
International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 280

MHIP: Effective Key Management for Mobile

Heterogeneous Sensor Networks
Dulal Kar

1
, Rashad Tatum

2
, and Keith Zejdlik

1

(Corresponding author: Dulal Kar)

School of Engineering and Computing Sciences, Texas A&M University-Corpus Christi
1

6300 Ocean Dr, Corpus Christi, TX 78412-5825, USA

Department of Mathematics, Southern Polytechnic State University
 2

1100 South Marietta Pkwy, Marietta, GA 30060, USA

 (Email: dulal.kar@tamucc.edu, {tatum.rashad, kealze}@gmail.com)

(Received Dec. 27, 2011; revised and accepted Feb. 8, 2012)

Abstract

Security for mobile wireless sensor networks has many unique

challenges. Existing security protocols have serious

drawbacks revoking compromised nodes from the network,

replenishing the network with new nodes in secure manner,

and performing in network processing if nodes migrate from

one cluster to another. In this work, we propose a new energy-

efficient protocol that provides security for a heterogeneous

mobile WSN. The protocol is based on Identity Based

Encryption (IBE) which facilitates communication-efficient

key establishment among the nodes in a WSN as well as

revocation of compromised nodes from or addition of new

nodes to the network. It also has a mechanism to recover the

nodes of a compromised cluster and bind them to other

neighboring clusters. The proposed protocol is scalable as the

protocol's storage, communication, and computation

overheads remain constant regardless of the size of the

network. Our analysis of the protocol shows that it can

provide security against various threats and attacks including

the Sybil attack.

Keywords: Elliptic curve cryptography, identity based

encryption, pairing based cryptography, security protocol,

wireless sensor network

1 Introduction

A wireless sensor is a simple data sensing, computing, and

communicating device which is designed to be powered by

battery. As such, it has very limited memory capacity and

processing and communicating capabilities. Because of their

simple architecture, wireless sensor nodes are inexpensive and

can be deployed in large numbers cost-effectively in many

situations. A wireless sensor network (WSN) is a collection of

such sensor nodes that communicate wirelessly to collect

environmental data as well as monitor and control activities

within the environment. Specific applications of wireless

sensor networks include wildlife monitoring, seismic activity

monitoring, volcanic activity monitoring, target tracking,

battlefield reconnaissance and surveillance, and emergency

rescue operations [1].

As for operation of a typical wireless sensor network is

concerned, all sensor nodes communicate with their neighbors,

a base station as well as intermediate nodes such as cluster

heads. A base station is a relatively powerful computing and

communicating node which often acts as a gateway or a

storehouse of collected data. Figure 1 shows a typical

configuration of a wireless sensor network.

However, it is possible to have a complex communicating

configuration of a network with multiple base stations and

multiple levels of communications among the sensor nodes.

Security of a wireless sensor network is crucial as it is

typically deployed in an area where there is no physical

security thus making it very vulnerable for easy attacks [3, 4,

13, 17, 26]. It is very challenging to secure a wireless sensor

network mainly due to its resource-constrained sensor nodes

which cannot run the conventional cryptographic algorithms

or protocols that are being used to guarantee security of

traditional network communications. Data aggregation (ability

to aggregate reported values from other nodes) and passive

participation (ability to not send overhead values) are also the

crucial issues for sensor network security. Often implementing

security on resource-starved sensor devices imposes extra

computational and communication overhead that can be

Base Station

Cluster Head

Node

Figure 1: Typical wireless sensor network

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 281

viewed excessive in some applications. This is due to the fact

that a security application has to compete for resources with

the main application. As such, a lightweight yet effective

security solution is sought for wireless sensor networks.

Recent research on security of wireless sensor networks

has produced many promising results. For example, two

symmetric key algorithms, Skipjack and RC5 are found to be

very suitable for resource constrained wireless sensor

networks [11]. Similarly, elliptic curve based public key

cryptosystems (e.g., identity based encryption) are found to be

very promising for wireless sensor networks. A good number

of security schemes of significant performance using Skipjack,

RC5, Elliptic Curve Cryptography (ECC), and Identity Based

Encryption (IBE) for sensor network applications have been

proposed in literature [9, 16, 20, 23]. However, these

protocols are found to be deficient or not readily useful for

WSNs where nodes can migrate from one part of the network

to another, nodes need to be revoked from the network, or

new nodes to be added to the network. This is very true for

any mobile wireless sensor network. Indeed there are many

situations where mobility of sensor nodes cannot be avoided,

particularly for applications in any marine or aquatic

environment where water current or waves can displace sensor

nodes within a network.

One of the key challenges in mobile WSNs is how to

efficiently and securely gather data from sensor nodes while

minimizing energy consumption. In this regard, cluster based

hierarchical WSNs have been found to be very energy-

efficient [18]. Cluster based WSNs reduce energy

consumption on nodes by localizing data transmission within

a cluster and incorporating data aggregation in each cluster

head [8]. Since the cluster head requires more computation

and communication compared to a regular sensor node, it is

best for the cluster based networks to use a heterogeneous

design by incorporating and integrating more powerful cluster

heads with less powerful sensor nodes in the network. While

cluster based networks help to effectively gather data, but for

many applications data must also be transmitted securely. In

this work, we propose a new security protocol for semi-mobile

wireless sensor networks of hierarchical network

configuration.

We find that Identity-Based Encryption (IBE) based on

Elliptic Curve Cryptography (ECC) is very suitable for such

security applications in wireless sensor networks [9, 14, 20].

Some of the key challenges of key management may be easily

addressed using IBE. Cluster keys for nodes must be

established securely to assure that cluster keys have not been

compromised. We can establish cluster pairwise keys using

IBE to securely distribute these keys. IBE based on ECC can

also be used to effectively revoke compromised nodes by

updating the secret keys of non-compromised nodes. IBE uses

a hashing and mapping function with the identities of nodes to

establish pairwise keys. Thus, nodes do not need to

communicate to establish pairwise keys; they only need to

know identities of nodes with which they wish to

communicate. Since the identities of nodes are used to

establish pairwise keys, IBE can be used to provide a secure

protocol that is effective against a variety of attacks such as

the Sybil attack, node compromise, or cluster head

compromise. Accordingly, in this work, we propose a new

security protocol for key distribution and management in

wireless sensor networks.

The rest of the paper is organized as follows. In Section 2,

we review cluster based protocols and protocols that use IBE.

In Section 3, we state the assumptions for our protocol, MHIP

(Mobile Heterogeneous Identity based Protocol). In Section 4,

we provide a detailed description of our protocol. In Section 5,

we discuss how our protocol handles some common security

issues. In Section 6, we evaluate the performance of MHIP

before concluding in Section 7.

2 Related Works

Many security protocols already exist for wireless sensor

networks. In the following, we discuss some existing

significant protocols for wireless sensor networks.

SPINS (Security Protocols for Sensor Networks) is one of

the first and well-known security protocols developed for

wireless sensor networks using symmetric key cryptography

[17]. Perrig et al. proposed two security blocks in SPINs

which are Secure Network Encryption Protocol (SNEP) and

“micro” Timed Efficient Stream Loss-tolerant Authentication

(μTESLA). While SNEP provides data confidentiality, two-

party data authentication, and data freshness, μTESLA is

developed to provide authenticated broadcast for resource-

constrained environments. However, SPINs only deals with

three kinds of communication patterns: 1) Node to base

station, 2) Base station to node, and 3) Base station to all

nodes. In SPINS, each sensor node shares a pre-distributed

master secret key with the base station. All other keys are

bootstrapped from the initial master secret key. One of the

drawbacks of SPINS is that it does not consider different

security requirements for different types of messages, which

may reduce lifetime of sensor networks unnecessarily. For

example, routing control information may not require

confidentiality whereas sensor readings and aggregated

reports should be encrypted before they are sent to the base

station. Depending on the requirements, different security

mechanisms should be used for different types of messages in

wireless sensor networks since one single key mechanism is

not enough to satisfy different security requirements [26].

Also, SPINS does not support mobility of sensor nodes within

the network.

Another promising protocol is the Localized Encryption

and Authentication Protocol (LEAP) which is based on

symmetric key cryptography [26]. LEAP establishes four keys

for different types of communication. It has built-in node

revocation and also has cluster keys. The disadvantage is that

LEAP assumes a static network topology. It does allow for

additional nodes to be added to an already existing network

but assumes that once nodes enter the network their positions

never change. Depending on the density of the network,

LEAP can also incur relatively high storage costs.

TinySec is a security architecture which operates on the

data link layer. Unlike SPINS and LEAP, TinySec is not

limited to any keying mechanism [11]. TinySec uses a pair of

Skipjack keys to encrypt data and compute MACs of packets.

TinySec uses three different keying mechanisms to secure

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 282

sensor network applications: 1) Single network-wide key

shared by all the authorized sensor nodes in the network, 2)

Group key shared by a group of neighboring nodes, and 3)

Per-link key shared by each pair of sensor nodes. Each

mechanism has its own advantages and disadvantages. For

example, if any authorized node is compromised and the

network-wide key is revealed, an adversary can eavesdrop or

inject messages in the network. Being a link layer protocol,

TinySec does not have any mechanism to recover from such

compromises.

Many common deficiencies in symmetric key

cryptographic protocols for wireless sensor networks can be

overcome by using public key cryptography. However, some

good studies on applying public-key cryptographic schemes

on wireless sensor networks such as RSA and Diffie-Hellman

are found to be computationally intensive [24]. Relatively,

ECC is less computationally intensive compared to RSA for

the same level of security [15]. However, experiments show

that ECC based schemes with only software implementation

incur a delay up-to tens of seconds [22].

Fortunately, recent development on ECC has made

applications of identity based encryption possible for wireless

sensor networks particularly due to development of pairing

based cryptography using Weil and Tate pairing functions [2,

10, 19, 25]. In particular, TinyPBC based on IBE offers a way

to establish keys between nodes with no communication

overhead. This is a very useful feature since communication is

one of the biggest drains on battery life for sensor nodes. It

also allows for a mobile WSN since the keys do not have to be

established during the setup phase. Another benefit of this

protocol is that authentication is handled automatically. The

ability of a node to decrypt a message implies that the sender

is a member of the network. The disadvantage is that

TinyPBC offers no easy way to revoke a compromised node

from the network. Another flaw is that TinyPBC does not

establish an efficient way to establish cluster keys and thus

makes data aggregation more challenging.

In this work, we focus on heterogeneous hierarchically

structured networks because current research suggests that

they are more efficient and scale better than homogeneous

networks [7]. TinyIBE is a protocol already in existence for

heterogeneous networks using IBE [21]. However, TinyIBE is

extremely vulnerable to attacks on the cluster heads. This is

another issue we aim to resolve in our proposed protocol.

3 Assumptions

The following are the major assumptions regarding

development of our protocol for wireless sensor networks:

Mobility. For our protocol we assume a semi-mobile network,

in which the network topology changes gradually rather than

abruptly. This is a reasonable assumption for many

applications of WSNs. For instance, the nodes in a WSN

deployed in some aquatic environment may shift their

positions gradually with tide or water current. Such gradual

topological changes can cause some nodes to become

detached from their original cluster, which necessitates them

either to form a new cluster or join a different cluster. In our

protocol, we address the issue how nodes can be integrated to

an existing cluster or how a cluster can be formed in a secure

manner. This requires mutual authentication as well as

establishing new keys between a cluster head and a node.

Base Station’s Capacity. Another crucial assumption of our

proposed protocols is that the base station is unconditionally

secure and has unlimited energy and computational power

many times greater than the cluster heads. This is a typical

assumption for all existing security protocols for WSNs as it is

the case that the base station is normally housed in a

physically secure environment. Very often, the base station is

a dedicated standard desktop computer whose computational

power greatly exceeds that of a cluster head.

Heterogeneity of Nodes. We also assume sensors with higher

capabilities (H-sensors) to be cluster heads, and sensors with

lower capabilities (L-sensors) to be the normal cluster

members. In other words, we assume a heterogeneous WSN

where the capabilities of the sensor devices vary in terms of

computation power and energy requirement. Current research

has shown that this type of network is more scalable and has

increased life expectancy over a homogeneous WSN.

Topology. The topology of a wireless sensor network may not

be known in advance. Typically a WSN is deployed in an

inaccessible or hostile environment and sensor nodes are

airdropped. As such, the nodes cannot be carefully deployed

in a set pattern but are randomly scattered over the region of

interest. Accordingly, we identify the need for establishing

clusters immediately after deployment in secure manner.

Node Capture. In wireless sensor networks, adversaries can

compromise sensor nodes and use them to attack the networks.

With the ability of full control on compromised nodes, the

attackers can read all data stored in nodes’ memory including

information of secret keys. They can also change the behavior

of captured sensor nodes to inject malicious code into the

network. Although special secure memory devices can be

used to prevent attackers from reading compromised nodes’

memory, this solution considerably increases the cost of tiny

sensor nodes.

We assume that the nodes and cluster heads can be

captured, and in that case all data they contain would be

known to the adversary.

4 Proposed Security Protocol

The protocol uses Identity Based Encryption and implements

five distinct key types that are used for different purposes as

explained in the following. We use the following keys for

communication:

Global broadcast key. The primary use of this key is to send

some encrypted broadcast message by any node including the

base station and the cluster heads. Each node is preloaded

with this key before deployment. It is to be noted that the

global broadcast key should mostly be used for general

messages so its compromise should not greatly affect the

security of the network.

Unique key between a node and the base station. This is a

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 283

symmetric key shared between a node and the base station that

allows a node to communicate directly with the base station

and vice versa. Each node is preloaded with this key.

Cluster broadcast key. This is a cluster-specific broadcast key

primarily used by the corresponding cluster head to broadcast

an encrypted message to all nodes in the cluster. The key

cannot be preloaded in the nodes since clusters are formed

dynamically after deployment based on nodes’ positions.

Accordingly, the key is established immediately after

deployment.

Cluster pairwise key. The cluster pairwise key is an IBE key

that a node needs to communicate in private with any other

node within the cluster. This key is generated by the cluster

head for each specific node in the cluster.

Global pairwise key. This is a node specific IBE key that a

node can use to communicate privately with any other node

within the network. Each node is preloaded with this specific

key based on its identity.

The keys among the nodes are distributed or established in

two phases, namely, the pre-deployment phase and the post-

deployment phase. During the pre-deployment phase, sensor

nodes are also loaded with functions and parameters that are

necessary to establish other keys to handle mobility, addition,

and revocation of nodes. It is important to load sensor nodes

with keys, functions, and parameters as many as possible

before deployment so that a sensor node does not need to

spend energy and time to communicate with the base station

for such items. However, additional keys are needed to

provide cluster-specific security. Those keys and security

parameters can be established once clusters have been formed

by the network after deployment. In the following, we discuss

key distribution and establishment processes in two phases

and then examine how the protocol protects the network or

reacts to certain anomalies by utilizing the keys, functions,

and parameters.

4.1 Pre-deployment Phase

The base station generates a master secret key , a scalar and

two elliptic curves and that do not intersect. All nodes and

cluster heads are loaded with the following:

 : The unique identity of node .

 : A function that maps to a point on such as

 : A function that maps to a point on .

 : The global secret key of node which is computed by

the base station as . Essentially

 is a point on corresponding to node ’s identity and

obtained after point multiplication by a secret scalar .

Only the base station should know about .

 : A bilinear pairing function.

 : The unique symmetric key shared between node

 and the base station.

 : The global broadcast key.

 : A function that maps a point on an elliptic curve to a

scalar.

 : A timestamp embedded in an encrypted message by

node .

4.2 Post-deployment Phase

Once the network is deployed, the following steps are to be

executed to establish the additional keys that are needed to

handle cluster-specific security issues. In the following, we

examine how a node joins a cluster that has a cluster head .

As shown in Figure 2, the scheme involves three steps: 1) Key

parameters generation by cluster heads, 2) Cluster

membership and node authentication, and 3) cluster head

authentication.

4.2.1 Cluster Head Key Generation

It is to be noted that cluster head is preloaded with

necessary key parameters and functions just like any other

node. However, it needs to derive additional key parameters to

fulfill its role for secure communication within the cluster.

Initially, cluster head computes the cluster secret by

utilizing the function and its global secret key as:

 () . The cluster secret parameter, , is used to generate

the IBE keys for all nodes in the cluster. In addition, cluster

head also generates a random cluster broadcast key, .

Once these keys are generated, cluster head is ready to

receive nodes into the cluster. As shown in Figure 2, detailed

protocol steps 1.1 and 1.2 depict the process of cluster head

key generation.

4.2.2 Cluster Membership and Node Authentication

Organizing the nodes in a WSN into many disjoint clusters

facilitates management of security within the network,

particularly for damage control. The damage from a

compromised node in a cluster can be made limited to a single

cluster only. We assume that cluster head periodically sends

out beacon frames encrypted using the global broadcast key .

Upon receiving the broadcast message from cluster head ,

node decrypts the beacon message and sends an encrypted

request to cluster head to join. The request is encrypted

using the key . It is to be noted that is

known to node since .The properties of the

bilinear pairing function allow cluster head to decrypt the

message as it can derive the same key due to:

 () ()

 () . It is to noted that is known to cluster

head . If node 's identity is valid, cluster head computes

node 's cluster secret by which is essentially a

point on . The process also verifies node 's identity since

cluster head can successfully decrypt the encrypted request

sent by node . No separate communication on the part of

node is needed for the verification purpose. The protocol

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 284

steps 2.1, 3.1, and 3.2 in Figure 2 describe how a node can

join a cluster in secure manner.

It is to be noted that an impostor claiming to be node

might know since and can try to join the

cluster but it would be infeasible for the imposter to find

from due to the difficulty of the elliptic curve discrete

logarithm problem. Any attempt of using false in the

pairing function would lead to mismatching of the encryption

key used by the imposter and the one derived by cluster head

 . As a result, the imposter will be denied access to the cluster.

In the following we describe how cluster secret is

utilized to authenticate a cluster head . This mechanism

allows the network to defend against any false cluster head.

4.2.3 Cluster Head Authentication

A possible way to attack the network would be to use a

compromised L-sensor to masquerade as a cluster head. To

defend against such attacks, cluster head 's identity must be

verified. One way to verify the authenticity of a cluster head is

through the base station. It is to noted that the base station is

considered trustworthy in all situations in our protocol. When

cluster head receives the request from node , it sends an

encrypted message to the base station, , using the key .

The message will include , (cluster broadcast key), and

node 's identity. Since only cluster head and the base

station know , cluster head 's identity is authenticated.

The base station thus verifies that cluster head is indeed a

cluster head. Next the base station sends node an encrypted

message containing and using shared secret . Only

the base station and node know so this verifies that the

message is from the base station. If cluster head was an

impostor, then the base station would inform node of this

and revoke cluster head from the network. Protocol step 4.1

in Figure 2 describes how cluster head authentication is

performed.

At this point, node has all of the keys it needs to be a

member of the cluster. It can send and receive cluster

broadcasts. If it needs to communicate individually with a

node in the cluster, say node , it uses the key

 . If node 's position changes and another cluster

head is closer than node will request access to that cluster.

Once accepted, node has to erase all previous keys related to

the previous cluster. This ensures that if a node is captured the

adversary can only compromise one cluster.

It is to be noted that a node needs to communicate once

with the cluster head in its neighborhood to establish its

remaining cluster parameters and verify authenticity of the

cluster head. In this regard, the cluster key establishment

process is very energy-efficient for general sensor nodes.

4.2.4 Message Encryption and Decryption

The encryption and decryption schemes that we use in our

protocol are based on [2]. Messages sent are encrypted using a

simple exclusive-or function. Let be the pairwise key

between nodes and and be the message. Then the

encrypted message is Note that for pairwise keys

between nodes and can be computed as:

 () . Messages are decrypted by

applying the exclusive-or operation again as:

 .

4.3 Node Addition

As a network ages, its nodes will eventually stop functioning.

This may be due to depletion of the battery, environmental

damage, or physical damage by an adversary. In order to

extend the life of the network, there must be a secure way to

replenish the network with new nodes. Our protocol provides

a simple way to accomplish this task. The base station

preloads all new nodes the same way it does for the original

nodes. Once the new nodes are dropped into the network each

of them can request to join a cluster. A cluster head can

authenticate a requesting node using the process described in

1.1 Cluster head computes a cluster secret

 and chooses a random cluster broadcast

key, .

1.2 Cluster head broadcasts an encrypted beacon

message using global key as:

2.1 Upon receiving the beacon message from cluster

head , node decrypts the message and sends an

encrypted request to join the cluster using pairwise

key () as:

3.1 Upon receiving the request from node , cluster

head verifies authenticity of node by decrypting

the message using key ()and checking

the plaintext for successful decryption.

3.2 Cluster head computes a cluster secret for node

 as and then sends an encrypted

message to the base station as:

4.1 The base station verifies and authenticates

cluster head by decrypting successfully the

encrypted message received since it shares with

the cluster head and then sends node an encrypted

message using a shared key as:

Now node contains all the keys needed to secure

future communications.

Figure 2: Protocol steps for node addition

immediately after deployment

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 285

Section 4.2 and similarly, a new node can authenticate a

cluster head as described in the same section. The process can

be repeated as many times as needed to extend the life of the

deployed network. Any false node will not be able to join the

network because the corresponding cluster head will not be

able to decrypt its request to join and the message will be

ignored. There is no way an imposter node can pose as a valid

node because the adversary cannot know the master secret

and therefore, cannot know for any node.

5 Security Assessment and Key Management

WSNs are vulnerable to many different types of attacks.

Particularly if they are scattered throughout a hostile

environment, the physical compromise of individual nodes is

a very real threat. There are many attacks that can be

employed against WSNs [12]. In the following, we examine a

few of them and demonstrate how our protocol is able to

withstand them. We assume that using some monitoring or

intrusion detection mechanism, the base station or some other

supervisory station will be able to identify compromised

nodes and cluster heads within the deployed network.

5.1 Node Compromise

When a node in a cluster served by cluster head is

compromised, the adversary will be able to:

 Send encrypted messages within the cluster using as

well as correspondingly decrypt messages sent by other

nodes in the cluster using .

 Send encrypted messages using the cluster pairwise keys

and correspondingly decrypt messages sent by other

nodes using the cluster pairwise keys.

 Send encrypted messages using as well as decrypt any

message encrypted using .

 Send and receive encrypted messages from the base

station using .

 Join another cluster.

If detected on time, the damage due to a node compromise

can be made limited to a single cluster with some careful

considerations on the usage of the keys. The global broadcast

key should primarily be used for general messages so its

compromise should not greatly affect the security of the

network. Otherwise, a compromised node can pose as a base

station to take over the network by sending encrypted key

update messages using . Therefore, it is imperative that no

node should be allowed to modify any key parameters if

instructed to do so by an encrypted message using .

Alternatively, TESLA, a protocol proposed by Perrig et

al. to support authenticated broadcast in wireless sensor

network, can be used by the base station only if there is such a

need for extra security [17].

An adversary can use the captured information to create a

duplicate node and try to join another cluster. This can be

prevented by having the base station periodically scan the

network for duplicate node identities. The adversary cannot

create a node with a different identity with this information

because the adversary would not know the master secret .

Once a compromised node is detected, the following steps

are to be executed to restore and mange security in the

network by updating all relevant keys: 1) update master secret

key, 2) update cluster keys, and 3) update node keys. Figure 3

depicts the protocol steps that can be followed to recover the

network from a node compromise.

5.1.1 Update Master Secret Key

The master secret key and all other associated keys need to

be updated for recovery from node compromise. Accordingly,

the base station generates a random scalar, and a new global

broadcast key . It sends and to each cluster head

using . The base station then performs the computation

 . This value is the new master secret key. In Figure

3, protocol steps 1.1 and 1.2 describe the process for updating

the master secret.

5.1.2 Update Cluster Secret Keys

As stated in protocol step 1.2 in Figure 3, the base station

sends an encrypted message containing a secret scalar to all

cluster heads. Each cluster head receives the value and

performs the computation
 . This synchronizes their

master secret with that of the base station since

 . Then each cluster head updates its cluster

secret key by computing . After that, the cluster heads

in uncompromised clusters send and to their respective

nodes using their respective cluster broadcast key . In a

cluster with compromised nodes, the cluster head sends and

 to each uncompromised node using the bilinear pairwise

keys generated using . (This is acceptable because a

compromised node would not be able to decrypt pairwise

communication that is not sent to it.) If a node of the

compromised cluster is a subcluster head, then it resends the

message to members in its cluster group using its cluster

broadcast key (this process continues for all levels of

subclusters). Each cluster head updates its cluster pairwise

IBE key by computing
 . The update process for

cluster secret keys is shown in protocol steps 2.1 and 2.2 in

Figure 3.

5.1.3 Node Update and Key Deletion

As shown in protocol step 2.3 in Figure 3, a cluster head

broadcasts the value to all nodes in its cluster. Once a node

 receives from its cluster head, it computes
 and

 . This synchronizes the nodes to the new master key

held by the base station as stated above. It also synchronizes

the node to the new cluster key since

 . Once the cluster heads are done sending the new keys,

they delete all old keys. After the nodes finish the new key

computations, they delete all old keys as well. The base

station also deletes the key that it shares with the

compromised node . Protocol step 3.1 in Figure 3 shows the

process for key update by nodes.

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 286

Now the network is secure from the compromised node. It

no longer has the cluster or global broadcast keys, and it

cannot communicate with the base station using . If it

attempts to communicate with a node in its former cluster

using pairwise communication, the keys will no longer be the

same. For example, the compromised node attempts to

contact node :

 ,
 . For similar

reasons, the compromised node will not be able to request

access to another cluster.

5.2 Cluster Head Compromise

In the event that a cluster head is captured, the attacker can

sever all nodes in the cluster from the rest of the network.

Although the keys of the rest of the network can be updated

using the procedure described in Section 5.1, but the nodes in

the compromised cluster must be recovered by the base station

separately. To recover the nodes, the base station can attempt

to send a message notifying the nodes of the attack so they can

join a new cluster. The base station must know which nodes

belong to the compromised cluster.

The detailed protocol steps are shown in Figure 4. Once a

compromised cluster head is detected, the base station sends

an encrypted message using the base station to node key

for each node , notifying each node in that cluster of the

attack. If a node of the compromised cluster is a subcluster

head, then it resends the message to members in its cluster

group using its cluster broadcast key (this process

continues for all levels of subclusters). The message will also

contain a new global broadcast key and a new value that

is used to generate a new secret
 for each node. The

base station will also follow the node revocation scheme to

update the keys of the non-compromised nodes. The message

will reach the nodes if there is some node in a different cluster

that can route the messages to them. Otherwise, the nodes

would have to be recovered physically. If the message reaches

the nodes, then they will attempt to join a new cluster group

by either directly communicating with another cluster head or

by communicating to a cluster head using multi-hop routing.

Thus the nodes of a compromised cluster can be recovered by

the protocol.

5.3 False Cluster Head

In this attacking scenario, an attacker may mimic a cluster

head either without prior knowledge of the network or by

using a compromised node. In the following, we describe how

the network can be recovered from each case of security

breaches involving false cluster heads.

5.3.1 False Cluster Head with No Prior Network Knowledge

A node joins a cluster by responding to a beacon frame

broadcast by a cluster head. Since beacon frames are

encrypted, the attacker with no prior knowledge of the

network may only attempt to mimic another cluster head by

replaying captured beacon frames. However, the nodes

receiving the message will discard the frame since the

timestamp in the message will be older than the threshold

transmission time for beacon frames. It is to be noted that all

protocol messages are time-stamped as shown in Figures 2, 3,

and 4.

5.3.2 Compromised Node as Cluster Head

Each node, according to our protocol, has the global broadcast

key . As such a compromised node can advertise itself as a

new cluster head or as an existing cluster head (since all

identities are public). This type of attack may only occur

during the window in which the network keys of some of the

nodes have not yet been updated (see Section 5.1).

Nevertheless, such attacks will not succeed. If a node attempts

to join the new cluster, then attacking node must communicate

with the base station since the nodes receive their cluster keys

from the base station ultimately, as stated in protocol steps in

Figure 2. If the attacker sends a message to the base station,

then the base station will detect the attack by some duplicate

cluster head function or by noting that the attacker is not in the

list of approved cluster heads. If the attacking node posing as

cluster head does not communicate with the base station, then

the node will not receive any cluster key from it. After all of

the network keys have been updated by the recovery process,

the attacking node will no longer be able to communicate with

any other nodes.

5.4 Sybil Attack

Sybil attacks are defined by Douceur as “the forging of

multiple identities” on a network [6]. A Sybil attack may be

achieved by an attacker node presenting multiple identities to

other nodes or by duplicating a compromised node. Douceur

demonstrated that a central authentication authority is

1.1 The base station chooses a random number and

computes a new master secret where = .

1.2 The base station sends an encrypted message to

each cluster head as:

2.1 Each cluster head decrypts the message

received from the base station and computes

 , a new cluster key and , a new cluster

secret.

2.2 Cluster head containing the compromised node

in its cluster sends selectively a message to each non-

compromised node as:

2.3 Cluster head of each non-compromised cluster

broadcasts:

3.1 Upon receiving the message from the cluster

head, node decrypts the message and replaces

with , with
 where

 , and with

where
 .

Figure 3: Protocol steps for recovery from node

compromise

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 287

necessary to prevent Sybil attacks. In our protocol, we use the

base station as our trusted central authority. Because the keys

for the nodes in our network are authenticated by the base

station, an attacker may only attempt to execute a Sybil attack

by compromising an existing node.

If an attacker compromises a node, we assume that the

intrusion detection system will detect the attack. Then the base

station will commence the process described in Section 5.1

that deals with recovery from a node compromise. However,

signal interference may delay the update of network keys.

During this short period, an attacker may either attempt to

present multiple identities to cluster heads or to other nodes.

However, the attacker will not be successful since it can only

create bilinear pairwise key using the identity of the

compromised node. Alternatively, the attacker may try to

install duplicates of the compromised node in the network.

However, the compromised node would not be able join any

new clusters since the cluster node addition must be

authenticated by our central authority, the base station.

According to our protocol, such attempts for any unauthorized

node addition will fail.

5.5 Replay Attack

A replay attack refers to the replay of messages in a network.

We consider replay attacks in our protocol because it could be

used to drain the battery of a sensor node. An attacker could

replay messages that require a response. Then the recipient

would send out a response, expending energy. In addition,

some replayed messages can cause erroneous updates at nodes.

To prevent these scenarios, we require a clock based

timestamp to be placed on each message as discussed in [5].

We assume that the clocks of each node and cluster head are

initially synchronized with the base station. Let be the

normal discrepancy between the clock of the base station and

the local clock of any node or cluster head. Then a recipient

of a message may verify that a message has not been replayed

by confirming that | | .

6 Performance Evaluation

 In evaluating the performance of our protocols, we consider

three factors: storage costs, computation costs, and

communication costs. We consider these factors due to the

constraints of sensor nodes and to show the feasibility and

efficiency of our protocols.

6.1 Storage Costs

Memory requirement for storage of keys can be computed in

straight-forward manner. Each sensor node maintains five

keys: two of them are used for IBE and the remaining three

are for symmetric key cryptography. As reported in [14],

TinyPBC uses 272 bit keys for IBE, sufficient for providing

equivalent security that can be achieved using 128-bit

symmetric keys or 3072 RSA keys.

Thus, two of such keys require 544 bits. The other three

keys are standard 128 bit keys. That means the total space for

the keys is 928 bits or 116 bytes for each node. The amount of

space required for keys is constant and not dependent on the

number of nodes in the network. This makes our protocol

scalable for large networks. There is only one instance where

more storage space for keys would be necessary. That is, if a

pair of nodes does a great deal of communication that cannot

be broadcast with the cluster broadcast key. Instead of

performing the pairing computation every time the nodes

communicate, the nodes can set up a secret key between them.

The exact conditions for setting up a secret key can be

customized for each network based on the availability of

storage space and the computational power of the nodes.

In addition to storage for keys, each sensor node requires

TinyPBC to be loaded in its memory, which, according to [14],

requires 2867 bytes of stack, 368 bytes of RAM, and 47,948

bytes of ROM if implemented on an ATmega128L based

sensor node.

6.2 Computation Costs

Three of the five keys use a simple XOR function to encrypt

and decrypt. This is a simple computation and does not add

any significant amount of overhead. The cluster request and

cluster pairwise keys both require the computation of a

bilinear pairing function. This is a computationally expensive

1.1 The base station chooses a random number and

computes a new master secret .

1.2 The base station sends an encrypted message to each

cluster head except to the compromised cluster head

as:

2.1 Each cluster head decrypts the message received

from the base station and computes
 , a new

cluster key and , a new cluster secret.

2.2 Cluster head broadcasts a message to all nodes in

the cluster as:

3.1 Upon receiving the message from the cluster head,

node replaces with , with
 where

 ,

and with
 where

 .

a) Updating keys of nodes in non-compromised clusters

1.1 The base station sends an encrypted message to each

node in the cluster with the compromised cluster as:

2.1 Upon receiving the message from the base station,

node in the compromised cluster replaces with ,

 with
 where

 , and with
 where

 .

b) Updating keys of nodes in the compromised cluster

Figure 4: Protocol steps for recovery from cluster head

compromise

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 288

operation. Table 1 shows the number of bilinear pairing

operations to be done by a node, a cluster head, or the base

station under various situations. The bilinear pairing function

we consider is the same one used in the TinyPBC protocol

[14]. It is reported that it takes an ATmega128L node 1.90

seconds and a 13 MHz Imote2 node 0.14 seconds to evaluate

the pairing. Since the cluster request key is used only for the

purpose of joining a cluster, it will not be frequently used. The

cluster bilinear pairwise key will mainly be used for a node to

communicate with its cluster head. If the computation is

deemed too expensive then a secret key can be established

between a node and cluster head. This sacrifices storage space

so the trade-offs will have to be weighed for each application.

Table 1: Computation costs

 Number of Pairings

Node Cluster Head Base Station

Initial Setup 1 0

Migration of a

Node
1 1 0

Recovery from

Node

Compromise

0
or 0

0

Addition of a

Node
1 1 0

Recovery from

Cluster Head

Compromise

0 0 0

Note: * For the compromised cluster only.

6.3 Communication Costs

Communication is the biggest drain on the battery of a sensor

node. Because of this, keeping the communication overhead

low is vital for any WSN security protocol. Our protocol

requires low communication overhead to set up keys. We

consider the communication costs of various important

scenarios including cases for node addition, node compromise,

and cluster head compromise. Table 2 summarizes

communication costs in terms of number of communications

performed by a node, a cluster head, and the base station.

Initial setup. Immediately after deployment, all nodes must

communicate to establish their cluster membership and

corresponding keys and secrets. During this initial setup, as

shown Figure 2, node communicates only once with cluster

head (step 2.1) and cluster head communicates with base

station for each node in the cluster (step 3.1). If there are

nodes in the cluster for cluster head , then there are

communications done in all by cluster head . In addition, the

base station carries out step 4.1 in Figure 2 for each node. If

there are nodes in the network, there will be such

communications by the base station during the initial setup for

establishment of keys. Accordingly in Table 2, we provide

communications costs for a node, a cluster head and the base

station as 1, , and respectively for the initial setup phase.

In our protocol analysis for communication costs, we ignore

periodic beacon messages sent by cluster heads. Also,

communications performed by the base station to nodes can

be ignored from the consideration of communication costs

since the base station is typically connected to some external

power source or an easily renewable power source.

Node Migration or Addition. Addition of a new node or

migration of an existing node to a different cluster requires

carrying out steps 2.1, 3.1, 3.2, and 4.1 in the protocol as

described in Figure 2. Essentially a new or migratory node has

to send a message to a cluster head in response to a beacon

message broadcast by the cluster head (step 2.1). As a result, it

involves only one communication by the new or migratory

node. The corresponding cluster head has to communicate

only once to the base station to authenticate the new or

migratory node (step 3.2). Finally the base station

communicates with the new or migratory node (step 4.1) by

sending only one message. Table 2 summarizes the costs as

one communication for the new or migratory node, one

communication for the corresponding cluster head, and one

communication for the base station.

Table 2: Communication costs

 Number of Communications

Node Cluster Head Base Station

Initial Setup 1

Migration of a

Node
1 1 1

Recovery from

Node

Compromise

0
or 1

Addition of a

Node
1 2 2

Recovery from
Cluster Head

Compromise

0 1

Note: * For the compromised cluster only.

Recovery from Node Compromise. As shown in Figure 3, if

a node is compromised, the base station will have to

communicate with each cluster head. As a result, if there are

cluster heads in the network, the base station will send such

messages altogether as shown in step 1.2 of Figure 3.

Assuming there are nodes including the compromised node

in the cluster, the cluster head will have to send

messages to all uncompromised nodes (except the

compromised node) in its cluster to recover them. However, in

non-compromised clusters, each cluster head only needs to

broadcast a single message to all nodes in its own cluster. It is

to be noted that there is no communication required by a

sensor node in this case. Accordingly, Table 2 summarizes

message transmissions by the base station as and by a

cluster head as 1 or depending on whether the cluster

contains a compromised node or not. The communication cost

for a node in the recovery effort is 0 as shown in Table 2.

Recovery from Cluster Head Compromise. In the case of a

cluster head compromise, as depicted in the protocol in Figure

4, the base station has to recover all modes in the

compromised cluster (step 1.2 in Figure 4(b)) as well as all

other clusters (step 1.2 in Figure 4(a)). Thus,

altogether, the base station needs to send

messages. However, each cluster head has to send only one

broadcast message to all of its nodes just to forward the

message received from the base station (step 2.2). It is to be

noted that there is no need to communicate any messages by

the sensor nodes. Accordingly in Table 2, the communication

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 289

costs for a node, a cluster head and the base station are shown

as 0, 1, and respectively in terms of number of

message transmissions.

It is to be noted that for all situations mentioned above, a

sensor node does not need to communicate more than one

message.

7 Conclusion

A new security protocol for semi-mobile heterogeneous

wireless sensor networks is proposed based on pairing-based

cryptography. Specifically, we propose a new security

protocol for WSNs that can recover from any node or cluster

head compromise as well as support mobility of nodes within

the network. The protocol also allows addition of new nodes

in an existing network in secure manner so that the life of an

aging network can be extended without disruption of service.

The protocol makes use of five different keys to provide

security services within the network. These keys are needed to

secure communication between the base station and a cluster

head, between a cluster head and a node, among nodes within

a cluster, and between the base station and nodes in the

network. Our analysis shows that the proposed protocol is

storage and communication efficient and scales well to large

networks. Specifically, no more than one communication is

needed by an energy-constrained sensor node to execute the

protocol for a specific task, such as initial setup or recovery

from some attack. Our protocol can provide defenses against

several forms of attacks including Sybil attacks and replay

attacks. If comprised nodes or cluster heads are detected, our

protocol provides ways to recover the network from such

compromises.

Acknowledgements

This material is based upon work supported by the National

Science Foundation under Grant No. 1004902. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation of the

United States of America.

References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.

Cayirci, “Wireless sensor networks: a survey,” Computer

Networks, vol. 38, no. 4, pp. 393-422, 2002.

[2] D. Boneh and M. Franklin, “Identity based encryption

from the weil pairing,” Cryptology ePrint Archive, Report

2001/090, 2001. http://eprint.iacr.org/

[3] G. V. Crosby, L. Hester, and N. Pissinou, “Location-

aware, trust-based detection and isolation of

compromised nodes in wireless sensor networks,”

International Journal of Network Security, vol. 12, no. 2,

pp. 107-117, 2011.

[4] A. K. Das, “Improving identity-based random key

establishment scheme for large-scale hierarchical wireless

sensor networks,” International Journal of Network

Security, vol. 14, no. 1, pp. 1-21, 2012.

[5] D. E. Denning and G. M. Sacco, “Timestamps in key

distribution protocols,” Communications of the ACM, vol.

24, pp. 533-536, 1981.

[6] J. R. Douceur and J. S. Donath, “The sybil attack,” The

1st International Workshop on Peer-to-Peer Systems, pp.

251-260, 2002.

[7] E. J. Duarte-Melo and M. Liu, “The effect of organization

on energy consumption in wireless sensor networks,”

IEEE Global Communications Conference (Globecom),

2002.

[8] A Gupta, A. D. C. Mazieux, and M. Becker, “Effect of

topology on the performance of mobile heterogeneous

sensor networks,” The Sixth Annual Mediterranean Ad

Hoc Networking Workshop, pp. 100-105, Corfu, Greece,

2007.

[9] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to

Elliptic Curve Cryptography, Springer-Verlag, 2003.

[10] A. Joux, “The weil and tate pairings as building blocks

for public key cryptosystems,” ANTS-V: the 5th

International Symposium on Algorithmic Number Theory,

pp. 20-32, 2002.

[11] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link

layer security architecture for wireless sensor networks,”

The 2nd ACM SensSys, pp. 162-175, 2004.

[12] T.-G. Lupu, “Main types of attacks in wireless sensor

networks,” The 9th WSEAS International Conference on

Signal, Speech and Image processing, and 9th WSEAS

International Conference on Multimedia, Internet, and

Video Technologies (SSIP '09/MIV'09), pp. 180-185,

Wisconsin: World Scientific and Engineering Academy

and Society (WSEAS), 2009.

[13] M. Mana, M. Feham, and B. L. Bensaber, “Trust

management scheme for wireless body area networks,”

International Journal of Network Security, vol. 12, no. 2,

pp. 71-79, 2011.

[14] L. Oliveira, M. Scott, J. Lopez, and R. Dahab, “Tinypbc:

Pairings for authenticated identity-based non-interactive

key distribution in sensor networks,” The 5th

International Conference on Networked Sensing Systems,

pp. 173-180, 2008.

[15] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano, J.

L´opez, and R. Dahab, “TinyTate: Computing the tate

pairing in resource-constrained nodes,” The 6th IEEE

International Symposium on Network Computing and

Applications, pp. 318-323, 2007.

[16] G. Padmavathi and D. Shanmugapriya, “A survey of

attacks, security mechanisms and challenges in wireless

sensor networks,” CoRR, vol. abs/0909.0576, 2009.

[17] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.

Tygar, “SPINS: Security protocols for sensor networks,”

Wireless Networks, vol. 8, no. 5. pp. 521-534, 2004.

[18] R. Rajagopalan and P. K. Varshney, “Data aggregation

techniques in sensor networks: a survey,” IEEE

Communications Surveys and Tutorials, vol. 8, pp. 48-63,

2006.

[19] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems

based on pairing,” Symposium on Cryptography and

Information Security (SCIS’00), pp. 26-28, 2000.

International Journal of Network Security, Vol.15, No.4, PP.280-290, July 2013 290

[20] A. Shamir, “Identity-based cryptosystems and signature

schemes,” Advances in Cryptology (G. Blakley and D.

Chaum, eds.), Lecture Notes in Computer Science, vol.

196, pp. 47-53, New York: Springer-Verlag, 1985.

[21] P. Szczechowiak and M. Collier, “TinyIBE: Identity-

based encryption for heterogeneous sensor networks,”

The 5
th

 International Conference on Intelligent Sensors,

Sensor Networks and Information Processing (ISSNIP),

pp. 319-354, 2009.

[22] A.Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz,

“Energy analysis of public-key cryptography for wireless

sensor networks,” The Third IEEE International

Conference on Pervasive Computing and Communication

(PerCom 2005), Hawaii, 2005.

[23] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of

security issues in wireless sensor networks,” IEEE

Communications Surveys Tutorials, vol. 8, pp. 2-23, 2006.

[24] R. Watro, D. Kong, S.-F. Cuti, C. Gardiner, C. Lynn, and

P. Kruu, “TinyPK: securing sensor networks with public

key technology,” The 2nd ACM workshop on Security of

ad hoc and sensor networks, 2004.

[25] X. Xiong, D. Wong, and X. Deng, “TinyPairing: A fast

and lightweight pairing-based cryptographic library for

wireless sensor networks,” IEEE Wireless

Communications and Networking Conference (WCNC),

pp. 1-6, 2010.

[26] S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security

mechanisms for large-scale distributed sensor networks,”

The 10th ACM Conference on Computer and

Communication Security (CCS’03), pp. 62-72, ACM

Press, 2003.

Dulal Kar is currently an Associate Professor of Computer

Science in the School of Engineering and Computing Sciences

at Texas A&M University Corpus Christi, Texas, USA.

Previously, he was a faculty in the Department of Computer

Science at Virginia Polytechnic Institute and State University,

Virginia, USA; Mountain State University, West Virginia,

USA; and Bangladesh University of Engineering and

Technology, Bangladesh. He received the B.Sc.Engg. and the

M.Sc.Engg. degrees from Bangladesh University of

Engineering and Technology, Dhaka, Bangladesh and the MS

and the Ph.D. degrees from North Dakota State University,

Fargo, North Dakota. He is the lead editor of the reference

book, Network Security, Administration and Management:

Advancing Technology and Practice published by IGI Global

and an editorial board member of the International Journal of

Network and Computer Applications, a publication by

Elsevier. His research interests include wireless sensor

networks, signal and image processing algorithms, network

architecture and performance measurement, network and

information security, information retrieval, and educational

technology. He has published over fifty refereed journal and

conference articles in those areas. Many of his research works

have been funded by grants from NSF, NASA, and DoD of

the United States of America.

Rashad Tatum is currently pursuing his BS degree in

Computer Science and Mathematics at Southern Polytechnic

State University, Georgia, USA. He was an NSF (National

Science Foundation) undergraduate research participant for

the summer 2011 REU (Research Experience for

Undergraduates) program offered at Texas A&M University-

Corpus Christi. His future plans include research in

computational complexity, quantum computing, and

algorithms. He is a student member of the Association of

Computing Machinery (ACM) and the Mathematical

Association of America (MSA).

Keith Zejdlik received his BS degree in Mathematics from

Texas A&M University-Corpus Christi in 2011. He was an

NSF (National Science Foundation) undergraduate research

participant for the summer 2011 REU program offered at

Texas A&M University-Corpus Christi. He now works in the

IT department of Govind Development, an engineering firm

near Corpus Christi, Texas and plans to pursue an MS degree

in either Mathematics or Computer Science. His main

research interest is cryptography.

