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Abstract

The paper presents a variant of ICM on integer field when
the factors of the group are known and small. This is
achieved through the properties of Smooth numbers of
±1 over Z∗

p . The ICM has two steps, such as a pre-
computation and an individual logarithm computation.
The pre-computation step is to compute the logarithms
of a subset of a group and the individual logarithm step
is to find the DLP using the pre-computed logarithms.
The algorithm presented in the paper for ICM is a com-
bination of Pohlig-Hellman, which is the popular attack
on the groups of order with all small factors and the tra-
ditional ICM. In the present study we show the substan-
tial performance improvement of ICM for the problems
of size upto ≈ 150 bits on Pentium 4 machine. The anal-
ysis presented in the paper is considered as useful to re-
cover ephemeral keys used in the cryptosystems like text
book ElGamal and Chang and Chang three party pass-
word key exchange protocol to name a few. One way of
recovering the ephemeral key is to solve the DLP. Since
the ephemeral keys are dynamic and change for every ses-
sion, once the discrete logarithms of a subset of a group
is known, the DLP for the ephemeral key can be obtained
by using the individual logarithm step. Therefore, the
ephemeral keys are recovered by using the individual log-
arithm step proposed in the present study.

Keywords: Index calculus method, Pohlig-Hellman
method, smooth numbers of ±1 over Z∗

p

1 Introduction

The Index Calculus Method (ICM) is the most effec-
tive method to solve the Discrete Logarithm Problem
(DLP). Many public key cryptosystems are based on the
intractability of DLP. The DLP defined over a prime field
Z∗
p of random prime (p) is considered in the present study.

For a given prime p, a generator g ∈ Z∗
p and an ele-

ment y ∈ Z∗
p , the problem of finding x, in the range of

0 ≤ x ≤ p− 2, such that gx = y (mod p), is known as the
DLP. The security assumption of cryptosystem based on
DLP is, one way function : an attacker cannot recover x
from g and gx. Many cryptographic schemes rely on the
assumption that the DLP is hard, to name a few, Diffie-
Hellman key exchange [7], ElGamal public key cryptosys-
tems [8] and the digital signature algorithm. The compar-
ison between signatures are narrated in [28]. Some of the
attacks on the DLP are discussed below. Apart from the
exponential time algorithms the Pohlig-Hellman method
is a popular attack [23], which reduces the DLP in a field
to small subgroups and combines the results using Chi-
nese Remainder Theorem. The DLP can be computed in
the sub exponential time using the ICM. The ICM uses
a fixed small set called the factor base B and tries to
write the elements as a product of members of the factor
base B [15]. The base consists of objects which are small
and irreducible. In a prime field Fp, where we identify the
field elements with integers in 0, 1, · · · , p− 1, a factor base
consists of all prime numbers less than some prescribed
bound. In a field of characteristic 2, F2n , where we write
field elements as polynomials of degree < n, a factor base
consists of all irreducible polynomials of degree less than
some prescribed bound. The algorithm has two steps:

• A pre-computation step, where the logarithms of logbg
of all members of the factor base is obtained.

• A computation step, which tries enough gay until
the result factors over the factor base, thus providing
the requested logarithm loggy [24, 25].

The pre-computation step itself has two phases:

1) First phase is to find linear relations relating the log-
arithms of the primes in the factor base.
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2) Second phase is to solve these logarithms using tech-
niques from linear algebra.

Coppersmith and Odlyzko [5] presented three versions
of index calculus method. Later LaMacchia and Odlyzko
[13] reported the implementation of two of these three
versions namely, linear sieve and Gaussian integer meth-
ods. An implementation of cubic sieve method is re-
ported by Abhijit Das and Veni Madhavan [6]. Even
for the primitive approach one can obtain running time
bound of the form exp((c + o(1))(log p)

1
2 (log log p)

1
2 ) for

some constant c [14]. Research is in progress in obtain-
ing better values for c. For fields GF (q) with q = pn for
small p, Coppersmith’s algorithm offered running time
exp((C−o(1)))(log q)

1
3 (loglogq)

2
3 ) for a positive constant

C [18]. For some fields GF (q) with q = pn in which both
p and n grew even bounds of the first form were not avail-
able [17, 19]. Another variant of index calculus method
is number sieve field and it has heuristic running time of
the form exp((c+o(1))(log p)

1
3 (log log p)

2
3 ) [9, 24, 26, 27].

The main concept associated with index calculus
method is smoothness property of integers. The distribu-
tion of smooth integers are studied extensively [10, 11, 12].
Berstein presented a tight bounds on the distribution of
smooth integers [2], a linear time algorithm to list y-
smooth integer up to x and smooth part of integers [1]
and several algorithms for number of integers free of large
prime factors.

The present study extends the Smooth number defi-
nition on integers and presents a detailed study on the
distribution of Smooth numbers of ±1 over Z∗

p on dif-
ferent types of primes, which are classified based on the
order of the group. These characteristics lead to develop a
new method for solving the DLP with the combination of
Pohlig-Hellman and Index Calculus Method. It is known
that Pohlig-Hellman can be applicable when factors of
p − 1 are small, in the present work the adaptability of
ICM on the above group is studied. The main concept
of index calculus method is, with known logarithms of a
subset of a group, logarithm of any element can be com-
puted. In the present work the pre-computation phase is
designed and analyzed in such a way to built an efficient
individual logarithm phase with the help of the properties
of Smooth numbers of ±1 over Z∗

p . This leads to recover
the ephemeral keys used Chang and Chang three party
password key exchange protocol.

The rest of the paper is organized as follows, the follow-
ing section reviews the Pohlig-Hellman and Index Calcu-
lus Methods. Section 3 describes the concept of Smooth
integers of ±1 over Z∗

p and the analysis on the smoothness
property of different types of primes. Section 4 presents
the algorithms for index calculus method to solve the
DLP. Section 5 discusses the results and the concluding
remarks are made in Section 6.

2 General Algorithm for Pohlig
Hellman and Index Calculus
Method

2.1 Pohlig-Hellman Algorithm

This is an algorithm introduced by Pohlig-Hellman. If
the order of the group is known along with the complete
factorization and the factors are relatively small then this
attack is possible.
Let p− 1 = pe11 pe22 · · · pekk and g be the generator of order
p− 1. Then

gx = y mod p.

The above equation can be reduced into

αx = β mod p,

where α is g
( p−1

p
e1
1

)
, g

( p−1

p
e2
2

)
, · · · , g

( p−1

p
ek
k

)
and β is

y
( p−1

p
e1
1

)
, y

( p−1

p
e2
2

)
, · · · , y

( p−1

p
ek
k

)
.

The logarithm in the small subgroups are solved by
using one of the popular square root algorithms. Later
the Chinese Remainder Method is used to combine the
results xi mod peii to retrieve x mod p.

2.2 Index Calculus Method

The Index Calculus Methods are the most prominent col-
lection of algorithms that have successfully used addi-
tional knowledge of the underlying groups to provide sub
exponential algorithms. The basic idea, which goes back
to Kraitchik [15] is that if

m∏
i−1

xi =
n∏

j−1

yi

for some elements of GF (q)∗, then

m∑
i−1

logg xi ≡
n∑

j−1

logg yj mod (q − 1).

If we obtain many equations of the above form, and they
do not involve too many xi and yi, then the system can
be solved.

The algorithm has two steps:

• A pre-computation step, where the logarithms of
logg b of all members of the factor base is obtained,
where g is the generator and b is the element in the
factor base.

• A computation step, which tries enough gay until the
result factors over the factor base, thus providing the
requested logarithm logg y, where y is the element for
which the logarithm to be computed [25].

The pre-computation step itself has two phases:
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• First phase is to find the linear relations relating the
logarithms of the primes in the factor base.

• Second phase is to solve this linear system using tech-
niques from linear algebra.

The general algorithm for traditional ICM is described
below [3].

2.2.1 General Algorithm for ICM

INPUT a generator g of a cyclic group G of order n i.e.,
p− 1 and an element y.
OUTPUT logyg .

• pre-computation step:

– Select a factor base S={ p1, p2, ....pt }, which
belongs to G such that a significant portion of
elements of G can be efficiently expressed as a
products of elements from S.

– Find a linear system using the procedure as
given below:

1) Select a random integer k, such that 0 ≤
k ≤ n− 1 and compute gk.

2) Try to write gk as a product of elements in
S as

gk =
t∏

i=1

pcii , ci > 0, for any k.

Then,

k ≡
t∑

i=1

ci logg pi.

3) Repeat the above steps to get the value of
t+ c equations.

– The linear system is reduced into smaller size
using structured Gaussian method. This step is
optional one and used when a large system is
generated in the previous step.

– Solve this linear system to obtain logg pi.

• Computation step:

– Compute logg y:

1) Select a random integer, k, (0 ≤ k ≤ n− 1)
and compute ygk.

2) Try to write ygk as a product of elements
in S:

ygk =
t∏

i=1

pdi
i , for any k.

Then,

logg y = (
t∑

i=1

di logg pi − k) mod n.

3 Properties of Smooth Numbers
of ±1 over Z∗

p

Definition 1. Smooth number.
An integer is called as Y smooth, if it has no prime divi-
sors larger than some bound Y . For example 2,3,4,6,8,9
are 3 smooth numbers.

Definition 2. Let R1 is the relation defined on field el-
ements of Z∗

p such that for any a ∈ Z∗
p , b ∈ Z∗

p ab ≡
1 mod p. Let R2 be the relation defined on Z∗

p element
such that for any a ∈ Z∗

p , b ∈ Z∗
p ab ≡ −1 mod p.

Definition 3. A quadruple is defined on Z∗
p field elements

based on the relations R1 and R2.

Example 1. Let s be the set of quadruple {a1, a2, a3, a4}
such that a1R1a2 a3R1a4a1R2a3a2R1a4.

Definition 4. Smooth number of ±1 over Z∗
p :

Let Z∗
p is a multiplication group of prime field and B be a

factor base ∈ Z∗
p . Then a quadruple s is B smooth on ±1

over Z∗
p , if it satisfies the following relations. Let a ∈ B

and b, e, f ∈ Z∗
p then ab ≡ 1, ef ≡ 1, ae ≡ −1, bf ≡ −1.

S ={s|s is B smooth on ±1 over Z∗
p } is denoted as a

Smooth number set on ±1 over Z∗
p .

Theorem 1. The field elements of Z∗
p forms a set of

quadruples of disjoint sets.

Proof. Let x, y, z ∈ Z∗
p and x ̸= ±1 and xy ≡ 1; y ≡ x

′
;

xz ≡ −1; z ≡ −y; y.z ≡ −1; z ≡ −x;−x.z ≡ 1; z ≡ −y.
If x = ±1; 1.1 ≡ 1,−1. − 1 ≡ 1, 1. − 1 ≡ −1. Since
x

′ ̸= −x
′
, x ̸= −x, y

′ ̸= −y
′
, y ̸= −y and x ̸= y except

for ±1 over Z∗
p . Hence xR1y;xR2− y, yR1x; yR2−x and

−xR1 − y.

Proposition 1. Let x ∈ Zp* and y ∈ Zp∗. If x ̸= y and
xR1y then xR2 − y, yR2 − x,−xR1 − y.

Proof. Follows the above proof.

Proposition 2. Let x ∈ Z∗
p and y ∈ Z∗

p . If x=y and
xy ≡ 1modp, then xR1xxR2 − x.

Proof. Follows the above proof.

Next we require a function from the quadruple set in
Z∗
p/ ∼ to some set of representatives R. Since the present

study is on the prime field, a suitable function for our
purpose is the elements generated from the generator g,
each one represents one quadruple and a map, say ϕ on
Z∗
p/ ∼. Let us denote [g] as a quadruple of the generator

and the experiments show that the map

ϕ : [g] → Z∗
p/ ∼

can be defined by
gi → R,

where R is a representative of a quadruple and i is in the
range 1 ≤ i ≤ ⌈(p− 1− 2)/4⌉.
The following section describes the characteristics of
smooth numbers ±1 over Z∗

p .
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3.1 Distribution of Smooth Numbers ±1
over Z∗

p on Different Types of Primes

The distribution of smooth numbers ±1 over Z∗
p is studied

on different types of primes. The primes are classified
based on the factors of p− 1 as described below.

Type 1: The prime p with p−1 = 2q,where q is a prime.

Type 2: The prime p with p − 1 = 2q1q2,where q1 and
q2 are prime.

Type 3: The prime p with p − 1 = 2qn, where q is a
prime.

Type 4: The prime p with p − 1 = 2nq, where q is a
prime.

Type 5: The prime p with p − 1 = 2mqn,where q is a
prime.

Theorem 2. Let p be a prime of the form 2q + 1. Let S
be the smooth number set over Z∗

p . Let Q be a quadruple
∈ S. If one pair of elements in Q consists of generators
then the other pair contains non generators of order q. If
one pair is 1 the other pair is -1.

Proof. Let Q be the quadruple ((x, y)(−x,−y)) with re-
lation R1 R2 such that xR1y,−xR1−y, xR2−y, yR2−x.

1) Let x be a non generator:

xq ≡ 1 mod p;

−xq ≡ −1.

This shows −x is generator. Let y be a generator.

yq ≡ 1 mod p;

−yq ≡ −1.

where, −y is a non generator.

2) Let x be an identity element, the quadruple is
((1, 1) (−1,−1)).

Corollary 1. Let p be a prime of the form 2q1q2 + 1
and S be the smooth number set over Z∗

p . Let Q be a
quadruple ∈ S. Then the pairs in Q have the following
characteristics:

1) If one pair of elements in Q consists of generators
then the other pair contains non generators of order
q1q2.

2) If one pair of elements in Q is of order q1 or q2 then
the other pair contains non generators of order 2q or
2q2.

3) If one pair is 1 another pair is -1.

This can be easily proven from 1 and 2 of Theorem 2.

Corollary 2. Let p be a prime of the form 2qn + 1.
Let S be the smooth number set over Z∗

p . Let Q be a
quadruple ∈ S.

1) If one pair of elements in Q is of order qi, where i
varies from 1 to n− 1 then the other pair is of order
2qi.

2) If one pair of elements in Q is of generators then the
other pair is of order qn.

3) If one pair is 1, another pair is -1.

This also can be proven from 1 and 2 of Theorem 2.

Theorem 3. The prime p of the form 2nq + 1.
Let S be the smooth number set over Z∗

p . Let Q be a
quadruple ∈ S.

1) If one pair of elements in Q is of order q then the
other pair is non generators of order 2q.

2) If one pair of elements in Q is of order 2iq where i
varies from 2 to n then the other pair is also of order
2iq.

3) If one pair is of order 2i, where i varies from 1 to n
then another pair is also of order 2i.

4) If one pair is 1, another pair is -1.

Proof.

1) This follows the Proof 1 of Theorem 2.

2) Let x be the element of order 2iq where i varies from
2 to n.

x
2iq
2 ≡ x2i−1q ≡ −1 mod p;

−x
2iq
2 ≡ −1.

This shows −x is an element of order 2iq. Let y be
the element of order 2iq where i varies from 2 to n:

ry
2iq
2 ≡ x2i−1q ≡ −1 mod p;

−y
2iq
2 ≡ −1.

This shows −y is an element of order 2iq.

3) Let x be the element of order 2i where i varies from
1 to n:

x
2i

2 ≡ x2i−1

≡ −1 mod p;

−x
2i

2 ≡ −1.

This shows −x is an element of order 2i. Let y be
the element of order 2i where i varies from 1 to n:

y
2i

2 ≡ x2i−1

≡ −1 mod p;

−y
2i

2 ≡ −1.

This shows −y is an element of order 2i.
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4) If one pair is 1, another pair is -1.

Corollary 3. Let p be a prime of the form 2nqm1 + 1; S
be the smooth number set over Z∗

p ; Q be a quadruple ∈ S:

1) If one pair of elements in Q is of order 2i, where i
varies from 1 to n then the other pair is also of order
2i.

2) If one pair of elements in Q is of order qi, where i
varies from 1 to m then the other pair is the order
2qi.

3) If one pair of elements in Q is of order 2iqk, where
i varies from 2 to n and k varies from 1 to m. then
the other pair is the order 2iqk.

4) If one pair is 1, another pair is -1.

Proof.

1) This is easily proven from 3 of Theorem 3.

2) This follows from 1 of Theorem 2.

3) This follows from 2 of Theorem 3.

3.2 Results and Discussion

From the above theorems, it is observed that, in the first
type of primes, the set of quadruples are formed by the
pair of generators and non generators. In the second types
of primes, when one pair of the quadruple is of order q1
or q2 then the another pair is of order 2q1 or 2q2. Simi-
larly, when one pair of the quadruple is a generator, then
the another pair is non generator of order 2q1q2. In the
third type of problems the quadruples are formed by the
pairs of generator and the elements of order qn or ele-
ments of order 2qi and the elements of order qi, where i
varies from 1 to n− 1. The fourth kind of primes exhibit
different characteristics, such as the classes are pairs of
either generators or non generators. The non generators
of order 2iq forms quadruple with non generators of order
2iq, where i varies from 2 to n− 1. The other choices are
the combination of elements of order q with 2q and the
pairs of elements of order 2i, where i varies from 2 to n.
The final type problems are combination of all the above.
If one pair of elements is (2i),where i varies from 1 to n
then the another pair is of order 2i. If one pair of elements
is (qi),where i varies from 1 to m then the another pair
is of order 2qi. If one pair of elements is (2iqk), where
i varies from 2 to n and k varies from 1 to m then the
another pair is of order 2iqk.

The main conclusion is the quadruples exhibit different
characteristics on different types of primes. Through our
experimental results we found that the quadruples can be
mapped using ϕ and R from the generators of the group as
well as the generators of subgroups. A class ((a, b)(e, f))

forms the relations as log a+ log b ≡ 0 or log e+ log f ≡ 0
and log a+ log e ≡ log−1 or log b+ log f ≡ log−1. Once
the logarithm of any one of the above elements is known,
the logarithms of other elements can be solved easily, since
the logarithm of ±1 is known. At the same time to solve
a set of, say m, quadruples with 4m elements, logarithm
of m unknowns to be solved. This principle is used in the
following methods to solve the DLP.

In the present study two ways of performing pre-
computation phase and three ways of computing individ-
ual logarithm phase is studied. In the finite field Z∗

p the
pre-computation is to compute the logarithms of first-t
primes, which are treated as m unknowns as discussed
above. In the first type of pre-computation phase, the
logarithms of first-t primes are computed using Pohlig-
Hellman method and the individual logarithm phase is
performed either using Pohlig-Hellman or the general
third phase of index calculus method. In the second type,
the logarithms of elements of each subgroups are stored in
a list using the distribution of smooth numbers of ±1 over
Z∗
p and the individual logarithm is only the Chinese Re-

mainder Theorem phase. The following Table 1 presents
the details of methods studied in the present work.

The above analysis is useful in obtaining the value of
ephemeral key k used in the cryptosystem like text book
El Gamal for every communication between Bob and Al-
ice. Once the pre-computation phase is completed. The
value of k can be retrieved easily using above mentioned
methods. Since g and y are public, c1 and c2 are known
and the value of k is computed using the individual loga-
rithm phase, the message can be obtained easily.

The following algorithms presents the two types of pre-
computation phase. The second method is designed with
the help of distribution of smooth number of ±1 over Z∗

p .
Since the quadruples are disjoint sets, the logarithms of el-
ements of subgroups are computed by forming the quadru-
ples of subgroup elements. These logarithms are stored in
a list. The number of group operation needed to compute
the quadruples for each subgroup is relatively less, since
from the properties of smooth numbers of ±1 over Z∗

p ,
it is observed that the quadruples can be formed by the
generator.

4 Algorithms for ICM

In this section the above discussed methods for ICM are
addressed. The Algorithm 1 presents the Method-1 and
Algorithm 2 addresses the Method-2. Algorithm 1 is a
naive approach to find the logarithms of first-t primes us-
ing Pohlig-Hellman method. The Steps 1 to 3 form the
quadruples from the primes in the factor base. Steps 4 to
6 form the relations from the quadruples. Steps 7 to 14
are for finding the logarithms of primes in the factor base
using Pohlig-Hellman method. Finally step 15 is to solve
the logarithms of elements in the relations by using the
logarithms of primes in the factor base. The Algorithm 2
takes the advantage of the distribution of smooth num-
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Table 1: Methods for index calculus method

Methods Pre-computation phase Individual logarithm phase
General third phase Pohlig-Hellman method CRT

Method-1 Pohlig-Hellman
√ √

×
Method-2 Using smooth number ±1 over Z∗

p × ×
√

bers over Z∗
p . The logarithms of elements of subgroups

are computed by using the classes formed from the gen-
erator of the subgroups. This is achieved through the
mapping function ϕ and the representative R. Steps 1
to 7 are to find the number of iteration needed to form
the quadruples for each subgroups. This is based on the
order of the subgroups. The number of iterations, say A,
is pi

4 , when the subgroup is of order 2n and pi

2 for other
cases, where pi is the order of the subgroup. Step 9 is to
generate the subgroup element from the generator of sub-
group. Steps 10 to 13 are to form the quadruples and to
find the logarithms of elements in the quadruples. Final
Step 13 is to store them in a list. In the first method, the
individual logarithm is computed by either the general
individual logarithm step of ICM, since the logarithms
of first-t primes along with the classes are known or by
using a simple Pohlig-Hellman method. The individual
logarithm step of second method is a simple Chinese Re-
mainder method (CRT).

Algorithm 1 To find the logarithm of first t primes when
factors of p− 1 are small

INPUT: Problem of size p. FB factor base consist of first
t primes. Factors of p− 1.
OUTPUT: Logarithm of first t primes and quadruples.

1: for every e of FB do
2: Find the quadruple ((e, b)(c, d)) where e × b ≡

1 mod p; c × d ≡ 1 mod p; e × c ≡ −1 mod p;
b× d ≡ −1 mod p

3: end for
4: for every pair (a, b) in the quadruple do
5: relation is formed as log a + log b ≡ 0 or log a +

log b ≡ log−1
6: end for
7: for each element in FB do
8: for each subgroup pi do

9: Find the generator gi of order pi as g
p−1
pi

10: Assign ei as e
p−1
pi

11: Find the logarithm of ei mod pi using Pollard-
Rho or Shanks method

12: end for
13: Find logarithm of emod p using Chinese Remainder

Theorem
14: end for
15: Solve the relations of quadruples using the logarithm

of unknowns of FB

The individual logarithm step of ICM in Method-1 de-

Algorithm 2 To find logarithm of all small subgroup
elements in the order of subgroup using the distinct set
of quadruples formed with relation ±1 over Z∗

p

INPUT: Problem of size p and factors of p− 1.
OUTPUT: Logarithm of all small subgroup elements in
the order of subgroup.

1: for every subgroup of order pi do
2: Assign G = gp−1/pi

3: if order of the subgroup is 2n then
4: Assign A = pi/4
5: else
6: Assign A = pi/2
7: end if
8: for i in 1..A do
9: Assign H = Gi

10: Assign logH = i ∗ p−1
pi

11: Find the quadruple ((H, b)(c, d)) where H × b ≡
1 mod p; c × d ≡ 1 mod p; H × c ≡ −1 mod p;
b× d ≡ −1 mod p.

12: log b = − logH; log c = log−1 − logH; log d =
− log c; log d = log−1− log b

13: Store them in the list
14: end for
15: end for
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pends on the number of elements in the factor base FB.
To achieve maximum performance in the individual log-
arithm step a larger factor base is to be chosen. Since
the size of the factor base is larger, the Method-1 needs
substantially more time than Method-2. Method-1 per-
formance is based on the size of the subgroups as well as
the size of the factor base. On the other hand Method-2
depends only on the size of the subgroups. This leads to
achieve a considerable performance increase in Method-2.

The usage of Pohlig-Hellman in the individual loga-
rithm step of Method-1 is, by considering the y is /∈ FB
and the factors of p − 1 are small. Similarly, the general
individual logarithm step of ICM is used, by considering
y is /∈ FB and factors of p− 1 are relatively large. Since
the factors are large, the Pohlig-Hellman needs more time
to solve the problem. Irrespective of the methods used in
the individual logarithm step of Method-1, the CRT of
Method-2 is more advantageous for a class of problems
where the factors of p− 1 are small.

4.1 Experimental Results

This section presents the results and analysis for the new
method discussed above. The present problem is de-
scribed as follows: First a data file is produced, which
contains a list of tuples. A tuple is of the form (m, p, q)
with the following properties:- m lies between 13 and 50
digits, p is a prime, q is the list of factors of p− 1. Based
on these properties the tuples are computed as follows:

• Choose k as 100.

• m is selected between 13 and 50 digits.

• A prime number is selected of size m and checked for
the factors of p− 1.

• The above step is repeated till a prime of required
form is obtained.

• The factors are stored in the list q.

• Store the tuple in the data file.

• Repeat the above steps for k number of times.

Having built up the above file, the following algorithm is
implemented:

• Read a tuple (m, p, q)

• Execute the Method-1 for the above tuple.

• Execute the Method-2 for the same tuple.

• Keep track of the computed run time.

• Repeat the above steps until all the tuples are calcu-
lated.

The Table 2 shows the difference in running time between
Method-1 and Method-2.

4.2 Ephemeral Key Recovery

The ephemeral keys may be unique for each session or
they may be reused for different sessions of a same party.
For example, the ANSI X9.42 standard, which specifies
several Diffie-Hellman protocols states that an ephemeral
key is a ”private or public key that is unique for each
execution of a cryptographic schemes”. Other protocols
do not place any restrictions on the reuse of ephemeral
keys [16]. The ephemeral keys, which are unique for each
session is considered in the present study.

The DLP of ephemeral key can be solved efficiently,
once the logarithms of a subset of group is known.
The ephemeral keys are solved by using Pohlig-Hellman
method in [21] and other efficient methods to recover
ephemeral keys are discussed in [20, 22]. Assume the
logarithms of a subset of a group i.e., the logarithms of
subgroup elements, are computed by using Algorithm-1
or Algorithm-2. Since the logarithms of subgroup ele-
ments are known, the DLP for the ephemeral key can be
obtained by using any one of the methods in individual
logarithm phase of ICM as mentioned in Table 1. This is
possible due to the fact that the prime field and the gener-
ator are shared between the communicators before start-
ing the sessions. The assumption is that the logarithms of
subgroup elements are computed before starting the ses-
sions. The DLP for ephemeral key is to be computed once
the session get started. The Table 3 presents the running
time of three methods as mentioned in the Table 1, such as
general individual logarithm phase, Pohlig-Hellman and
CRT.

The traditional individual logarithm step needs sub-
stantially more time due to the fact that the DLP is solved
without considering the additional information such as
the factors of p − 1. The Pohlig-Hellman and the CRT
work with the additional information regarding the fac-
tors of p − 1 and the running time depend on the size of
the factors of p−1. Similarly, the DLP for the ephemeral
keys NA and NB used in Chang and Chang key exchange
protocol is solved [4]. The ephemeral keys are solved in
fraction of seconds.

5 Conclusion

In the present work the smoothness concept over inte-
ger is extended and smooth numbers of ±1 over Z∗

p is
defined. The properties of smooth number of ±1 over
Z∗
p are analyzed on different types of primes, which are

classified based on the order of the group. They exhibit
different characteristics that correspond to the elements
in the factor base. These characteristics lead to develop
a new method for pre-computation phase of index calcu-
lus method. The index calculus method is studied, when
factors of p-1 are known and small. The analysis leads to
perform the individual logarithm phase efficiently, which
in turn helps in obtaining the ephemeral key, NA and
NB used in the cryptosystem called as Chang and Chang
password key exchange protocol.
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Table 2: Running time of Method-1 and Method-2
Problem Method-1 running time in sec Method-2 running time in sec

10000000000000000087 151 81
10000000000000000763 35 9
10000000000000001347 155 220

10000000000000000000 0000008211 296 13
10000000000000000000 000000000037303 778 95

43241221044344476653 62908248086967822904858 1597 55
40500691568928903388 503314943591776516203 1393 88
10548813247704246266 317485054480132114947 808 31
22750475822981512251 147389834477659827887 861 29
31023376122247516706 110077047014990674390 987 26
16483888118310633603 1117884004666831843 315 6
29565696133579269116 146450939411987039 306 3

17566082229403199021 60131316475990998066411 2516 202
11604511787937964282 8484543996278641093 1715 181
96834800300461810039 999000830418556963 2327 651
40687382369048479475 232114904989637283 1891 633

24774781676535030702 2689158418187059 1194 171
38174514779333277109 099448511590627 1141 160

Table 3: Running time to solve the DLP for ephemeral keys
Problem size in digits CRT General Individual logarithm step Pohlig-Hellman method

21 75ms 451ms 90ms
22 8ms 605ms 65ms
23 56ms 5s 57ms
24 41ms 7s 19ms
25 .3ms 6s 13ms
26 22ms 41s 66ms
27 4ms 62s 25ms
28 .5ms 216s 16ms
29 11ms 810s 78ms
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