
International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 291

A Hybrid Fault Tolerant Approach for AES
Chang N. Zhang

1
, Qian Yu

1
, and Xiao Wei Liu

2

(Corresponding author: Qian Yu)

Department of Computer Science, Univeristy of Regina, Regina, SK, Canada
1

IBM China Development Lab, Shanghai, China
2

 (Email: yu209@cs.uregina.ca)

(Received Apr. 29, 2011; revised and accepted Feb. 22, 2012)

Abstract

In this paper, a lightweight hybrid fault tolerant approach

for AES, which is based on the integration of the algorithm

based fault tolerant (ABFT) technique and the fault tolerant

technique for s-box byte substitution operation is proposed.

Two versions of scheme are presented to satisfy different

application requirements. The first general version scheme

can detect single error for the whole AES process with high

efficiency. Another run-time version scheme is used to

immediately terminate the error round with no time delay

and no computation wasted on the rest rounds for

propagating errors. Utilizing the ready-made arithmetic

units in AES, single error can be detected by the sender and

prevent the misdirected information from sending out. The

results of the hardware FPGA implementation and

simulation show that the proposed scheme can be

integrated both on software and hardware without making

many changes to the original AES implementation.

Keywords: ABFT, advanced encryption standard, algo-

rithm based fault tolerant, error detection, fault tolerance

1 Introduction

Advanced Encryption Standard (AES) is a replacement for

triple DES (3DES which not only has comparable security

strength, but also achieve significant efficiency

improvement for implementation on software or hardware.

With the wide-spread of the AES applications,

differential types of faults may occur from time to time.

Several efforts were devoted into fault tolerance of the

transformations and rounds in AES algorithm. Guido

Bertoni et al. presented a fault model for AES and analyzed

the behavior of the AES algorithm in the presence of faults

[1]. They also proposed a fault detection technique for a

hardware implementation of the AES algorithm which is

based on the parity codes [2]. Moreover, they developed an

analytical error model for the parity-based EDC for the

AES encryption algorithm and are capable of locating

single-bit transient and permanent faults [3, 4]. Later, the

same group further described the complete error model

extended to include the Key Schedule (KS) part and

presented the results of the software simulations of the

model [5]. L. Berveglieri et al. proposed an extension to an

existing AES architecture to provide error detection and

fault tolerance [7]. Kaijie Wu et al. presented a low-cost

concurrent checking method for the AES encryption

algorithm by using parity checking which can detect faults

during normal operation and deliberately injected faults

[19]. Mark Karpovsky et al. presented a method of

protecting a hardware implementation of the AES against a

side-channel attack known as Differential Fault Analysis

attack [13]. Chih-Hsu Yen et al. proposed several error-

detection schemes for AES which are based on the (n+1, n)

cyclic redundancy check over GF (2
8
) [20]. Luca

Breveglieri et al. presented an operation-centered approach

to the incorporation of fault detection into cryptographic

device implementation through the use of Error Detection

Codes [8]. Ramesh Karri et al. presented a fault-tolerant

architecture for symmetric block ciphers which is based on

a hardware pipeline for encryption and decryption [12]. P.

Maistri et al. presented the results of a validation campaign

on an AES core protected with some error detection

mechanisms [15]. Mojtaba Valinataj et al. combined and

reinforced the parity prediction scheme with a partially

distributed TMR to achieve more reliability against

multiple simultaneous errors [18].

Other efforts focus on relevant fault detection field. L.

Berveglieri et al. presented suggestions for providing fault

detection capabilities in recent block ciphers and came to

the conclusion that the detection capability of any code

depends on the type of the code, the frequency of

checkpoints and the level of redundancy [6]. Ramesh Karri

et al. presented a technique to concurrently detect errors in

block ciphers as well as a new encoding strategy [9].

As a summary, the parity bit check coding technique

has been introduced and widely applied to the basic

operations of AES. For this technique, the parity bit needs

to be generated and checked for every individual AES

operation which brings in considerable time and hardware

overhead. The algorithm based tolerant (ABFT) technique

is a general concept for designing efficient fault tolerant

schemes based on structures of the algorithms [10, 14, 16].

The ABFT makes use of the computational nature of the

targeted algorithm and poses a conceptual way to better

create a fault tolerant version by altering the algorithm

computation so that its output contains extra information

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 292

for error detection and correction. It has relatively low

overhead and no additional arithmetical logic unit is

required.

However, there is a limitation that the ABFT approach

cannot be applied to AES directly. The limitation is that it

applies to certain type of algorithm usually only involved

linear and/or logical XOR operations. Due to the security

nature of the AES algorithm, some non-linear operation

such as s-box byte substitution operation is required. For

this reason, the ABFT can not apply to AES directly. In this

paper, we proposed a hybrid approach which integrated the

ABFT approach with other fault tolerant approach such that

it can apply to AES with lighter overheads.

This paper is organized as follows. Section 2 briefly

reviews the AES algorithm and introduces the notations for

further discussion. Section 3 presents the proposed hybrid

fault tolerant approach for AES. Section 4 shows the

implementation, simulation results and comparison. The

last section concludes this paper.

2 The AES Algorithm and Relevant Notations

For the sake of simplicity, we adopt the AES parameters of

128-bit key size, 128-bit plaintext block size, 10 rounds,

128-bit round key size, and 44-word expanded key size,

which are the most commonly-used parameter set. Due to

the similarity between encryption and decryption parts, just

encryption is introduced as an illustration of our schemes.

There is one initial round followed by 9 four-step rounds

and ended by a tenth final round.

2.1 The Initial Round

The first initial round only performs the AddRoundKey

operation. “m” stands for the total ordinal number of each

round. “e” is the results for every round. “P” and “K” are

defined as plaintext and round key respectively. For the

initial round 0, we have 0m  , the plaintext state P and

round 0th key state
0K are represented as,

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

P P P P

P P P P
P

P P P P

P P P P

 
 
 
 
 
 

0 0 0 0

00 01 02 03

0 0 0 0

0 10 11 12 13

0 0 0 0

20 21 22 23

0 0 0 0

30 31 32 33

K K K K

K K K K
K

K K K K

K K K K

 
 
 
 
 
  

According to the operation, the equation for round 0

can be derived as follows:

0 0

0 0 0

0 0

1 1 1

0 0

2 2 2

0 0

3 3 3

j j j

j j j

j j j

j j j

e P K

e P K

e P K

e P K

     
     
      
     
     
          

; where 0 3j  and 0
ije is the

result for round 0, 0 3i  .

2.2 The 9 Rounds

The 9 rounds have the same sub-operations for each round,

which are SubBytes, ShiftRows, MixColumns and

AddRoundKey according to the order. For these 9 rounds,

1 9m  , “a” is the input of round m, “b” “r” and “c”

stands for the intermediate results for SubBytes, ShiftRows

and MixColumns operations respectively, and me also

represents the results of round m.

Input of Round m:
1m m

ij ija e  , where 1 9m  , 0 3i  , 0 3j  ;

SubBytes Operation:

[]m m

ij ijb S a , where S stands for the substitution by the S-

box and1 9m  , 0 3i  , 0 3j  .

ShiftRows Operation:

0 0

0

1 1, 1

0

2 2, 2

0

3 3, 3

m m

j j

m

j j

m

j j

m

j j

r b

r b

r b

r b







   
   
   
   
   
      

, where 0 3j  and1 9m  .

MixColumns Operation:

0 0

0

1 1

0

2 2

0

3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

m m

j j

m

j j

m

j j

m

j j

c r

c r

c r

c r

    
    
     
    
    
       

 in GF (2
8
), where

0 3j  and1 9m  .

AddRoundKey Operation:

0 0 0

1 1 1

2 2 2

3 3 3

m m m

j j j

m m m

j j j

m m m

j j j

m m m

j j j

e c K

e c K

e c K

e c K

     
     
      
     
     
          

, where 0 3j  and 1 9m  .

Note that
m m m m

ij ij ij ijc K c K   in GF (2
8
).

As a conclusion, the equation for each round can be

represented as:

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 293

0 0 0

1 1, 1 1

2 2, 2 2

3 3, 3 3

[]02 03 01 01

[]01 02 03 01

[]01 01 02 03

[]03 01 01 02

m m m

j j j

m m m

j j jm

j m m m

j j j

m m m

j j j

e S e K

e S e K
E

e S K

e S e K







      
      
         
      
      
           

in GF (2
8
), (1)

where 0 3j  and1 9m  .

2.3 The Final Round

The final round has no MixColumns operation, and the

three operations and their execution order is the same as the

previous 9 rounds. In this 10
th
 round, we have 10m  and

the following equation:

10 9 10

0 0 0

10 9 10

1 1, 1 1

10 9 10

2 2, 2 2

10 9 10

3 3, 3 3

[]

[]

[]

[]

j j j

j j j

j j j

j j j

e S e K

e S e K

e S K

e S e K







     
     
      
     
     
          

 in GF (2
8
), where 0 3j  .

3 The Hybrid Fault Tolerant Approach for AES

For round 0 to 10, let
10

0

[]m

ij ij

m

K K K


     , and

10

0

m

ij ij

m

E e e


 
     

 
 , both in GF (2

8
), where 0 , 3i j  , we

have:

8

0

98
0 0 0

1, 1
1 1 0

8
2 2

2, 2

03 3

8

3, 3

0

[]02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

m

j

m o

j j jm

j
j j m

j

j j m

j

mj j

m

j

m

S e

e P S e
S e

e P S
E

e P
S e

e P

S e















 
   

 
       

         
           
       

         
          

 
   

 









0

9
11, 1

9
22, 2

9
33, 3

[]

[]

[]

j

jj

jj

jj

K

Ke

KS

KS e







   
   
   
   
   

     

 in GF (2
8
), where 0≦j≦3. (2)

Suppose that only a single error may occur during the

whole AES process. First we assume that the s-box

SubByte operation []m m

ij ijb S a is implemented by look-up

table (ROM). By applying Hamming Code to the tables any

single error can be detected and corrected. Second, we

assume that the SubByte operation is implemented by a

circuit. By applying majority voting technique or more

efficient fault tolerant technique is GF (2
8
) [18], any single

error can be detected or corrected.

As a summary, if s-box SubByte operation can be

correctly performed and stored then due to the linear

computational nature of the Equation (2), the algorithm

based fault tolerant (ABFT) technique can be applied to

pre-compute some known parameters as check-sums. By

storing certain intermediate results, this equation can be

used to detect error. We propose two versions of the error

detection scheme. The general version can detect an error

for the whole total 11 rounds AES process. Another run-

time version can detect error and immediately stop the

round in which the error exists so that it can prevent the

error from propagating to following rounds.

3.1 General Version of the Scheme

Firstly, the plaintext state and the round key state have to

be XORed together,

ijPK PK    , (3)

where
10

0

m

ij ij ij

m

PK K P


  , and 0 , 3i j  ;

Secondly, while the rounds are going, two intermediate

results of each rounds need to be stored, which are the final

results of each round and the substitution results after

SubBytes operation of each round. And then they are pre-

computed as the following.

ijE e    , where
10

0

m

ij ij

m

e e


 , and 0 , 3i j  ;

8

0 0

0

m

j j

m

S S e


    ,
8

1 1, 1

0

m

j j

m

S S e 



    ,

8

2 2, 2

0

m

j j

m

S S e 



    ,
8

3 3, 3

0

m

j j

m

S S e 



    ,

where 0 3j  .

Thirdly, according to above notations and the Equation

(2), we can obtain the following equation:

9
0 00

9
1 11, 1

9
2 22, 2

9
3 33, 3

[]02 03 01 01

[]01 02 03 01

[]01 01 02 03

[]03 01 01 02

j jj

j jj

j jj

j jj

S PKS e

S PKS e
E

S PKS

S PKS e







     
     
        
     
     

          

’

in GF (2
8
) where 0 3j  . (4)

At last, in order to know whether error occurs, the only

work is to compare the results of above equation
'E with

the stored values E . If they equal then there is no error,

otherwise, single error occurs in some round. By knowing

the existence of errors, the sender can be informed of the

false encryption result at once. In that case, error can be

blocked. The general version of concurrent error detection

scheme is shown in Figure 1.

If we count one round with four basic operations as a

time unit, the proposed general version ABFT scheme

requires only the final two basic operations, MixColumns

and AddRoundKey, to perform multiplication and addition.

In that case, the overhead is about 1/20 of the total AES

processing time. If the AES is implemented by pipeline,

and each pipeline unit performs one of the four basic

operations, then the proposed ABFT scheme only affects

the pipeline latency and needs some extra storage for the

intermediate results, but still maintain the same throughput.

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 294

...

...

...

Round 1

Add Round Key

Sub Bytes

Shift Rows

Mix Columns

Round 9

Add Round Key

Sub Bytes

Shift Rows

Mix Columns

Round 10

Add Round Key

Sub Bytes

Shift Rows

Add Round Key

Plaintext Initial Key

Key Expansion

W[0~3]

W[4~7]

W[36~39]

W[40~43]

CiphertextCompare E with E’

C(x)

Figure 1: The general version of the scheme for AES

...

...

...

...

...

Round 1

Add Round Key

Sub Bytes

Shift Rows

Mix Columns

Round i

Add Round Key

Sub Bytes

Shift Rows

Mix Columns

Round 10

Add Round Key

Plaintext Initial Key

Key Expansion

W[0~3]

W[4~7]

W[4i ~ 4(i+1)-1]

W[40~43]

CiphertextCompare E with E’

C(x)

Round 9 W[36~39]

Figure 2: The run-time version of the scheme for AES

3.2 The Run-Time Concurrent Error Detection Scheme

The goal of the run-time error detection version is to find

an error and immediately stop the process. Similar to the

previous discussion, we can pre-compute the PK according

to Equation (3). Then the intermediate results of SubBytes

and the results of each round are stored and organized in

the same way as the general version, however, the

computational method varies. The flow chart of the run-

time error detection version is shown in Figure 2.

Let “h” represent the number of round which has just

finished and use the following notation:

h h

ijE e    , where
0

h
h m

ij ij

m

e e


 , and 0 , 3i j  ; (5)

0 0

0

h
h m

j j

m

S S e


    , 1 1, 1

0

h
h m

j j

m

S S e 



    , 2 2, 2

0

h
h m

j j

m

S S e 



   

, 3 3, 3

0

h
h m

j j

m

S S e 



    , where 0 3j  ;

h

ij

0

h
m

ij ij

m

PK K P


  , where 0 , 3i j 

Also, there is some modification based on Equation (1),

that is,

0 0 0

1 1 1'

2 2 2

3 3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

h h h

j j j

h h h

j j j

h h h h

j j j

h h h

j j j

e S PK

e S PK
E

e S PK

e S PK

      
      
         
      
      
           

 in

GF (2
8
), where 0 3j  . (6)

By using this equation, we can detect the errors in each

round by comparing the value
hE given by Equation (5)

with the value
'

hE of the Equation (6), 1,2, ,9h  . An

error exists when they do not equal. If the error happened in

round 10 (h=10), we still can use the check Equation (4)

indicated in the general version to compute the check value.

In order to find errors in real-time during the round, check

scheme has to be performed at the end of every round.

Using the run-time concurrent error detection scheme,

error can be found before the whole AES process finishes.

Once error occurs in certain round, there is no need to do

the rest rounds. By performing the run-time check, the

work and time spent on computing useless information can

be saved.

As defined above, one round time with four basic

operations is considered as a time unit. So the proposed

run-time version ABFT scheme requires the last two basic

operations to do the multiplication and addition in GF (2
8
)

for error detection. Hence, the overhead is about 1/2 of the

total AES processing time for each round. In this way, if

sub-operations are implemented by pipeline units, only

pipeline latency is affected.

4 Implementation, Simulation and Comparison

As a symmetric encryption algorithm standard, AES has

become one of the most important crypto-algorithms

implemented on a variety of platforms, such as Field

Programmable Gate Array (FPGA) and Application

Specific Integrated Circuit (ASIC). Among them, there are

two most basic and commonly adopted architectures, which

are rolling architecture and unrolling architecture [17]. The

rolling architecture uses a feedback structure where the data

are iteratively transformed by the round functions. This

approach has the advantage of small area but the

disadvantage of a low throughput. The unrolling

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 295

architecture pipelines the eleven rounds and inserts

registers between every two rounds. This kind of

architecture achieves a high throughput, but compromises

the area that is approximately 10 times larger than the

rolling architecture.

For each round of the AES encryption and decryption

operations, a different round key is required. In general,

two methods exist to generate the round keys for the eleven

rounds [11]. The first way is to pre-compute the round keys

and store them into a register or memory for all the

incoming plain texts in one session. However, this register/

memory based method requires a large memory or register

for key storage. Another way is to generate the round keys

is in an on-the-fly fashion, which allows the key expansion

scheduling running concurrently with the data encryption/

decryption rounds even if the initial key is changed.

The proposed general version of the algorithm based

concurrent error detection AES scheme has been

implemented according to the rolling architecture and

shared memory is chosen as the way to generate round keys.

The Xilinx SpartanIII XC3S400 FPGA device is used

to prototype the proposed scheme. Simulation is done by

Modelsim PE version. Xilinx ISE synthesizes and

implements the design. Very-High-Speed Integrated Circuit

Hardware Description Language (VHDL) is chosen as the

description language and top-level source type in Xilinx

ISE.

The ABFT AES architecture is partitioned into four

different modules performing distinct functions, each of

which synchronously cooperates with other modules by

using linked signals. Assembling these components

together, a ciphertext state and an error detection signal are

obtained after each encryption process, which feed back the

encrypted ciphertext and error detection result.

The program control module takes charge of the

procedure and sends out time-sequential commands to the

AES core module. The AES core is responsible for all the

sub-operations in the rolling architecture. These sub-

operations include add round key, substitute bytes, shift

rows, mix columns, error detection computation and result

state comparisons. This module acts as an intermediary

between the program control module, S-box module, and

key-ram module. The S-box module is used for S-box table

lookup for SubByte operation. It is a 16*16 ROM and each

element is an 8-bit data. The key-ram module stores the 44

word round keys for the 11 rounds. In this implementation,

round keys are pre-generated before the encryption and are

stored in the key RAM in advance. A 16-bit RAM bus is

used to transfer the two bytes round keys to AES core

module.

Table 1 gives the specification of the proposed scheme

generated by the Xilinx ISE. The comparison is performed

between the original AES encryption and the proposed

scheme.

Table 1: Comparison between the original AES and the

proposed scheme

Logic Utilization Original ABFT AES Overhead

of Slices 943 1254 32.9%

of Slice Flip Flops 289 433 49.8%

of 4 Input LUTs 1802 2376 31.9%

Clock Period (ns)
(Clock Frequency

MHz)

17.494
(57.162)

17.760
(56.306)

1.52%

Figure 3: Simulation result of ABFT AES scheme

We use Modelsim PE edition to simulate the proposed

scheme. Figure 3 shows the simulated wave graph of our

proposed scheme. The implementation details and input

parameters are set in the following way: the clock

frequency is 50MHz with no particular constraint

specification. The plaintext is chosen to be “00 11 22 33 44

55 66 77 88 99 aa bb cc dd ee ff” (in hexadecimal), and the

initial key is “f6 cc 34 cd c5 55 c5 41 82 54 26 02 03 ad 3e

cd”. In this graph, the left column lists out the input, output

and intermediate parameters in our implementation. Next to

this column is the detailed data of each parameter. And in

the right most view, you can find the variation of every

signal in the process of ABFT AES. The output signal

(encrypted ciphertext) turns out to be what we expected,

which is “da d5 52 93 63 69 58 21 d5 11 47 a7 f2 fa 3a 9e”.

Essentially the point we want to show in this figure is that

the logic of our design has been verified on FPGA and

accordingly, the waves prove the proposed scheme can

achieve AES encryption with fault tolerance in a parallel

way.

Since there is no united way to evaluate various

implementations of AES algorithm across various

platforms, and since every group employs different

technology libraries, chooses different tools and even sets

up different constrained parameters to test their designs, it

is not quite comparable between these schemes merely

because of their presented implementation results.

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 296

The proposed scheme has a reasonable hardware

overhead compared to the existing schemes. Furthermore,

the relative overhead will be much less if the unrolling

architecture is implemented.

Nowadays, the parity bit check coding technique has

been widely applied to the basic operations of AES for

error detection. The parity bit needs to be generated and

checked for every individual AES operation which brings

in considerable time and hardware overhead. The algorithm

based tolerant (ABFT) technique is a general concept for

designing efficient fault tolerant schemes based on

structures of the algorithms. The proposed hybrid fault

tolerant approach is based on the integration of the ABFT

technique. Compare with other fault tolerant schemes, the

proposed scheme has at least four key features which listed

below:

 Less hardware implementation overhead

Hardware overhead is a considerable factor, as

cryptography module has always been an accessorial

module in practical scenarios.

Some fault tolerant schemes require additional

computational arithmetic unit to be prepared for calculating

the checksums or some needs modification of the original

crypto algorithm to implement the encoding and decoding

logic. Our proposed scheme only involves XOR

computational unit which is a basic component across the

entire hardware platform. Besides, the checksums needed

by our scheme are computed by the original AES rounds,

which are generated and compared in an on-going way

along with the AES algorithm.

That is to say, the proposed scheme makes use of the

computational nature of the targeted algorithm and poses a

conceptual way to better create a fault tolerant version by

altering the algorithm computation so that its output

contains extra information for error detection and

correction. It has relatively low overhead and does not

require additional arithmetical logic unit.

 Timely intervention to achieve higher fault detection

efficiency

According to the nature of AES, multiple rounds of

complex computational actions are involved. The mating

crypto scheme should be more efficient when it is comes to

large-scale data encrypt processing. Our scheme is capable

of detecting error as soon as the error exists, and the

precision should be within one round of AES algorithm.

This feature prevents error data from propagating to the

next rounds, which saves computational resources from

wrongly processed.

 Organize and process data in matrix-based way

AES is one kind of block ciphers. In order to give full

play to the extra fault tolerant scheme, the best way to

process data is to treat them as matrix. Our proposed

scheme places the checksums as rows and columns

attached beside the data matrix and the ABFT algorithm

processes the data matrix with checksums in a one-time

manner.

 Flexibility of cooperating with multiple versions of AES

algorithms

In this paper, we adopted the AES parameters of 128-

bit key size, 128-bit plaintext block size, 10 rounds, 128-bit

round key size, and 44-word expanded key size as an

example. It is flexible to modify our scheme to cooperate

with other versions of AES algorithms which might have

different key sizes, block sizes or even computation for

each round.

5 Conclusion

In this paper, a hybrid fault tolerant approach for AES is

proposed. This approach is based on the fault tolerant

technique for s-box byte substitution operation and the

integration of the algorithm based fault tolerant (ABFT)

technique for the AES algorithm. Utilizing the ready-made

arithmetic units in the original design, single error can be

efficiently detected by the sender. In this way, useless

computation and false crypto code can prevent propagation.

According to the practical requirements, two versions of

the scheme are presented. The general version deals with

the whole AES process and the error detection procedure

occurs at the end of all rounds. The run-time version

performs error detection for every round. Hence, it is

capable of terminating the error round immediately.

Compared to other fault tolerant schemes for AES, the

proposed scheme only brings in overheads of

computational time spent on calculating the detection

equations, as well as additional memory or register for

storing intermediate results. Moreover, without doing much

modification to the AES architecture, this scheme can be

integrated both on software and hardware in an easy way.

The rolling architecture is chosen to implement the general

version on Xilinx FPGA board. The simulation result

shows that our scheme has a reasonable hardware overhead

compared to the existing schemes and the relative overhead

will be much less if the unrolling architecture is to be

implemented.

References

[1] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.

Piuri. “On the propagation of faults and their detection

in a hardware implementation of the advanced

encryption standard,” in Proceedings of 13th IEEE

International Conference on Application-Specific

Systems, Architectures and Processors (ASAP 2002),

pp. 303-312, 2002.

[2] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.

Piuri, “A parity code based fault detection for an

implementation of the advanced encryption standard,”

in Proceedings of 17th IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT

International Journal of Network Security, Vol.15, No.4, PP.291-297, July 2013 297

2002), pp. 51-59, 2002.

[3] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.

Piuri, “Detecting and locating faults in VLSI

implementations of the advanced encryption standard,”

in Proceedings of 18th IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT

2003), pp. 105-113, 2003.

[4] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.

Piuri, “Error analysis and detection procedures for a

hardware implementation of the advanced encryption

standard,” IEEE Transactions on Computers, vol. 52,

no. 4, pp. 492-505, 2003.

[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V.

Piuri, “An efficient hardware-based fault diagnosis

scheme for AES: performances and cost,” in

Proceedings of 19th IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT

2004), pp. 130-138, 2004.

[6] L. Breveglieri, I. Koren, and Paolo Maistri, “Detecting
faults in four symmetric key block ciphers,” in

Proceedings of 15th IEEE International Conference on

Application-Specific Systems, Architectures and

Processors, pp. 258-268, 2004.

[7] L. Breveglieri, I. Koren, and P. Maistri, “Incorporating

error detection and online reconfiguration into a

regular architecture for the advanced encryption

standard,” in Proceedings of 20th IEEE International

Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT 2005), pp. 72-80, 2005.

[8] L. Breveglieri, I. Koren, and P. Maistri, “An operation-

centered approach to fault detection in symmetric

cryptography ciphers,” IEEE Transactions on

Computers, vol. 56, no. 5, pp. 635-649, 2007.

[9] S. Fernandez-Gomez, J. J. Rodriguez-Andina, E.

Mandado, “Concurrent error detection in block

ciphers,” in Proceedings of International Test

Conference 2000 (ITC 2000), pp. 979-984, 2000.

[10] R. K. Gulati and S. M. Reddy, “Concurrent error

detection in VLSI array structures,” in Proceedings of

1986 IEEE International Conference on Computer

Design, pp. 488-491, 1986.

[11] F. K. Guürkaynak, A. Burg, N. Felber, W. Fichtner, D.

Gasser, F. Hug, and H. Kaeslin, “A 2 Gb/s balanced

AES crypto-chip implementation,” in Proceedings of

14th ACM Great Lakes symposium on VLSI, pp. 39-44,

2004.

[12] M. K. Joo, J. H. Kim, and Y. H. Choi, “A fault tolerant

architecture for symmetric block ciphers,” in

Proceedings of 11th Asian Test Symposium, 2002.

(ATS 2002), pp. 212-217, 2002.

[13] M. Karpovsky, K. J. Kulikowski, and A. Taubin,

“Robust protection against fault-injection attacks on

smart cards implementing the advanced encryption

standard,” in Proceedings of 2004 International

Conference on Dependable Systems and Networks, pp.

93-101, 2004.

[14] R. H. Kuhn, Yield Enhancement by Fault-tolerant

Systolic Arrays in VLSI and Modern Signal

Processing”, Prentice-Hall, 1985.

[15] P. Maistri, P. Vanhauwaert, and R. Leveugle,

“Evaluation of register-level protection techniques for

the advanced encryption standard by multi-level fault

injections,” in Proceedings of 22nd IEEE International

Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT 2007), pp. 499-507, 2007.

[16] J. H. Patel and L.Y. Fung, “Concurrent error detection

in ALU’s by recomputing with shifted operands,”

IEEE Transactions on Computers, vol. C-31, no. 7, pp.

589-595, 1982.

[17] H. Qin, T. Sasao, and Y. Iguchi, “An FPGA design of

AES encryption circuit with 128-bit keys,” in

Proceedings of 15th ACM Great Lakes symposium on

VLSI, pp. 147-151, 2005.

[18] M. Valinataj, and S. Safari, “Fault tolerant arithmetic

operations with multiple error detection and

correction,” in Proceedings of 22nd IEEE

International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT 2007), pp. 188-196,

2007.

[19] K. Wu, K. Ramesh, G. Kuznetsov, and M. Goessel,

“Low cost concurrent error detection for the advanced

encryption standard,” in Proceedings of International

Test Conference 2004 (ITC 2004), pp. 1242-1248,

2004.

[20] C. H. Yen and B. F. Wu, “Simple error detection

methods for hardware implementation of advanced

encryption standard,” IEEE Transactions on

Computers, vol. 55, no. 6, pp. 720-731, 2006.

Chang N. Zhang has been at the University of Regina

since 1990 where he is currently a Professor of the

Department of Computer Science, and Adjunct Scientist

with Telecommunication Research Labs (TRLabs). He

received his B.S. in Applied Math from Shanghai

University, and his Ph.D. in Computer Science and

Engineering from Southern Methodist University.

Qian Yu is currently a Ph.D. candidate in the Department

of Computer Science at the University of Regina. He

received his Master of Science degree in Computer Science

from University of Regina in 2007 and his Bachelor of

Engineering degree in Computer Science and Technology

from National University of Defense Technology, China in

2003.

Xiao Wei Liu was graduated from University of Regina,

Computer Science Department. During her post-graduate

period, she was supervised by Dr. Chang N. Zhang, funded

by Telecommunication Research Labs (TRLabs), and her

major research interest was fault tolerance in Cryptography.

She is currently working for IBM China Development Lab

and mainly focuses on Cloud platform and Application

Server middleware related area.

