysis. Resistance of stream cipher NLS against crossword
puzzle attack has been improved by replacing the modulo
addition by Rain in NLF of NLS. It is shown that modified
NLS can thwart the CPA. Also, the proposed function has
low bias of best linear approximation for the non-zero lin-
ear combination of the output bits. Therefore, improved
CPA unlikely to succeed against modified NLS.

References

[1] D. Bhattacharya, D. Mukhopadhyay, D. Saha, and
D. Roy Chowdhury, “Strengthening nls against cross-
word puzzle attack,” in Proceedings of The 12th Aus-
tralasian Conference on Information Security and
Privacy, vol. 4586, pp. 29–44, Townsville, Australia,
July 2007.

[2] J. Y. Cho and J. Pieprzyk, “Crossword puzzle attack
on nls,” in Proceedings of The 13th Annual Work-
shop on Selected Areas in Cryptography, vol. 4356,
pp. 249–265, Montreal, Canada, Aug. 2006.

[3] J. Y. Cho and J. Pieprzyk, “Linear distinguishing at-
tack on nls,” in Proceedings of The SASC Workshop-

Stream Ciphers Revisited, Leuven,Belgium, Feb.
2006.

[4] P. Kocher, “Timing attacks on implementations
of diffie-hellman, rsa, dss,and other systems,” in
Proceedings of Advances in Cryptology-CRYPTO,
vol. 1109, pp. 104–130, Santa Barbara, California,
USA, Aug. 1996.

[5] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Proceedings of Advances in Cryptology-
CRYPTO, vol. 1666, pp. 388–397, Santa Barbara,
California, USA, Aug. 1999.

[6] W. K. Koo, H. Lee, Y. H. Kim, and D. H. Lee, “Im-
plementation and analysis of new lightweight cryp-
tographic algorithm suitable for wireless sensor net-
works,” in Proceedings of The International Confer-
ence on Information Security and Assurance (ISA
2008), pp. 73–76, Korea Univ., Seoul, Apr. 2008.

[7] M. Matsui, “Linear cryptanalysis method for des
ciphers,” in Proceedings of Eurocrypt, vol. 765,
pp. 386–397, Lofthus, Norway, May 1993.

[8] C. McDonald and P. Hawkes. “On exploiting adja-
cent bits in nls,”. tech. rep., 2006.

[9] D. Mukhopadhyay. “Design and analysis of cellular
automata based cryptographic algorithms,”. Tech.
Rep. Ph.D thesis, I.I.T Kharagpur,India, Mar. 2007.

[10] G. Rose, P. Hawkes, M. Paddon, and M.W.
de Vries. “Primitive specification for nls, 2005.
http://www.ecrypt.eu.org/stream/nls.html,”. tech.
rep.

[11] O. S. Rothaus, “On bent functions,” Journal of Com-
binatorial Theory, vol. 20, no. A, pp. 300–305, 1976.

[12] P. Sarkar and S. Mitra, “Construction of nonlinear
resilient boolean functions using small affine func-
tions,” IEEE Transactions on Information Theory,
vol. 50, no. 9, pp. 2185–2193, 2004.

[13] D. R. Stinson, Cryptography Theory and Practice.
FL, USA: CRC Press, 1995.

[14] J. Wallen, “Linear approximations of addition mod-
ulo 2n,” in Proceedings of The 10th International
Workshop on Fast Software Encryption, vol. 2887,
pp. 261–273, Lund, Sweden, Feb. 2003.

Jaydeb Bhaumik is currently working as an Associate
Professor in the Department of Electronics and Com-
munication Engineering, Haldia Institute of Technology,
Haldia, India. During the time of doing the presented
research in the paper, he was pursuing his PhD from
G. S. Sanyal School of Telecommunications, Indian
Institute of Technology Kharagpur, India. He received
his B. Tech. and M. Tech. degrees in Radio Physics and
Electronics from University of Calcutta in 1996 and 1999
respectively, and PhD degree from G. S. Sanyal School
of Telecommunications, Indian Institute of Technology
Kharagpur in 2010. His research interests include Cryp-
tography, Cellular Automata, Error Correcting Codes,
and Digital VLSI Design.

Debdeep Mukhopadhyay is presently working as
an Assistant Professor in the Computer Science and

International Journal of Network Security, Vol.15, No.4, PP.298-306, July 2013 306

Engineering department of Indian Institute of Technology
(IIT) Kharagpur. Prior to this he worked as an Assistant
Professor in the Computer Science department of IIT
Madras. He obtained his B.Tech. degree in Electrical
Engineering, MS and PhD in Computer Science, IIT
Kharagpur. He has been the author of more than 60
international conference and journal papers in Cryp-
tography, Security and VLSI and has co-authored a
text book on Cryptography and Network Security. He
has collaborated with several organizations, like ISRO,
DIT, ITI, CAIR-DRDO, Broadcom USA and NTT-Labs
Japan. He has been the recipient of the Indian Semicon-
ductor Association (ISA) TechnoInventor Award for best
PhD Thesis in 2008, and the Indian National Science
Academy Young Scientist Award 2010, Indian National
Academy of Engineers (INAE) Young Engineer Award
2010, and the Out-standing Young Faculty Award in
2011. His research interests include Cryptography, VLSI
of Cryptographic algorithms and Side Channel Analysis.

Dipanwita Roy Chowdhury is presently working as
a Professor in the Department of Computer Science and
Engineering, Indian Institute of Technology Kharagpur,
India. She received her B.Tech. and M.Tech. degrees
in Computer Science from University of Calcutta in 1987
and 1989 respectively, and PhD degree from the Depart-
ment of Computer Science and Engineering, Indian In-
stitute of Technology Kharagpur in 1994. Her current
research interests are in the field of Cryptography, Er-
ror Correcting Codes, Cellular Automata, and VLSI De-
sign and Testing. She has published more than 130 tech-
nical papers in International Journals and Conferences.
Also, she is a co-author of the book on ”Additive cellular
automata: theory and applications”. She is the recipi-
ent of INSA Young Scientist Award, Associate of Indian
Academy of Science and is the fellow of Indian National
Academy of Engineers (INAE).

