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Abstract 

In this paper, a lightweight hybrid fault tolerant approach 

for AES, which is based on the integration of the algorithm 

based fault tolerant (ABFT) technique and the fault tolerant 

technique for s-box byte substitution operation is proposed. 

Two versions of scheme are presented to satisfy different 

application requirements. The first general version scheme 

can detect single error for the whole AES process with high 

efficiency. Another run-time version scheme is used to 

immediately terminate the error round with no time delay 

and no computation wasted on the rest rounds for 

propagating errors. Utilizing the ready-made arithmetic 

units in AES, single error can be detected by the sender and 

prevent the misdirected information from sending out. The 

results of the hardware FPGA implementation and 

simulation show that the proposed scheme can be 

integrated both on software and hardware without making 

many changes to the original AES implementation. 

Keywords: ABFT, advanced encryption standard, algo-

rithm based fault tolerant, error detection, fault tolerance 

1   Introduction 

Advanced Encryption Standard (AES) is a replacement for 

triple DES (3DES which not only has comparable security 

strength, but also achieve significant efficiency 

improvement for implementation on software or hardware.  

With the wide-spread of the AES applications, 

differential types of faults may occur from time to time. 

Several efforts were devoted into fault tolerance of the 

transformations and rounds in AES algorithm. Guido 

Bertoni et al. presented a fault model for AES and analyzed 

the behavior of the AES algorithm in the presence of faults 

[1]. They also proposed a fault detection technique for a 

hardware implementation of the AES algorithm which is 

based on the parity codes [2]. Moreover, they developed an 

analytical error model for the parity-based EDC for the 

AES encryption algorithm and are capable of locating 

single-bit transient and permanent faults [3, 4]. Later, the 

same group further described the complete error model 

extended to include the Key Schedule (KS) part and 

presented the results of the software simulations of the 

model [5]. L. Berveglieri et al. proposed an extension to an 

existing AES architecture to provide error detection and 

fault tolerance [7]. Kaijie Wu et al. presented a low-cost 

concurrent checking method for the AES encryption 

algorithm by using parity checking which can detect faults 

during normal operation and deliberately injected faults 

[19]. Mark Karpovsky et al. presented a method of 

protecting a hardware implementation of the AES against a 

side-channel attack known as Differential Fault Analysis 

attack [13]. Chih-Hsu Yen et al. proposed several error-

detection schemes for AES which are based on the (n+1, n) 

cyclic redundancy check over GF (2
8
) [20]. Luca 

Breveglieri et al. presented an operation-centered approach 

to the incorporation of fault detection into cryptographic 

device implementation through the use of Error Detection 

Codes [8]. Ramesh Karri et al. presented a fault-tolerant 

architecture for symmetric block ciphers which is based on 

a hardware pipeline for encryption and decryption [12]. P. 

Maistri et al. presented the results of a validation campaign 

on an AES core protected with some error detection 

mechanisms [15]. Mojtaba Valinataj et al. combined and 

reinforced the parity prediction scheme with a partially 

distributed TMR to achieve more reliability against 

multiple simultaneous errors [18]. 

Other efforts focus on relevant fault detection field. L. 

Berveglieri et al. presented suggestions for providing fault 

detection capabilities in recent block ciphers and came to 

the conclusion that the detection capability of any code 

depends on the type of the code, the frequency of 

checkpoints and the level of redundancy [6]. Ramesh Karri 

et al. presented a technique to concurrently detect errors in 

block ciphers as well as a new encoding strategy [9]. 

As a summary, the parity bit check coding technique 

has been introduced and widely applied to the basic 

operations of AES. For this technique, the parity bit needs 

to be generated and checked for every individual AES 

operation which brings in considerable time and hardware 

overhead. The algorithm based tolerant (ABFT) technique 

is a general concept for designing efficient fault tolerant 

schemes based on structures of the algorithms [10, 14, 16]. 

The ABFT makes use of the computational nature of the 

targeted algorithm and poses a conceptual way to better 

create a fault tolerant version by altering the algorithm 

computation so that its output contains extra information 
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for error detection and correction. It has relatively low 

overhead and no additional arithmetical logic unit is 

required. 

However, there is a limitation that the ABFT approach 

cannot be applied to AES directly. The limitation is that it 

applies to certain type of algorithm usually only involved 

linear and/or logical XOR operations. Due to the security 

nature of the AES algorithm, some non-linear operation 

such as s-box byte substitution operation is required. For 

this reason, the ABFT can not apply to AES directly. In this 

paper, we proposed a hybrid approach which integrated the 

ABFT approach with other fault tolerant approach such that 

it can apply to AES with lighter overheads. 

This paper is organized as follows. Section 2 briefly 

reviews the AES algorithm and introduces the notations for 

further discussion. Section 3 presents the proposed hybrid 

fault tolerant approach for AES. Section 4 shows the 

implementation, simulation results and comparison. The 

last section concludes this paper. 

2  The AES Algorithm and Relevant Notations 

For the sake of simplicity, we adopt the AES parameters of 

128-bit key size, 128-bit plaintext block size, 10 rounds, 

128-bit round key size, and 44-word expanded key size, 

which are the most commonly-used parameter set. Due to 

the similarity between encryption and decryption parts, just 

encryption is introduced as an illustration of our schemes. 

There is one initial round followed by 9 four-step rounds 

and ended by a tenth final round. 

2.1   The Initial Round 

The first initial round only performs the AddRoundKey 

operation. “m” stands for the total ordinal number of each 

round. “e” is the results for every round. “P” and “K” are 

defined as plaintext and round key respectively. For the 

initial round 0, we have 0m  , the plaintext state P and 

round 0th key state 
0K  are represented as, 
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According to the operation, the equation for round 0 

can be derived as follows: 
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; where 0 3j   and 0
ije  is the 

result for round 0, 0 3i  . 

2.2   The 9 Rounds 

The 9 rounds have the same sub-operations for each round, 

which are SubBytes, ShiftRows, MixColumns and 

AddRoundKey according to the order. For these 9 rounds, 

1 9m  , “a” is the input of round m, “b” “r” and “c” 

stands for the intermediate results for SubBytes, ShiftRows 

and MixColumns operations respectively, and me also 

represents the results of round m. 

Input of Round m:  
1m m

ij ija e  , where 1 9m  , 0 3i  , 0 3j  ; 

SubBytes Operation:  

[ ]m m

ij ijb S a , where S stands for the substitution by the S-

box and1 9m  , 0 3i  , 0 3j  . 

ShiftRows Operation:  
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, where 0 3j  and1 9m  . 

MixColumns Operation: 
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 in GF (2
8
), where 

0 3j  and1 9m  . 

AddRoundKey Operation:  
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, where 0 3j  and 1 9m  . 

Note that 
m m m m

ij ij ij ijc K c K    in GF (2
8
). 

As a conclusion, the equation for each round can be 

represented as: 
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in GF (2
8
),               (1) 

where 0 3j  and1 9m  . 

2.3   The Final Round 

The final round has no MixColumns operation, and the 

three operations and their execution order is the same as the 

previous 9 rounds. In this 10
th
 round, we have 10m   and 

the following equation: 
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 in GF (2
8
), where 0 3j  . 

3   The Hybrid Fault Tolerant Approach for AES 

For round 0 to 10, let
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have: 
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 in GF (2
8
), where 0≦j≦3.                                             (2) 

Suppose that only a single error may occur during the 

whole AES process. First we assume that the s-box 

SubByte operation [ ]m m

ij ijb S a is implemented by look-up 

table (ROM). By applying Hamming Code to the tables any 

single error can be detected and corrected. Second, we 

assume that the SubByte operation is implemented by a 

circuit. By applying majority voting technique or more 

efficient fault tolerant technique is GF (2
8
) [18], any single 

error can be detected or corrected. 

As a summary, if s-box SubByte operation can be 

correctly performed and stored then due to the linear 

computational nature of the Equation (2), the algorithm 

based fault tolerant (ABFT) technique can be applied to 

pre-compute some known parameters as check-sums. By 

storing certain intermediate results, this equation can be 

used to detect error. We propose two versions of the error 

detection scheme. The general version can detect an error 

for the whole total 11 rounds AES process. Another run-

time version can detect error and immediately stop the 

round in which the error exists so that it can prevent the 

error from propagating to following rounds. 

3.1   General Version of the Scheme 

Firstly, the plaintext state and the round key state have to 

be XORed together, 

ijPK PK    ,         (3) 

where 
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Secondly, while the rounds are going, two intermediate 

results of each rounds need to be stored, which are the final 

results of each round and the substitution results after 

SubBytes operation of each round. And then they are pre-

computed as the following. 
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where 0 3j  . 

Thirdly, according to above notations and the Equation 

(2), we can obtain the following equation: 
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in GF (2
8
) where 0 3j  .       (4) 

At last, in order to know whether error occurs, the only 

work is to compare the results of above equation 
'E  with 

the stored values E . If they equal then there is no error, 

otherwise, single error occurs in some round. By knowing 

the existence of errors, the sender can be informed of the 

false encryption result at once. In that case, error can be 

blocked. The general version of concurrent error detection 

scheme is shown in Figure 1. 

If we count one round with four basic operations as a 

time unit, the proposed general version ABFT scheme 

requires only the final two basic operations, MixColumns 

and AddRoundKey, to perform multiplication and addition. 

In that case, the overhead is about 1/20 of the total AES 

processing time. If the AES is implemented by pipeline, 

and each pipeline unit performs one of the four basic 

operations, then the proposed ABFT scheme only affects 

the pipeline latency and needs some extra storage for the 

intermediate results, but still maintain the same throughput. 
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Figure 1: The general version of the scheme for AES 
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Figure 2: The run-time version of the scheme for AES 

3.2   The Run-Time Concurrent Error Detection Scheme 

The goal of the run-time error detection version is to find 

an error and immediately stop the process. Similar to the 

previous discussion, we can pre-compute the PK according 

to Equation (3). Then the intermediate results of SubBytes 

and the results of each round are stored and organized in 

the same way as the general version, however, the 

computational method varies. The flow chart of the run-

time error detection version is shown in Figure 2. 

Let “h” represent the number of round which has just 

finished and use the following notation: 

h h
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Also, there is some modification based on Equation (1), 

that is, 
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 in 

GF (2
8
), where 0 3j  .                      (6) 

By using this equation, we can detect the errors in each 

round by comparing the value 
hE  given by Equation (5) 

with the value 
'

hE  of the Equation (6), 1,2, ,9h  . An 

error exists when they do not equal. If the error happened in 

round 10 (h=10), we still can use the check Equation (4) 

indicated in the general version to compute the check value. 

In order to find errors in real-time during the round, check 

scheme has to be performed at the end of every round. 

Using the run-time concurrent error detection scheme, 

error can be found before the whole AES process finishes. 

Once error occurs in certain round, there is no need to do 

the rest rounds. By performing the run-time check, the 

work and time spent on computing useless information can 

be saved. 

As defined above, one round time with four basic 

operations is considered as a time unit. So the proposed 

run-time version ABFT scheme requires the last two basic 

operations to do the multiplication and addition in GF (2
8
) 

for error detection. Hence, the overhead is about 1/2 of the 

total AES processing time for each round. In this way, if 

sub-operations are implemented by pipeline units, only 

pipeline latency is affected. 

4   Implementation, Simulation and Comparison 

As a symmetric encryption algorithm standard, AES has 

become one of the most important crypto-algorithms 

implemented on a variety of platforms, such as Field 

Programmable Gate Array (FPGA) and Application 

Specific Integrated Circuit (ASIC). Among them, there are 

two most basic and commonly adopted architectures, which 

are rolling architecture and unrolling architecture [17]. The 

rolling architecture uses a feedback structure where the data 

are iteratively transformed by the round functions. This 

approach has the advantage of small area but the 

disadvantage of a low throughput. The unrolling 
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architecture pipelines the eleven rounds and inserts 

registers between every two rounds. This kind of 

architecture achieves a high throughput, but compromises 

the area that is approximately 10 times larger than the 

rolling architecture. 

For each round of the AES encryption and decryption 

operations, a different round key is required. In general, 

two methods exist to generate the round keys for the eleven 

rounds [11]. The first way is to pre-compute the round keys 

and store them into a register or memory for all the 

incoming plain texts in one session. However, this register/ 

memory based method requires a large memory or register 

for key storage. Another way is to generate the round keys 

is in an on-the-fly fashion, which allows the key expansion 

scheduling running concurrently with the data encryption/ 

decryption rounds even if the initial key is changed.  

The proposed general version of the algorithm based 

concurrent error detection AES scheme has been 

implemented according to the rolling architecture and 

shared memory is chosen as the way to generate round keys. 

The Xilinx SpartanIII XC3S400 FPGA device is used 

to prototype the proposed scheme. Simulation is done by 

Modelsim PE version. Xilinx ISE synthesizes and 

implements the design. Very-High-Speed Integrated Circuit 

Hardware Description Language (VHDL) is chosen as the 

description language and top-level source type in Xilinx 

ISE. 

The ABFT AES architecture is partitioned into four 

different modules performing distinct functions, each of 

which synchronously cooperates with other modules by 

using linked signals. Assembling these components 

together, a ciphertext state and an error detection signal are 

obtained after each encryption process, which feed back the 

encrypted ciphertext and error detection result. 

The program control module takes charge of the 

procedure and sends out time-sequential commands to the 

AES core module. The AES core is responsible for all the 

sub-operations in the rolling architecture. These sub-

operations include add round key, substitute bytes, shift 

rows, mix columns, error detection computation and result 

state comparisons. This module acts as an intermediary 

between the program control module, S-box module, and 

key-ram module. The S-box module is used for S-box table 

lookup for SubByte operation. It is a 16*16 ROM and each 

element is an 8-bit data. The key-ram module stores the 44 

word round keys for the 11 rounds. In this implementation, 

round keys are pre-generated before the encryption and are 

stored in the key RAM in advance. A 16-bit RAM bus is 

used to transfer the two bytes round keys to AES core 

module. 

Table 1 gives the specification of the proposed scheme 

generated by the Xilinx ISE. The comparison is performed 

between the original AES encryption and the proposed 

scheme. 

 

Table 1: Comparison between the original AES and the 

proposed scheme 

Logic Utilization Original ABFT AES Overhead 

# of Slices 943 1254 32.9% 

# of Slice Flip Flops 289 433 49.8% 

# of 4 Input LUTs 1802 2376 31.9% 

Clock Period (ns) 
(Clock Frequency 

MHz) 

17.494 
(57.162) 

17.760 
(56.306) 

1.52% 

 

 
Figure 3: Simulation result of ABFT AES scheme 

We use Modelsim PE edition to simulate the proposed 

scheme. Figure 3 shows the simulated wave graph of our 

proposed scheme. The implementation details and input 

parameters are set in the following way: the clock 

frequency is 50MHz with no particular constraint 

specification. The plaintext is chosen to be “00 11 22 33 44 

55 66 77 88 99 aa bb cc dd ee ff” (in hexadecimal), and the 

initial key is “f6 cc 34 cd c5 55 c5 41 82 54 26 02 03 ad 3e 

cd”. In this graph, the left column lists out the input, output 

and intermediate parameters in our implementation. Next to 

this column is the detailed data of each parameter. And in 

the right most view, you can find the variation of every 

signal in the process of ABFT AES. The output signal 

(encrypted ciphertext) turns out to be what we expected, 

which is “da d5 52 93 63 69 58 21 d5 11 47 a7 f2 fa 3a 9e”. 

Essentially the point we want to show in this figure is that 

the logic of our design has been verified on FPGA and 

accordingly, the waves prove the proposed scheme can 

achieve AES encryption with fault tolerance in a parallel 

way.  

Since there is no united way to evaluate various 

implementations of AES algorithm across various 

platforms, and since every group employs different 

technology libraries, chooses different tools and even sets 

up different constrained parameters to test their designs, it 

is not quite comparable between these schemes merely 

because of their presented implementation results. 
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The proposed scheme has a reasonable hardware 

overhead compared to the existing schemes. Furthermore, 

the relative overhead will be much less if the unrolling 

architecture is implemented. 

Nowadays, the parity bit check coding technique has 

been widely applied to the basic operations of AES for 

error detection. The parity bit needs to be generated and 

checked for every individual AES operation which brings 

in considerable time and hardware overhead. The algorithm 

based tolerant (ABFT) technique is a general concept for 

designing efficient fault tolerant schemes based on 

structures of the algorithms. The proposed hybrid fault 

tolerant approach is based on the integration of the ABFT 

technique. Compare with other fault tolerant schemes, the 

proposed scheme has at least four key features which listed 

below: 

 Less hardware implementation overhead 

Hardware overhead is a considerable factor, as 

cryptography module has always been an accessorial 

module in practical scenarios.  

Some fault tolerant schemes require additional 

computational arithmetic unit to be prepared for calculating 

the checksums or some needs modification of the original 

crypto algorithm to implement the encoding and decoding 

logic. Our proposed scheme only involves XOR 

computational unit which is a basic component across the 

entire hardware platform. Besides, the checksums needed 

by our scheme are computed by the original AES rounds, 

which are generated and compared in an on-going way 

along with the AES algorithm.  

That is to say, the proposed scheme makes use of the 

computational nature of the targeted algorithm and poses a 

conceptual way to better create a fault tolerant version by 

altering the algorithm computation so that its output 

contains extra information for error detection and 

correction. It has relatively low overhead and does not 

require additional arithmetical logic unit. 

 Timely intervention to achieve higher fault detection 

efficiency 

According to the nature of AES, multiple rounds of 

complex computational actions are involved. The mating 

crypto scheme should be more efficient when it is comes to 

large-scale data encrypt processing. Our scheme is capable 

of detecting error as soon as the error exists, and the 

precision should be within one round of AES algorithm. 

This feature prevents error data from propagating to the 

next rounds, which saves computational resources from 

wrongly processed. 

 Organize and process data in matrix-based way  

AES is one kind of block ciphers. In order to give full 

play to the extra fault tolerant scheme, the best way to 

process data is to treat them as matrix. Our proposed 

scheme places the checksums as rows and columns 

attached beside the data matrix and the ABFT algorithm 

processes the data matrix with checksums in a one-time 

manner. 

 Flexibility of cooperating with multiple versions of AES 

algorithms 

In this paper, we adopted the AES parameters of 128-

bit key size, 128-bit plaintext block size, 10 rounds, 128-bit 

round key size, and 44-word expanded key size as an 

example. It is flexible to modify our scheme to cooperate 

with other versions of AES algorithms which might have 

different key sizes, block sizes or even computation for 

each round. 

5   Conclusion 

In this paper, a hybrid fault tolerant approach for AES is 

proposed. This approach is based on the fault tolerant 

technique for s-box byte substitution operation and the 

integration of the algorithm based fault tolerant (ABFT) 

technique for the AES algorithm. Utilizing the ready-made 

arithmetic units in the original design, single error can be 

efficiently detected by the sender. In this way, useless 

computation and false crypto code can prevent propagation. 

According to the practical requirements, two versions of 

the scheme are presented. The general version deals with 

the whole AES process and the error detection procedure 

occurs at the end of all rounds. The run-time version 

performs error detection for every round. Hence, it is 

capable of terminating the error round immediately. 

Compared to other fault tolerant schemes for AES, the 

proposed scheme only brings in overheads of 

computational time spent on calculating the detection 

equations, as well as additional memory or register for 

storing intermediate results. Moreover, without doing much 

modification to the AES architecture, this scheme can be 

integrated both on software and hardware in an easy way. 

The rolling architecture is chosen to implement the general 

version on Xilinx FPGA board. The simulation result 

shows that our scheme has a reasonable hardware overhead 

compared to the existing schemes and the relative overhead 

will be much less if the unrolling architecture is to be 

implemented. 
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