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Abstract 

Security for mobile wireless sensor networks has many unique 

challenges. Existing security protocols have serious 

drawbacks revoking compromised nodes from the network, 

replenishing the network with new nodes in secure manner, 

and performing in network processing if nodes migrate from 

one cluster to another. In this work, we propose a new energy-

efficient protocol that provides security for a heterogeneous 

mobile WSN.  The protocol is based on Identity Based 

Encryption (IBE) which facilitates communication-efficient 

key establishment among the nodes in a WSN as well as 

revocation of compromised nodes from or addition of new 

nodes to the network. It also has a mechanism to recover the 

nodes of a compromised cluster and bind them to other 

neighboring clusters. The proposed protocol is scalable as the 

protocol's storage, communication, and computation 

overheads remain constant regardless of the size of the 

network. Our analysis of the protocol shows that it can 

provide security against various threats and attacks including 

the Sybil attack.  

Keywords: Elliptic curve cryptography, identity based 

encryption, pairing based cryptography, security protocol, 

wireless sensor network 

1   Introduction 

A wireless sensor is a simple data sensing, computing, and 

communicating device which is designed to be powered by 

battery. As such, it has very limited memory capacity and 

processing and communicating capabilities. Because of their 

simple architecture, wireless sensor nodes are inexpensive and 

can be deployed in large numbers cost-effectively in many 

situations. A wireless sensor network (WSN) is a collection of 

such sensor nodes that communicate wirelessly to collect 

environmental data as well as monitor and control activities 

within the environment. Specific applications of wireless 

sensor networks include wildlife monitoring, seismic activity 

monitoring, volcanic activity monitoring, target tracking, 

battlefield reconnaissance and surveillance, and emergency 

rescue operations [1]. 

As for operation of a typical wireless sensor network is 

concerned, all sensor nodes communicate with their neighbors, 

a base station as well as intermediate nodes such as cluster 

heads.  A base station is a relatively powerful computing and 

communicating node which often acts as a gateway or a 

storehouse of collected data. Figure 1 shows a typical 

configuration of a wireless sensor network.  

 

 

 

 

 

 

 

However, it is possible to have a complex communicating 

configuration of a network with multiple base stations and 

multiple levels of communications among the sensor nodes.  

Security of a wireless sensor network is crucial as it is 

typically deployed in an area where there is no physical 

security thus making it very vulnerable for easy attacks [3, 4, 

13, 17, 26]. It is very challenging to secure a wireless sensor 

network mainly due to its resource-constrained sensor nodes 

which cannot run the conventional cryptographic algorithms 

or protocols that are being used to guarantee security of 

traditional network communications. Data aggregation (ability 

to aggregate reported values from other nodes) and passive 

participation (ability to not send overhead values) are also the 

crucial issues for sensor network security. Often implementing 

security on resource-starved sensor devices imposes extra 

computational and communication overhead that can be 

Base Station 

Cluster Head 

Node 

Figure 1: Typical wireless sensor network 
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viewed excessive in some applications. This is due to the fact 

that a security application has to compete for resources with 

the main application. As such, a lightweight yet effective 

security solution is sought for wireless sensor networks.  

Recent research on security of wireless sensor networks 

has produced many promising results. For example, two 

symmetric key algorithms, Skipjack and RC5 are found to be 

very suitable for resource constrained wireless sensor 

networks [11]. Similarly, elliptic curve based public key 

cryptosystems (e.g., identity based encryption) are found to be 

very promising for wireless sensor networks. A good number 

of security schemes of significant performance using Skipjack, 

RC5, Elliptic Curve Cryptography (ECC), and Identity Based 

Encryption (IBE) for sensor network applications have been 

proposed in literature [9, 16, 20, 23]. However, these 

protocols are found to be deficient or not readily useful for 

WSNs where nodes can migrate from one part of the network 

to another, nodes need to be revoked from the network, or 

new nodes to be added to the network. This is very true for 

any mobile wireless sensor network. Indeed there are many 

situations where mobility of sensor nodes cannot be avoided, 

particularly for applications in any marine or aquatic 

environment where water current or waves can displace sensor 

nodes within a network. 

One of the key challenges in mobile WSNs is how to 

efficiently and securely gather data from sensor nodes while 

minimizing energy consumption. In this regard, cluster based 

hierarchical WSNs have been found to be very energy-

efficient [18]. Cluster based WSNs reduce energy 

consumption on nodes by localizing data transmission within 

a cluster and incorporating data aggregation in each cluster 

head [8]. Since the cluster head requires more computation 

and communication compared to a regular sensor node, it is 

best for the cluster based networks to use a heterogeneous 

design by incorporating and integrating more powerful cluster 

heads with less powerful sensor nodes in the network. While 

cluster based networks help to effectively gather data, but for 

many applications data must also be transmitted securely. In 

this work, we propose a new security protocol for semi-mobile 

wireless sensor networks of hierarchical network 

configuration. 

We find that Identity-Based Encryption (IBE) based on 

Elliptic Curve Cryptography (ECC) is very suitable for such 

security applications in wireless sensor networks [9, 14, 20]. 

Some of the key challenges of key management may be easily 

addressed using IBE. Cluster keys for nodes must be 

established securely to assure that cluster keys have not been 

compromised. We can establish cluster pairwise keys using 

IBE to securely distribute these keys. IBE based on ECC can 

also be used to effectively revoke compromised nodes by 

updating the secret keys of non-compromised nodes. IBE uses 

a hashing and mapping function with the identities of nodes to 

establish pairwise keys. Thus, nodes do not need to 

communicate to establish pairwise keys; they only need to 

know identities of nodes with which they wish to 

communicate. Since the identities of nodes are used to 

establish pairwise keys, IBE can be used to provide a secure 

protocol that is effective against a variety of attacks such as 

the Sybil attack, node compromise, or cluster head 

compromise. Accordingly, in this work, we propose a new 

security protocol for key distribution and management in 

wireless sensor networks.  

The rest of the paper is organized as follows. In Section 2, 

we review cluster based protocols and protocols that use IBE. 

In Section 3, we state the assumptions for our protocol, MHIP 

(Mobile Heterogeneous Identity based Protocol). In Section 4, 

we provide a detailed description of our protocol. In Section 5, 

we discuss how our protocol handles some common security 

issues. In Section 6, we evaluate the performance of MHIP 

before concluding in Section 7. 

2   Related Works 

Many security protocols already exist for wireless sensor 

networks. In the following, we discuss some existing 

significant protocols for wireless sensor networks. 

SPINS (Security Protocols for Sensor Networks) is one of 

the first and well-known security protocols developed for 

wireless sensor networks using symmetric key cryptography 

[17]. Perrig et al. proposed two security blocks in SPINs 

which are Secure Network Encryption Protocol (SNEP) and 

“micro” Timed Efficient Stream Loss-tolerant Authentication 

(μTESLA). While SNEP provides data confidentiality, two-

party data authentication, and data freshness, μTESLA is 

developed to provide authenticated broadcast for resource-

constrained environments. However, SPINs only deals with 

three kinds of communication patterns: 1) Node to base 

station, 2) Base station to node, and 3) Base station to all 

nodes. In SPINS, each sensor node shares a pre-distributed 

master secret key with the base station. All other keys are 

bootstrapped from the initial master secret key. One of the 

drawbacks of SPINS is that it does not consider different 

security requirements for different types of messages, which 

may reduce lifetime of sensor networks unnecessarily. For 

example, routing control information may not require 

confidentiality whereas sensor readings and aggregated 

reports should be encrypted before they are sent to the base 

station. Depending on the requirements, different security 

mechanisms should be used for different types of messages in 

wireless sensor networks since one single key mechanism is 

not enough to satisfy different security requirements [26]. 

Also, SPINS does not support mobility of sensor nodes within 

the network. 

Another promising protocol is the Localized Encryption 

and Authentication Protocol (LEAP) which is based on 

symmetric key cryptography [26]. LEAP establishes four keys 

for different types of communication. It has built-in node 

revocation and also has cluster keys. The disadvantage is that 

LEAP assumes a static network topology. It does allow for 

additional nodes to be added to an already existing network 

but assumes that once nodes enter the network their positions 

never change. Depending on the density of the network, 

LEAP can also incur relatively high storage costs. 

TinySec is a security architecture which operates on the 

data link layer. Unlike SPINS and LEAP, TinySec is not 

limited to any keying mechanism [11]. TinySec uses a pair of 

Skipjack keys to encrypt data and compute MACs of packets. 

TinySec uses three different keying mechanisms to secure 
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sensor network applications: 1) Single network-wide key 

shared by all the authorized sensor nodes in the network, 2) 

Group key shared by a group of neighboring nodes, and 3) 

Per-link key shared by each pair of sensor nodes. Each 

mechanism has its own advantages and disadvantages. For 

example, if any authorized node is compromised and the 

network-wide key is revealed, an adversary can eavesdrop or 

inject messages in the network. Being a link layer protocol, 

TinySec does not have any mechanism to recover from such 

compromises. 

Many common deficiencies in symmetric key 

cryptographic protocols for wireless sensor networks can be 

overcome by using public key cryptography. However, some 

good studies on applying public-key cryptographic schemes 

on wireless sensor networks such as RSA and Diffie-Hellman 

are found to be computationally intensive [24]. Relatively, 

ECC is less computationally intensive compared to RSA for 

the same level of security [15]. However, experiments show 

that ECC based schemes with only software implementation 

incur a delay up-to tens of seconds [22].  

Fortunately, recent development on ECC has made 

applications of identity based encryption possible for wireless 

sensor networks particularly due to development of pairing 

based cryptography using Weil and Tate pairing functions [2, 

10, 19, 25]. In particular, TinyPBC based on IBE offers a way 

to establish keys between nodes with no communication 

overhead. This is a very useful feature since communication is 

one of the biggest drains on battery life for sensor nodes. It 

also allows for a mobile WSN since the keys do not have to be 

established during the setup phase. Another benefit of this 

protocol is that authentication is handled automatically. The 

ability of a node to decrypt a message implies that the sender 

is a member of the network. The disadvantage is that 

TinyPBC offers no easy way to revoke a compromised node 

from the network. Another flaw is that TinyPBC does not 

establish an efficient way to establish cluster keys and thus 

makes data aggregation more challenging. 

In this work, we focus on heterogeneous hierarchically 

structured networks because current research suggests that 

they are more efficient and scale better than homogeneous 

networks [7]. TinyIBE is a protocol already in existence for 

heterogeneous networks using IBE [21]. However, TinyIBE is 

extremely vulnerable to attacks on the cluster heads. This is 

another issue we aim to resolve in our proposed protocol.  

3  Assumptions 

The following are the major assumptions regarding 

development of our protocol for wireless sensor networks: 
 

Mobility. For our protocol we assume a semi-mobile network, 

in which the network topology changes gradually rather than 

abruptly. This is a reasonable assumption for many 

applications of WSNs. For instance, the nodes in a WSN 

deployed in some aquatic environment may shift their 

positions gradually with tide or water current. Such gradual 

topological changes can cause some nodes to become 

detached from their original cluster, which necessitates them 

either to form a new cluster or join a different cluster. In our 

protocol, we address the issue how nodes can be integrated to 

an existing cluster or how a cluster can be formed in a secure 

manner. This requires mutual authentication as well as 

establishing new keys between a cluster head and a node.   

 

Base Station’s Capacity. Another crucial assumption of our 

proposed protocols is that the base station is unconditionally 

secure and has unlimited energy and computational power 

many times greater than the cluster heads. This is a typical 

assumption for all existing security protocols for WSNs as it is 

the case that the base station is normally housed in a 

physically secure environment. Very often, the base station is 

a dedicated standard desktop computer whose computational 

power greatly exceeds that of a cluster head.  

 

Heterogeneity of Nodes. We also assume sensors with higher 

capabilities (H-sensors) to be cluster heads, and sensors with 

lower capabilities (L-sensors) to be the normal cluster 

members. In other words, we assume a heterogeneous WSN 

where the capabilities of the sensor devices vary in terms of 

computation power and energy requirement. Current research 

has shown that this type of network is more scalable and has 

increased life expectancy over a homogeneous WSN.  

 

Topology. The topology of a wireless sensor network may not 

be known in advance. Typically a WSN is deployed in an 

inaccessible or hostile environment and sensor nodes are 

airdropped. As such, the nodes cannot be carefully deployed 

in a set pattern but are randomly scattered over the region of 

interest. Accordingly, we identify the need for establishing 

clusters immediately after deployment in secure manner.  

 

Node Capture. In wireless sensor networks, adversaries can 

compromise sensor nodes and use them to attack the networks. 

With the ability of full control on compromised nodes, the 

attackers can read all data stored in nodes’ memory including 

information of secret keys. They can also change the behavior 

of captured sensor nodes to inject malicious code into the 

network. Although special secure memory devices can be 

used to prevent attackers from reading compromised nodes’ 

memory, this solution considerably increases the cost of tiny 

sensor nodes. 

We assume that the nodes and cluster heads can be 

captured, and in that case all data they contain would be 

known to the adversary. 

4   Proposed Security Protocol 

The protocol uses Identity Based Encryption and implements 

five distinct key types that are used for different purposes as 

explained in the following. We use the following keys for 

communication:  

Global broadcast key.  The primary use of this key is to send 

some encrypted broadcast message by any node including the 

base station and the cluster heads. Each node is preloaded 

with this key before deployment. It is to be noted that the 

global broadcast key   should mostly be used for general 

messages so its compromise should not greatly affect the 

security of the network. 

 

Unique key between a node and the base station. This is a 
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symmetric key shared between a node and the base station that 

allows a node to communicate directly with the base station 

and vice versa. Each node is preloaded with this key. 

 

Cluster broadcast key. This is a cluster-specific broadcast key 

primarily used by the corresponding cluster head to broadcast 

an encrypted message to all nodes in the cluster. The key 

cannot be preloaded in the nodes since clusters are formed 

dynamically after deployment based on nodes’ positions. 

Accordingly, the key is established immediately after 

deployment. 

 

Cluster pairwise key. The cluster pairwise key is an IBE key 

that a node needs to communicate in private with any other 

node within the cluster. This key is generated by the cluster 

head for each specific node in the cluster. 

 

Global pairwise key. This is a node specific IBE key that a 

node can use to communicate privately with any other node 

within the network. Each node is preloaded with this specific 

key based on its identity. 

The keys among the nodes are distributed or established in 

two phases, namely, the pre-deployment phase and the post-

deployment phase. During the pre-deployment phase, sensor 

nodes are also loaded with functions and parameters that are 

necessary to establish other keys to handle mobility, addition, 

and revocation of nodes. It is important to load sensor nodes 

with keys, functions, and parameters as many as possible 

before deployment so that a sensor node does not need to 

spend energy and time to communicate with the base station 

for such items. However, additional keys are needed to 

provide cluster-specific security. Those keys and security 

parameters can be established once clusters have been formed 

by the network after deployment. In the following, we discuss 

key distribution and establishment processes in two phases 

and then examine how the protocol protects the network or 

reacts to certain anomalies by utilizing the keys, functions, 

and parameters. 

4.1 Pre-deployment Phase 

The base station generates a master secret key  , a scalar and 

two elliptic curves   and   that do not intersect. All nodes and 

cluster heads are loaded with the following: 

    : The unique identity of node  . 

  : A function that maps     to a point    on   such as 

          

  : A function that maps     to a point on  . 

   : The global secret key of node   which is computed by 

the base station as                . Essentially 

   is a point on   corresponding to node  ’s identity and 

obtained after point multiplication by a secret scalar  . 

Only the base station should know about  . 

  : A bilinear pairing function. 

   : The unique symmetric key shared between node 

  and the base station. 

  : The global broadcast key. 

  : A function that maps a point on an elliptic curve to a 

scalar. 

   : A timestamp embedded in an encrypted message by 

node  .  

4.2 Post-deployment Phase 

Once the network is deployed, the following steps are to be 

executed to establish the additional keys that are needed to 

handle cluster-specific security issues. In the following, we 

examine how a node   joins a cluster that has a cluster head  . 

As shown in Figure 2, the scheme involves three steps: 1) Key 

parameters generation by cluster heads, 2) Cluster 

membership and node authentication, and 3) cluster head 

authentication. 

4.2.1 Cluster Head Key Generation 

It is to be noted that cluster head   is preloaded with 

necessary key parameters and functions just like any other 

node. However, it needs to derive additional key parameters to 

fulfill its role for secure communication within the cluster. 

Initially, cluster head   computes the cluster secret   by 

utilizing the function   and its global secret key    as: 

 (  )   . The cluster secret parameter,  , is used to generate 

the IBE keys for all nodes in the cluster. In addition, cluster 

head   also generates a random cluster broadcast key,   . 

Once these keys are generated, cluster head   is ready to 

receive nodes into the cluster. As shown in Figure 2, detailed 

protocol steps 1.1 and 1.2 depict the process of cluster head 

key generation. 

4.2.2 Cluster Membership and Node Authentication 

Organizing the nodes in a WSN into many disjoint clusters 

facilitates management of security within the network, 

particularly for damage control. The damage from a 

compromised node in a cluster can be made limited to a single 

cluster only. We assume that cluster head   periodically sends 

out beacon frames encrypted using the global broadcast key   . 

Upon receiving the broadcast message from cluster head  , 

node   decrypts the beacon message and sends an encrypted 

request to cluster head    to join. The request is encrypted 

using the key              . It is to be noted that    is 

known to node   since          .The properties of the 

bilinear pairing function allow cluster head   to decrypt the 

message as it can derive the same key due to:     

 (     )   (      )          
          

  

 (     )     . It is to noted that    is known to cluster 

head  . If node  's identity is valid, cluster head   computes 

node  's cluster secret by            which is essentially a 

point on  . The process also verifies node  's identity since 

cluster head   can successfully decrypt the encrypted request 

sent by node  . No separate communication on the part of 

node   is needed for the verification purpose. The protocol 
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steps 2.1, 3.1, and 3.2 in Figure 2 describe how a node can 

join a cluster in secure manner. 

It is to be noted that an impostor claiming to be node   

might know     since          and can try to join the 

cluster but it would be infeasible for the imposter to find    

from     due to the difficulty of the elliptic curve discrete 

logarithm problem. Any attempt of using false    in the 

pairing function would lead to mismatching of the encryption 

key used by the imposter and the one derived by cluster head 

 . As a result, the imposter will be denied access to the cluster. 

In the following we describe how cluster secret    is 

utilized to authenticate a cluster head  . This mechanism 

allows the network to defend against any false cluster head. 

4.2.3 Cluster Head Authentication 

A possible way to attack the network would be to use a 

compromised L-sensor to masquerade as a cluster head. To 

defend against such attacks, cluster head  's identity must be 

verified. One way to verify the authenticity of a cluster head is 

through the base station. It is to noted that the base station is 

considered trustworthy in all situations in our protocol. When 

cluster head   receives the request from node  , it sends an 

encrypted message to the base station,  , using the key   . 

The message will include   ,    (cluster broadcast key), and 

node  's identity. Since only cluster head   and the base 

station know   , cluster head  's identity is authenticated. 

The base station thus verifies that cluster head   is indeed a 

cluster head. Next the base station sends node   an encrypted 

message containing    and    using shared secret   . Only 

the base station and node   know    so this verifies that the 

message is from the base station. If cluster head   was an 

impostor, then the base station would inform node   of this 

and revoke cluster head   from the network. Protocol step 4.1 

in Figure 2 describes how cluster head authentication is 

performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At this point, node   has all of the keys it needs to be a 

member of the cluster. It can send and receive cluster 

broadcasts. If it needs to communicate individually with a 

node in the cluster, say node  , it uses the key 

                             
          

  
         . If node  's position changes and another cluster 

head is closer than node   will request access to that cluster. 

Once accepted, node   has to erase all previous keys related to 

the previous cluster. This ensures that if a node is captured the 

adversary can only compromise one cluster. 

It is to be noted that a node needs to communicate once 

with the cluster head in its neighborhood to establish its 

remaining cluster parameters and verify authenticity of the 

cluster head. In this regard, the cluster key establishment 

process is very energy-efficient for general sensor nodes. 

4.2.4 Message Encryption and Decryption 

The encryption and decryption schemes that we use in our 

protocol are based on [2]. Messages sent are encrypted using a 

simple exclusive-or function. Let   be the pairwise key 

between nodes   and   and   be the message. Then the 

encrypted message is        Note that for pairwise keys 

between nodes   and  can be computed as:   

 (        )            . Messages are decrypted by 

applying the exclusive-or operation again as: 

               . 

4.3 Node Addition 

As a network ages, its nodes will eventually stop functioning. 

This may be due to depletion of the battery, environmental 

damage, or physical damage by an adversary. In order to 

extend the life of the network, there must be a secure way to 

replenish the network with new nodes. Our protocol provides 

a simple way to accomplish this task. The base station 

preloads all new nodes the same way it does for the original 

nodes. Once the new nodes are dropped into the network each 

of them can request to join a cluster. A cluster head can 

authenticate a requesting node using the process described in 

 

             

1.1 Cluster head   computes a cluster secret  

        and chooses a random cluster broadcast 

key,   . 

1.2 Cluster head   broadcasts an encrypted beacon 

message   using global key   as: 

                   
 

2.1 Upon receiving the beacon message from cluster 

head  , node   decrypts the message and sends an 

encrypted request   to join the cluster using pairwise 

key      (     ) as: 

                     
 

3.1 Upon receiving the request from node  , cluster 

head   verifies authenticity of node   by decrypting 

the message using key      (     )and checking 

the plaintext for successful decryption. 

3.2 Cluster head   computes a cluster secret for node  

  as            and then sends an encrypted 

message to the base station   as: 

                    
 

4.1 The base station verifies and authenticates 

cluster head   by decrypting successfully the 

encrypted message received since it shares    with 

the cluster head and then sends node   an encrypted 

message using a shared key    as: 

Now node   contains all the keys needed to secure 

future communications. 

Figure 2: Protocol steps for node addition 

immediately after deployment 
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Section 4.2 and similarly, a new node can authenticate a 

cluster head as described in the same section.  The process can 

be repeated as many times as needed to extend the life of the 

deployed network. Any false node will not be able to join the 

network because the corresponding cluster head will not be 

able to decrypt its request to join and the message will be 

ignored. There is no way an imposter node can pose as a valid 

node because the adversary cannot know the master secret   

and therefore, cannot know    for any node. 

5   Security Assessment and Key Management 

WSNs are vulnerable to many different types of attacks. 

Particularly if they are scattered throughout a hostile 

environment, the physical compromise of individual nodes is 

a very real threat. There are many attacks that can be 

employed against WSNs [12]. In the following, we examine a 

few of them and demonstrate how our protocol is able to 

withstand them. We assume that using some monitoring or 

intrusion detection mechanism, the base station or some other 

supervisory station will be able to identify compromised 

nodes and cluster heads within the deployed network. 

5.1 Node Compromise 

When a node   in a cluster served by cluster head   is 

compromised, the adversary will be able to: 

 Send encrypted messages within the cluster using    as 

well as correspondingly decrypt messages sent by other 

nodes in the cluster using   . 

 Send encrypted messages using the cluster pairwise keys 

and correspondingly decrypt messages sent by other 

nodes using the cluster pairwise keys. 

 Send encrypted messages using   as well as decrypt any 

message encrypted using  . 

 Send and receive encrypted messages from the base 

station using   . 

 Join another cluster. 

If detected on time, the damage due to a node compromise 

can be made limited to a single cluster with some careful 

considerations on the usage of the keys.  The global broadcast 

key   should primarily be used for general messages so its 

compromise should not greatly affect the security of the 

network. Otherwise, a compromised node can pose as a base 

station to take over the network by sending encrypted key 

update messages using  . Therefore, it is imperative that no 

node should be allowed to modify any key parameters if 

instructed to do so by an encrypted message using  .  

Alternatively,  TESLA, a protocol proposed by Perrig et 

al. to support authenticated broadcast in wireless sensor 

network, can be used by the base station only if there is such a 

need for extra security [17]. 

An adversary can use the captured information to create a 

duplicate node and try to join another cluster. This can be 

prevented by having the base station periodically scan the 

network for duplicate node identities. The adversary cannot 

create a node with a different identity with this information 

because the adversary would not know the master secret  . 

Once a compromised node is detected, the following steps 

are to be executed to restore and mange security in the 

network by updating all relevant keys: 1) update master secret 

key, 2) update cluster keys, and 3) update node keys. Figure 3 

depicts the protocol steps that can be followed to recover the 

network from a node compromise. 

5.1.1 Update Master Secret Key 

The master secret key   and all other associated keys need to 

be updated for recovery from node compromise. Accordingly, 

the base station generates a random scalar,   and a new global 

broadcast key   . It sends   and    to each cluster head   

using   . The base station then performs the computation 

     . This     value is the new master secret key. In Figure 

3, protocol steps 1.1 and 1.2 describe the process for updating 

the master secret. 

5.1.2 Update Cluster Secret Keys 

As stated in protocol step 1.2 in Figure 3, the base station 

sends an encrypted message containing a secret scalar   to all 

cluster heads. Each cluster head   receives the   value and 

performs the computation       
 . This synchronizes their 

master secret with that of the base station since    
      

         .  Then each cluster head   updates its cluster 

secret key by computing      . After that, the cluster heads 

in uncompromised clusters send   and    to their respective 

nodes using their respective cluster broadcast key   . In a 

cluster with compromised nodes, the cluster head sends   and 

   to each uncompromised node using the bilinear pairwise 

keys generated using   . (This is acceptable because a 

compromised node would not be able to decrypt pairwise 

communication that is not sent to it.) If a node of the 

compromised cluster is a subcluster head, then it resends the 

message to members in its cluster group using its cluster 

broadcast key    (this process continues for all levels of 

subclusters).   Each cluster head   updates its cluster pairwise 

IBE key by computing       
 . The update process for 

cluster secret keys is shown in protocol steps 2.1 and 2.2 in 

Figure 3. 

5.1.3 Node Update and Key Deletion 

As shown in protocol step 2.3 in Figure 3, a cluster head 

broadcasts the   value to all nodes in its cluster. Once a node 

  receives   from its cluster head, it computes       
  and 

      
 . This synchronizes the nodes to the new master key 

held by the base station as stated above. It also synchronizes 

the node to the new cluster key since   
           

    . Once the cluster heads are done sending the new keys, 

they delete all old keys. After the nodes finish the new key 

computations, they delete all old keys as well. The base 

station also deletes the key    that it shares with the 

compromised node  . Protocol step 3.1 in Figure 3 shows the 

process for key update by nodes. 
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Now the network is secure from the compromised node. It 

no longer has the cluster or global broadcast keys, and it 

cannot communicate with the base station using   . If it 

attempts to communicate with a node in its former cluster 

using pairwise communication, the keys will no longer be the 

same. For example, the compromised node   attempts to 

contact node  : 

    ,                         
         . For similar 

reasons, the compromised node will not be able to request 

access to another cluster. 

5.2 Cluster Head Compromise 

In the event that a cluster head is captured, the attacker can 

sever all nodes in the cluster from the rest of the network. 

Although the keys of the rest of the network can be updated 

using the procedure described in Section 5.1, but the nodes in 

the compromised cluster must be recovered by the base station 

separately. To recover the nodes, the base station can attempt 

to send a message notifying the nodes of the attack so they can 

join a new cluster. The base station must know which nodes 

belong to the compromised cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The detailed protocol steps are shown in Figure 4.  Once a 

compromised cluster head is detected, the base station sends 

an encrypted message using the base station to node key    

for each node  , notifying each node in that cluster of the 

attack. If a node of the compromised cluster is a subcluster 

head, then it resends the message to members in its cluster 

group using its cluster broadcast key    (this process 

continues for all levels of subclusters). The message will also 

contain a new global broadcast key    and a new   value that 

is used to generate a new secret   
      for each node. The 

base station will also follow the node revocation scheme to 

update the keys of the non-compromised nodes. The message 

will reach the nodes if there is some node in a different cluster 

that can route the messages to them. Otherwise, the nodes 

would have to be recovered physically. If the message reaches 

the nodes, then they will attempt to join a new cluster group 

by either directly communicating with another cluster head or 

by communicating to a cluster head using multi-hop routing. 

Thus the nodes of a compromised cluster can be recovered by 

the protocol. 

5.3 False Cluster Head 

In this attacking scenario, an attacker may mimic a cluster 

head either without prior knowledge of the network or by 

using a compromised node. In the following, we describe how 

the network can be recovered from each case of security 

breaches involving false cluster heads.  

5.3.1 False Cluster Head with No Prior Network Knowledge 

A node joins a cluster by responding to a beacon frame 

broadcast by a cluster head. Since beacon frames are 

encrypted, the attacker with no prior knowledge of the 

network may only attempt to mimic another cluster head by 

replaying captured beacon frames. However, the nodes 

receiving the message will discard the frame since the 

timestamp in the message will be older than the threshold 

transmission time for beacon frames. It is to be noted that all 

protocol messages are time-stamped as shown in Figures 2, 3, 

and 4. 

5.3.2 Compromised Node as Cluster Head 

Each node, according to our protocol, has the global broadcast 

key  . As such a compromised node can advertise itself as a 

new cluster head or as an existing cluster head (since all 

identities are public). This type of attack may only occur 

during the window in which the network keys of some of the 

nodes have not yet been updated (see Section 5.1). 

Nevertheless, such attacks will not succeed. If a node attempts 

to join the new cluster, then attacking node must communicate 

with the base station since the nodes receive their cluster keys 

from the base station ultimately, as stated in protocol steps in 

Figure 2. If the attacker sends a message to the base station, 

then the base station will detect the attack by some duplicate 

cluster head function or by noting that the attacker is not in the 

list of approved cluster heads. If the attacking node posing as 

cluster head does not communicate with the base station, then 

the node will not receive any cluster key from it. After all of 

the network keys have been updated by the recovery process, 

the attacking node will no longer be able to communicate with 

any other nodes. 

5.4 Sybil Attack 

Sybil attacks are defined by Douceur as “the forging of 

multiple identities” on a network [6]. A Sybil attack may be 

achieved by an attacker node presenting multiple identities to 

other nodes or by duplicating a compromised node. Douceur 

demonstrated that a central authentication authority is 

 

                 
 

1.1 The base station chooses a random number   and 

computes a new master secret   where    =   . 

1.2 The base station sends an encrypted message to 

each cluster head   as: 

                   
    

                 
 

2.1 Each cluster head   decrypts the message 

received from the base station and computes     

  
 , a new cluster key and      , a new cluster 

secret. 

2.2 Cluster head   containing the compromised node 

in its cluster sends selectively a message to each non-

compromised node   as: 

2.3 Cluster head   of each non-compromised cluster 

broadcasts: 

3.1 Upon receiving the message from the cluster 

head, node   decrypts the message and replaces   

with   ,    with   
  where   

     , and    with   
  

where   
     . 

 
Figure 3: Protocol steps for recovery from node 

compromise 
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necessary to prevent Sybil attacks. In our protocol, we use the 

base station as our trusted central authority. Because the keys 

for the nodes in our network are authenticated by the base 

station, an attacker may only attempt to execute a Sybil attack 

by compromising an existing node.  

If an attacker compromises a node, we assume that the 

intrusion detection system will detect the attack. Then the base 

station will commence the process described in Section 5.1 

that deals with recovery from a node compromise. However, 

signal interference may delay the update of network keys. 

During this short period, an attacker may either attempt to 

present multiple identities to cluster heads or to other nodes. 

However, the attacker will not be successful since it can only 

create bilinear pairwise key using the identity of the 

compromised node. Alternatively, the attacker may try to 

install duplicates of the compromised node in the network. 

However, the compromised node would not be able join any 

new clusters since the cluster node addition must be 

authenticated by our central authority, the base station. 

According to our protocol, such attempts for any unauthorized 

node addition will fail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Replay Attack 

A replay attack refers to the replay of messages in a network. 

We consider replay attacks in our protocol because it could be 

used to drain the battery of a sensor node. An attacker could 

replay messages that require a response. Then the recipient 

would send out a response, expending energy. In addition, 

some replayed messages can cause erroneous updates at nodes. 

To prevent these scenarios, we require a clock based 

timestamp   to be placed on each message as discussed in [5]. 

We assume that the clocks of each node and cluster head are 

initially synchronized with the base station. Let    be the 

normal discrepancy between the clock of the base station and 

the local clock   of any node or cluster head. Then a recipient 

of a message may verify that a message has not been replayed 

by confirming that |   |    . 

6  Performance Evaluation 

  In evaluating the performance of our protocols, we consider 

three factors: storage costs, computation costs, and 

communication costs. We consider these factors due to the 

constraints of sensor nodes and to show the feasibility and 

efficiency of our protocols.  

6.1 Storage Costs 

Memory requirement for storage of keys can be computed in 

straight-forward manner. Each sensor node maintains five 

keys: two of them are used for IBE and the remaining three 

are for symmetric key cryptography. As reported in [14], 

TinyPBC uses 272 bit keys for IBE, sufficient for providing 

equivalent security that can be achieved using 128-bit 

symmetric keys or 3072 RSA keys. 

Thus, two of such keys require 544 bits. The other three 

keys are standard 128 bit keys. That means the total space for 

the keys is 928 bits or 116 bytes for each node. The amount of 

space required for keys is constant and not dependent on the 

number of nodes in the network. This makes our protocol 

scalable for large networks. There is only one instance where 

more storage space for keys would be necessary. That is, if a 

pair of nodes does a great deal of communication that cannot 

be broadcast with the cluster broadcast key. Instead of 

performing the pairing computation every time the nodes 

communicate, the nodes can set up a secret key between them. 

The exact conditions for setting up a secret key can be 

customized for each network based on the availability of 

storage space and the computational power of the nodes. 

In addition to storage for keys, each sensor node requires 

TinyPBC to be loaded in its memory, which, according to [14], 

requires 2867 bytes of stack, 368 bytes of RAM, and 47,948 

bytes of ROM if implemented on an ATmega128L based 

sensor node.   

6.2 Computation Costs 

Three of the five keys use a simple XOR function to encrypt 

and decrypt. This is a simple computation and does not add 

any significant amount of overhead. The cluster request and 

cluster pairwise keys both require the computation of a 

bilinear pairing function. This is a computationally expensive 

 

                 
 

1.1 The base station chooses a random number   and 

computes a new master secret      . 

1.2 The base station sends an encrypted message to each 

cluster head   except to the compromised cluster head 

as: 

 

 

                 
 

2.1 Each cluster head   decrypts the message received 

from the base station and computes        
 , a new 

cluster key and       , a new cluster secret.  

2.2 Cluster head   broadcasts a message to all nodes in 

the cluster as: 

 

3.1 Upon receiving the message from the cluster head, 

node   replaces   with   ,    with   
  where   

      , 

and    with   
  where    
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a) Updating keys of nodes in non-compromised clusters 

 

 

                  
 

1.1 The base station sends an encrypted message to each 

node   in the cluster with the compromised cluster as: 

 

2.1 Upon receiving the message from the base station, 

node   in the compromised cluster replaces   with   , 

   with   
  where   

      , and    with   
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     . 

 
b) Updating keys of nodes in the compromised cluster 

 

Figure 4: Protocol steps for recovery from cluster head 

compromise 
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operation. Table 1 shows the number of bilinear pairing 

operations to be done by a node, a cluster head, or the base 

station under various situations. The bilinear pairing function 

we consider is the same one used in the TinyPBC protocol 

[14]. It is reported that it takes an ATmega128L node 1.90 

seconds and a 13 MHz Imote2 node 0.14 seconds to evaluate 

the pairing. Since the cluster request key is used only for the 

purpose of joining a cluster, it will not be frequently used. The 

cluster bilinear pairwise key will mainly be used for a node to 

communicate with its cluster head. If the computation is 

deemed too expensive then a secret key can be established 

between a node and cluster head. This sacrifices storage space 

so the trade-offs will have to be weighed for each application. 

Table 1: Computation costs 

 Number of Pairings 

Node Cluster Head Base Station 

Initial Setup 1   0 

Migration of a 

Node 
1 1 0 

Recovery from 

Node 

Compromise 

0        
or 0 

0 

Addition of a 

Node 
1 1 0 

Recovery from 

Cluster Head 

Compromise 

0 0 0 

Note: * For the compromised cluster only. 

6.3 Communication Costs 

Communication is the biggest drain on the battery of a sensor 

node. Because of this, keeping the communication overhead 

low is vital for any WSN security protocol. Our protocol 

requires low communication overhead to set up keys. We 

consider the communication costs of various important 

scenarios including cases for node addition, node compromise, 

and cluster head compromise. Table 2 summarizes 

communication costs in terms of number of communications 

performed by a node, a cluster head, and the base station. 

Initial setup. Immediately after deployment, all nodes must 

communicate to establish their cluster membership and 

corresponding keys and secrets. During this initial setup, as 

shown Figure 2, node   communicates only once with cluster 

head   (step 2.1) and cluster head   communicates with base 

station   for each node in the cluster (step 3.1). If there are   

nodes in the cluster for cluster head  , then there are   

communications done in all by cluster head  . In addition, the 

base station carries out step 4.1 in Figure 2 for each node. If 

there are   nodes in the network, there will be   such 

communications by the base station during the initial setup for 

establishment of keys. Accordingly in Table 2, we provide 

communications costs for a node, a cluster head and the base 

station as 1,  , and   respectively for the initial setup phase. 

In our protocol analysis for communication costs, we ignore 

periodic beacon messages sent by cluster heads. Also, 

communications performed by the base station to nodes can 

be ignored from the consideration of communication costs 

since the base station is typically connected to some external 

power source or an easily renewable power source.  

Node Migration or Addition.  Addition of a new node or 

migration of an existing node to a different cluster requires 

carrying out steps 2.1, 3.1, 3.2, and 4.1 in the protocol as 

described in Figure 2. Essentially a new or migratory node has 

to send a message to a cluster head in response to a beacon 

message broadcast by the cluster head (step 2.1). As a result, it 

involves only one communication by the new or migratory 

node. The corresponding cluster head has to communicate 

only once to the base station to authenticate the new or 

migratory node (step 3.2). Finally the base station 

communicates with the new or migratory node (step 4.1) by 

sending only one message. Table 2 summarizes the costs as 

one communication for the new or migratory node, one 

communication for the corresponding cluster head, and one 

communication for the base station. 

Table 2: Communication costs 

 Number of Communications 

Node Cluster Head Base Station 

Initial Setup 1     

Migration of a 

Node 
1 1 1 

Recovery from 

Node 

Compromise 

0        
or 1 

  

Addition of a 

Node 
1 2 2 

Recovery from 
Cluster Head 

Compromise 

0 1         

Note: * For the compromised cluster only. 

Recovery from Node Compromise. As shown in Figure 3, if 

a node is compromised, the base station will have to 

communicate with each cluster head. As a result, if there are   

cluster heads in the network, the base station will send   such 

messages altogether as shown in step 1.2 of Figure 3. 

Assuming there are   nodes including the compromised node 

in the cluster, the cluster head will have to send       

messages to all       uncompromised nodes (except the 

compromised node) in its cluster to recover them. However, in 

non-compromised clusters, each cluster head only needs to 

broadcast a single message to all nodes in its own cluster. It is 

to be noted that there is no communication required by a 

sensor node in this case. Accordingly, Table 2 summarizes 

message transmissions by the base station as    and by a 

cluster head as 1 or       depending on whether the cluster 

contains a compromised node or not. The communication cost 

for a node in the recovery effort is 0 as shown in Table 2. 

Recovery from Cluster Head Compromise. In the case of a 

cluster head compromise, as depicted in the protocol in Figure 

4, the base station has to recover all   modes in the 

compromised cluster (step 1.2 in Figure 4(b)) as well as all 

other       clusters (step 1.2 in Figure 4(a)). Thus, 

altogether, the base station needs to send         

messages. However, each cluster head has to send only one 

broadcast message to all of its nodes just to forward the 

message received from the base station (step 2.2). It is to be 

noted that there is no need to communicate any messages by 

the sensor nodes. Accordingly in Table 2, the communication 
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costs for a node, a cluster head and the base station are shown 

as 0, 1, and          respectively in terms of number of 

message transmissions. 

It is to be noted that for all situations mentioned above, a 

sensor node does not need to communicate more than one 

message. 

7   Conclusion 

A new security protocol for semi-mobile heterogeneous 

wireless sensor networks is proposed based on pairing-based 

cryptography. Specifically, we propose a new security 

protocol for WSNs that can recover from any node or cluster 

head compromise as well as support mobility of nodes within 

the network. The protocol also allows addition of new nodes 

in an existing network in secure manner so that the life of an 

aging network can be extended without disruption of service. 

The protocol makes use of five different keys to provide 

security services within the network. These keys are needed to 

secure communication between the base station and a cluster 

head, between a cluster head and a node, among nodes within 

a cluster, and between the base station and nodes in the 

network. Our analysis shows that the proposed protocol is 

storage and communication efficient and scales well to large 

networks. Specifically, no more than one communication is 

needed by an energy-constrained sensor node to execute the 

protocol for a specific task, such as initial setup or recovery 

from some attack. Our protocol can provide defenses against 

several forms of attacks including Sybil attacks and replay 

attacks. If comprised nodes or cluster heads are detected, our 

protocol provides ways to recover the network from such 

compromises.  
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