
International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 256

Simple Three Party Key Exchange Protocols via
Twin Diffie-Hellman Problem

H. K. Pathak1 and Manju Sanghi2

(Corresponding author: H. K. Pathak)

S.o.S in Mathematics, Pt. Ravishanker Shukla University, Raipur (C. G.) 492010, India1

Department of Applied Mathematics, Rungta College of Engg.& Tech., Bhilai (C. G.) 492006, India2

(Email: manjusanghi13@gmail.com)

(Received Oct. 5, 2011; revised and accepted Dec. 27, 2011)

Abstract

In 2005, Abdalla and Pointcheval suggested a new vari-
ation of the computational DH assumption called chosen
based computational Diffie Hellman (CCDH) and pre-
sented SPAKE-1 and SPAKE-2 simple password based
authenticated key exchange protocols. Since then several
three party password authenticated key agreement proto-
cols have been proposed based on CCDH assumption but
most of them broken. In this paper, we propose two pass-
word based simple three party key exchange protocols via
twin Diffie-Hellman problem and show that the proposed
protocols provide greater security and efficiency than the
existing protocols. The protocols are also verified using
Automated Validation of Internet Security Protocols and
Applications (AVISPA) which is a push button tool for
the automated validation of security protocols and the
result shows that they do not have any security flaws.

Keywords: AVISPA, password based key exchange proto-
cols, password guessing attacks, SPAN, twin Diffie Hell-
man problem

1 Introduction

In the secure communication areas authenticated key ex-
change protocol is one of the most important crypto-
graphic mechanism. In 1992, Bellovin and Merrit [5] pro-
posed the first encrypted key exchange (EKE) family of
key exchange protocols, which allow people to use easy
to remember passwords without being threatened by dic-
tionary attacks. In the EKE protocol, two communica-
tion parties securely share a password in advance, and
authentication is achieved after these two parties obtain
a common ephemeral session key. However, as the pass-
words are of low entropy, password based authenticated
key exchange protocols are vulnerable to password guess-
ing attacks [11].

Many approaches extended two party EKE proto-
cols into three party EKE protocols, in which a trusted

server is used to authenticate the communication par-
ties. But most of them suffer from various attacks. In
1994, Steiner [19] gave the first three party encrypted key
exchange (STW3PEKE) protocol with a trusted server
S and clients A and B. But the works of Ding and
Horster [11] (1995), Sun et al. [20] and Lin et al. [16]
(2000) show that Steiner et al’s 3PAKE protocol is vul-
nerable to undetectable on line password guessing attacks
and off-line password guessing attacks. In 2005, Ab-
dalla and Pointcheval [4] suggested a new variation of the
computational DH assumption called chosen based com-
putational Diffie Hellman and presented SPAKE-1 and
SPAKE-2 simple password based authenticated key ex-
change protocols. In 2007, Lu and Cao [17] proposed
a simple 3 party authenticated key exchange protocol (S-
3PAKE) based on the concept of Abdalla and Pointcheval.
But again, from the works of Nam et al., [18] Chung and
Ku [8], Chen and Jin [13] and Guo Hua et al. [12] it is
found that S-3PAKE protocol also suffers from various
password guessing attacks as well as man in the middle at-
tack. In 2009, Kim and Choi [15] proposed fixed STPKE′

protocol using exclusive-or operation as a counter mea-
sure for S-3PAKE protocol but recently Tallapally and
Padmavathy [21] have proved that Kim and Choi’s fixed
STPKE′ is also vulnerable to undetectable online pass-
word guessing attack. Also, we find that Tallapally and
Padmavathy’s modified STPKE′ protocol also cannot re-
sist man in the middle attack.

Recently, Cash, Kiltz and Shoup [7] proposed a new
computational problem called twin Diffie-Hellman prob-
lem which has the following interesting properties:

• The twin Diffie-Hellman problem can easily be em-
ployed in many cryptographic constructions where
one would usually use the ordinary Diffie-Hellman
problem, without imposing a terrible efficiency
penalty;

• The twin Diffie-Hellman problem is hard, even given
access to a corresponding decision oracle, assuming
the ordinary Diffie-Hellman problem (without access

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 257

to any oracles) is hard.

The heart of their method is a rapdoor test which can
be used to implement an effective decision oracle for the
twin Diffie-Hellman problem, without knowing any of the
corresponding discrete logarithms. They applied the rap-
door test to many new variant protocols [6, 9, 10, 14]
based on the Diffie-Hellman problem.

In this paper, motivated by cash et al’s SPAKE+
2 pro-

tocol we have proposed 2, three party, password authenti-
cated, secure key exchange protocols based on twin Diffie-
Hellman problem. Formal verification is the method for
verification of security protocols to get the user confi-
dence. There are many tools available for verification of
the protocols. The analysis and verification of the pro-
posed protocols is done using AVISPA (Automated vali-
dation of internet security protocols and applications) and
SPAN.

The rest of the paper is organized as follows. In Section
2 we discuss twin DH problem. In Section 3 we present
our proposed protocols along with their security analysis.
Section 4 verifies the protocols using AVISPA and SPAN.
Section 5 gives the performance comparison of various
protocols and the paper is concluded in Section 6.

2 Password Authenticated Key
Exchange Protocol based on
Twin DH Problem

Cash, Kiltz and Shoup [7] suggested a new computational
problem called twin Diffie-Hellman (DH) problem which is
closely related to the usual (computational) DH problem
and can be used in many of the same cryptographic con-
structions that are based on the DH problem. Moreover,
the twin DH problem is atleast as hard as the ordinary
DH problem. They presented (SPAKE+

2) a very simple
and efficient method of securing a password authenticated
key exchange protocol of Abdalla and Pointcheval against
server compromise, which can be proved secure using their
trapdoor test, in the random oracle model, under the DH
assumption.

2.1 Twin DH Problem

Let G be a cyclic group of prime order q with a generator
g. Define dh(X,Y) := Z where X = gx, Y = gy and Z =
gxy.

Given random X,Y ∈ G, the problem of computing
dh(X,Y) is the DH problem. The DH assumption asserts
that it is hard to compute dh(X,Y) with random choice
X, Y ∈ G.

Define 2dh : G3 −→ G2
(X1, X2, Y) −→ (dh(X1, Y), dh(X2, Y)), which is called
the twin DH function. The twin DH assumption states
that it is hard to compute 2dh (X1, X2, Y), given random
(X1, X2, Y) ∈ G.

3 Proposed Protocols

In this Section we propose two secure key exchange proto-
cols based on twin Diffie-Hellman assumption. The first
proposed protocol (Protocol 1) is a variation of S-3PAKE
protocol [17] proposed by Lu and Cao, which makes it im-
mune against password guessing attacks and man in the
middle attack. The second proposed protocol (Protocol
2) uses bit-wise exclusive or operation. We first introduce
some notations and then describe the complete protocols.

Some notations used in the protocols are listed as fol-
lows:

(G, g, p): a finite cyclic group G generated by an element
g of prime order p;

A,B: Two communicating parties;

S: Server;

M,N : Two elements in G;

PwA(PA, P1): Password of A, partially shared with S;

PwB(PB , P2): Password of B, partially shared with S;

⊕: bit-wise exclusive or operation;

H, H ′: Two secure one-way hash functions.

In this system assume that two communicating par-
ties A and B wish to agree a common session key. Let
PwA be the password shared between A and server S
which is an arbitrary bit string. Here, A stores (PA, P1),
while the server stores (PA, UA), where UA = gP1 and
(PA, P1) = H(PwA, idA, idB). Similarly PwB be the
password shared between B and S. Again, B stores
(PB, P2), while the server stores (PB , UB), where UB =
gP2 and (PB, P2) = H(PwB , idA, idB). Clients A and
B can derive (PA, P1) and (PB , P2) from PwA and PwB

respectively.

3.1 Protocol 1

The following are the detailed steps of the protocol as
shown in Figure 1.

Step 1a. A chooses a random number x ∈R Zq and com-
putes X ← gx.MPA , and then sends idA ∥ X ∥ idB
to B.

Step 1b. B also chooses a random number y ∈R Zq and
computes Y ← gy.MPB , then sends idA ∥ X ∥ idB ∥
Y to S.

Step 2a. Upon receiving idA ∥ X ∥ idB ∥ Y , S uses PA

and PB to compute gx ← X/MPA and gy ← Y/NPB

respectively.

Step 2b. Then, S chooses a random number z ∈R Zq to
compute L← gz, gxz ← (gx)z, gyz ← (gy)z. Now, S
computes X ′ ← gyz.H(PA, idA, idB , g

x, (UA)
z) and

Y ′ ← gxz.H(PB, idA, idB , g
y, (UB)

z) and sends (X ′ ∥
L) and (Y ′ ∥ L)to B.

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 258

Step 3a. B, on receiving the message, uses P2 to
compute (UB)

z← LP2 and gxz← Y ′/H(PB, idA,
idB , g

y, (UB)
z) and authenticates S. Here, P2 is the

secret known only to B. Now, B uses y to compute
gxyz ← (gxz)y and α ← H(idA, idB , g

xyz) and for-
wards X ′ ∥ L,α to A.

Step 3b. A, on receiving (X ′ ∥ L,α), uses P1 to com-
pute (UA)

z← LP1 and gyz← X ′/H(PA, idA, idB ,
gx, (UA)

z) and authenticates the server. Here P1

is the secret known only to A. Then A uses x to
compute gxyz ← (gyz)x and α ← H(idA, idB , g

xyz)
and verifies whether computed α is equal to the re-
ceived α. If, both are equal, then A authenticates
B, finds β ← H(idA, idB , g

xyz) and the session key
SKA ← H ′(idA, idB , g

xyz) and forwards β to B.

Step 3c. Upon receiving β, B computes β←H(idA, idB ,
gxyz) and verifies whether computed β is equal to
the received β. If both are equal then B authen-
ticates A and computes the session key SKB ←
H ′(idA, idB , g

xyz).

3.2 Security Analysis

The security of Protocol 1 mainly relies on the difficulty of
twin Diffie-Hellman problem. Unlike, in other protocols
the passwords of the clients are only partially shared with
the server. This prevents most of the attacks.

1) Trivial attacks: An attacker may directly try to com-
pute the passwords and/or the session key SK =
H ′(idA, idB , g

xyz) from the transmitted messages
(X,Y,X ′, Y ′, α, β). But due to the difficulties of dis-
crete logarithm problem, twin Diffie-Hellman prob-
lem and one-way ness of hash function, the trivial
attack is not possible in our proposed protocol.

2) Online password guessing attacks: In online guessing
attacks, an attacker tries to confirm a guessed pass-
word in an online transaction. In our proposed Pro-
tocol 1, the passwords of the clients are only partially
and not completely shared with the server. The part
P1 and P2 of the passwords are kept secret with the
users A and B respectively and are not transmitted
through any messages. Even if an attacker or a mali-
cious user B tries to guess A’s password he can only
guess PA getX ′ = MP ′

A and send it in online transac-
tion. But to verify the correctness of his guessed pass-
word he has to compute H(PA, idA, idB , g

x, (UA)
z)

which is impossible since he requires the value of
P1 for getting the value of (UA)

z. Therefore online
guessing attack is not possible on our proposed pro-
tocol.

3) Off-line password guessing attack: Assume that an
attacker tries to mount off-line password guessing at-
tack to guess the password. He intercepts the mes-
sages X and X ′ or Y and Y ′ but still he cannot
verify his guessed password due to the difficulty of

getting the values of P1 or P2 and one-way ness of
hash function. Hence off-line password guessing at-
tack is impossible in our scheme.

4) Man in the middle attack: The attacker in the middle
attack involves interrupting a message and substitut-
ing it with his own message such that the communi-
cating parties, without detecting the attacker com-
pute the wrong session key. However authentication
straight forwardly prevents this attack. For, suppose
an attacker C tries to impersonate A and commu-
nicate with B, he computes C = MPwc and send
idA ∥ C impersonating as A, in the subsequent steps
to compute gyz ← X ′/H(PA, idA, idB, g

x, (UA)
z) he

needs the value of P1 for calculating (UA)
z which is

impossible to find. Hence there is no scope for man
in the middle attack in our protocol.

5) Replay attack: In a replay attack, an attacker may
want to pretend to be A by replaying X to B.
However, as he does not know the password of
user A and x, y, z are randomly chosen in each ses-
sion, the attacker has no ability to derive gyz ←
X ′/H(PA, idA, idB , g

x, (UA)
z) and produce a valid

session key SKA = H ′(idA, idB ,K) where K = gxyz.
Similarly the attacker also cannot pretend to be B.
The replay attack will hence fail.

6) Forgery attacks: If a masked server tries to deceive
the requesting users A and B he has to obtain the va-
lidity of messages gx, gy,H(PA, idA, idB , g

x, (UA)
z),

H(PB , idA, idB , g
y, (UB)

z) in Step 2 of our pro-
tocol where PA and PB are the passwords
of A and B respectively. However, without
knowing the users passwords PA, PB and also
(UA)

zand(UB)
z, it is not easy for a masked

server to compute H(PA, idA, idB, g
x, (UA)

z) and
H(PB , idA, idB , g

y, (UB)
z) exactly so that users A

and B can construct the common session key. Also,
in the case of untrusted server, since the password of
the user is not completely shared with the server, to
get the value of P1 from gP1 , an attacker has to face
the difficulty of discrete logarithm problem.

7) Perfect forward secrecy: Even if the passwords PA

and PB of the users are compromised, the attacker
cannot calculate the session key as P1 and P2 are
unknown. These values remain unknown even to the
server and so there is no chance of any compromise.
Also the session key is independent in each session
and x, y, z are randomly chosen.

3.3 Protocol 2

Figure 2 illustrates our proposed Protocol 2. This proto-
col uses ⊕ a bit-wise exclusive or operation. The following
are the steps of the protocol.

Step 1a. A chooses a random number x ∈R Zq and
computes NA ← gx ⊕ H(PA, idA, idB) and sends
(NA, idA)to B.

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 259

UserA UserB ServerS
secret : PA, P1 secret : PB , P2 secret :

PA, UA = gP1

x←R Zq y ←R Zq PB, UB = gP2

X ← gx.MPA Y ← gy.NPB

idA∥X∥idB

-
idA∥X∥idB∥Y

- z ←R Zq, L← gz

gx ← X/MPA

gy ← Y/NPB

gxz ← (gx)z

gyz ← (gy)z

X ′ ←
gyz.H(PA, idA, idB , g

x, (UA)
z)

Y ′ ←
gxz.H(PB , idA, idB, g

y, (UB)
z)

(UB)
z ← LP2 X′∥Y ′∥L�

gxz ←
Y ′/H(PB, idA, idB , g

y, (UB)
z)

gxyz ← (gxz)y

α← H(idA, idB , g
xyz)

(UA)
z ← LP1 X′∥L,α�

gyz ←
X ′/H(PA, idA, idB, g

x, (UA)
z)

gxyz ← (gyz)x

verify : α
β ← H(idA, idB , g

xyz)
SKA ← H ′(idA, idB , g

xyz)
β

- verify : β
SKB ← H ′(idA, idB , g

xyz)

Figure 1: Proposed Protocol 1

Step 1b. B also chooses a random number y ∈R Zq

and computes NB ← gy⊕H(PB , idA, idB) and sends
(NA, idA),(NB , idB) to S.

Step 2a. Upon receiving (NA, idA) and(NB , idB), S uses
PA and PB to compute gx ← NA ⊕H(PA, idA, idB)
and gy ← NB ⊕H(PB , idA, idB) respectively.

Step 2b. Then S chooses a random number z ∈R
Zq to compute L ← gz,(UA)

z, (UB)
z, a ←

gxz ← (gx)z, b ← gyz ← (gy)z. Then S com-
putes ZA ← b ⊕ H(PA, idA, idB , g

x, (UA)
z) and

ZB ← a ⊕ H(PB, idA, idB , g
y, (UB)

z) and sends
(ZA, L), (ZB, L) to B.

Step 3a. B, on receiving the message uses P2 to com-
pute (UB)

z ← LP2 and a← ZB⊕ H(PB , idA, idB ,
gy, (UB)

z) and authenticates S. Now, B uses y to
compute K ← gxyz ← ay, α ← H(idA, idB ,K) and
forwards (ZA, L), α to A.

Step 3b. A, on receiving (ZA, L, α) uses P1 to com-
pute (UA)

z← LP1 and b← ZA⊕ H(PA, idA, idB ,
gx, (UA)

z) and authenticates the server. Then A uses
x to compute K ← gxyz ← bx and checks whether

α← H(idA, idB,K) holds or not. If it does not hold,
A terminates the protocol, otherwise A is convinced
that K is the valid session key. Then A computes
β ← H(idA, idB,K) and forwards it to B. Also, A
computes the session Key SKA ← H ′(idA, idB ,K).

Step 3c. Upon receiving β, B computes β← H(idA,
idB, K) and verifies whether computed β is equal
to the received β. If both are equal then B au-
thenticates A and computes the session key SKB ←
H ′(idA, idB ,K).

3.4 Security Analysis

1) Trivial attacks: Computing the session key from the
transmitted messages α or β, is impossible due to
the one-way ness of hash function. Also, for com-
puting it from other transmitted messages ZA or ZB

an attacker has to face the difficulty of discrete loga-
rithm problem. So, our protocol is resistant to trivial
attack.

2) Password guessing attacks: Suppose an attacker or
a malicious user B try to guess A’s password as

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 260

UserA UserB ServerS
secret : PA, P1 secret : PB, P2 secret :

PA, UA = gP1

PB , UB = gP2

x←R Zq y ←R Zq

NA ← NB ←
gx ⊕H(PA, idA, idB) gy ⊕H(PB , idA, idB)

NA,idA

-
NB ,idB

- z ←R Zq, L← gz

gx ←
NA ⊕H(PA, idA, idB)

gy ←
NB ⊕H(PB , idA, idB)

a← gxz ← (gx)z

b← gyz ← (gy)z

ZA ←
b⊕H(PA, idA, idB , g

x, (UA)
z)

ZB ←
a⊕H(PB , idA, idB , g

y, (UB)
z)

(UB)
z ← LP2 (ZA,L),(ZB ,L)�
a←

ZB ⊕H(PB, idA, idB , g
y, (UB)

z)
K ← gxyz ← ay

α← H(idA, idB ,K)

Uz ← LP1 (ZA,L),α�
b←

ZA ⊕H(PA, idA, idB , g
x, (UA)

z)
K ← gxyz ← bx

verify : α
β ← H(idA, idB,K)

SKA ← H ′(idA, idB ,K)
β

- verify : β
SKB ← H ′(idA, idB ,K)

Figure 2: Proposed Protocol 2

P ′
A, generates gx

′ ← NA ⊕ H(P ′
A, idA, idB) and

sends it to the server S in online transaction in
Step 1 of our Protocol 2. To verify the correct-
ness of his guessed password he needs to compute
b ← ZA ⊕H(PA, idA, idB , g

x, (UA)
z) and a ← ZB ⊕

H(PB, idA, idB , g
y, (UB)

z) which is impossible as he
needs the values of P1 and P2 for computing (UA)

z

and (UB)
z. Similarly remaining off-line also, using

the transferred messages NA, NB , ZA, ZB , L, an at-
tacker cannot verify the correctness of his guessed
password.

3) Man in the middle attack: In Step 2 of our pro-
tocol, S authenticates the 2 communicating par-
ties A and B from the messages NA ← gx ⊕
H(PA, idA, idB) and NB ← gy ⊕ H(PB, idA, idB)
sent by B. A and B authenticate S, from
ZA ← b ⊕ H(PA, idA, idB , g

x, (UA)
z) and ZB ←

a ⊕H(PB, idA, idB , g
y, (UB)

z) as PA, PB are known
only to S. Finally, A authenticates B from α ←

H(idA, idB ,K). Thus, in each step of our protocol
each party authenticates the other communicating
party and hence there is no scope for man in the
middle attack.

4) Replay attack: Since one way hash function is used,
our proposed protocol is invulnerable to this attack.

5) Forgery attacks: In case the server is compromised,
the attacker is required to compute gx ← NA ⊕
H(PA, idA, idB) and gy ← NB ⊕ H(PB , idA, idB)
where PA and PB are the passwords of A and B re-
spectively. However it is not possible to compute
these values without the knowledge of the passwords
and hence A and B cannot construct the common
session key.

6) Perfect forward secrecy: In case, the passwords PA,
and PB of the users A and B are compromised, the
attacker cannot calculate the session key as P1 and
P2 are unknown. These values remain unknown even

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 261

to the server and so there is no chance of any com-
promise. Also the session key is independent in each
session and x, y, z are randomly chosen.

4 Formal Verification and Valida-
tion of Proposed Protocols

4.1 AVISPA

Automated validation of internet security protocols and
applications (AVISPA) [1] is a push button tool for the
automated validation of security protocols. A modular
and expressive formal language called HLPSL (High level
protocols specification language) [3] is used by AVISPA to
specify the security protocol and their properties. HLPSL
is a role-based language, meaning that we first specify
the sequence of actions of each kind of protocol partic-
ipant in a module, which is called a basic role. This
specification can later be instantiated by one or more
agents playing the given role, and we further specify how
the resulting participants interact with one another by
combining multiple basic roles together into a composed
role. HLPSL specification is translated into the Interme-
diate Format (IF), using hlpsl2if. The IF specification
is then processed by model-checkers to analyze if the se-
curity goals are violated. There are four different veri-
fication back end tools use to analyze the IF specifica-
tion namely, OFMC (On-the-Fly Model-Checker), CL-
AtSe (Constraint-Logic-based Attack Searcher), SATMC
(SAT-based Model-Checker), TA4SP (Tree Automata-
based Protocol Analyser). Possible flaws in a protocol
can be identified using these back end tools. As, expo-
nential and XOR operations are supported by CL-AtSe
and OFMC back ends we use OFMC back end tool with
AVISPA and SPAN (Animation tool for AVISPA) [2] to
analyze the proposed protocols.

4.2 Specification and Verification of Pro-
posed Protocol

We verified the security of proposed protocols using
AVISPA and SPAN. For this we define three basic roles
played by Alice (A), Bob (B) and Server (S). PWA and
PWB are the passwords of A and B where PWA =
(PA,P1) and PWB = (PB, P2). PA and PB are shared
with S and hence represent the symmetric keys. P1 and
P2 remain secret with A and B as their private keys. S
gets UA = exp(G,P1) from A and UB = exp(G,P2) from
B. Hence UA and UB are the public keys whose inverse
is known only to A and B respectively. We then define
the composed roles describing the sessions of the protocol
and finally the top level role ” environment role”. SPAN
is used to symbolically execute the HLPSL protocol
specification and hence provides a better understanding
of the specification. For analyzing the protocol using
AVISPA tool the following notations have been used.

g → G(value of g is stored in G)
x→ X, y → Y
z → Z, IDA→ A
IDB → B

Running the AVISPA and SPAN tool on the proposed
protocol(Protocol 2)returns the following output.

% OFMC
% Version of 2006/02/13
SUMMARY

SAFE
DETAILS

BOUNDED NUMBER OF SESSIONS
PROTOCOL

C:\progra∼1\SPAN\testsuite\results\PP2.if
GOAL

as specified
BACKEND

OFMC
COMMENTS STATISTICS

parseTime: 0.00s
searchTime: 0.37s
visitedNodes: 48 nodes
depth: 7 plies

Similarly Protocol 1 can be verified using AVISPA.

5 Security and Efficiency of S-
3PKE Protocols

In this Section we discuss the efficiency and security of
the proposed protocols and existing competitive proto-
cols based on Abdalla and Pointcheval’s concept. We in-
clude the following protocols: Lu and Cao’s S-3PAKE
protocol [17] (2007), Kim and Choi’s Fixed STPKE′ pro-
tocol [15] (enhancement of S-3PAKE)(2009), Tallapally
and Padmavathy’s Modified STPKE′ protocol [21] an en-
hancement of fixed STPKE′ protcol (2010), HS-3PAKE
protocol [14] by Yoon and Yoo (2011) and proposed pro-
tocols, Protocol 1 and Protocol 2.

From Table 1, we find that proposed Protocol 1 uses 5
rounds of communication, requires the computation of 15
exponentiation operations and 10 hash functions without
the use of xor operations, while Protocol 2 also uses 5
rounds of communication and requires the computation
of only 11 exponentiation operations which is less than
the requirement of the existing protocols along with the
hash functions and xor operations.

In Table 2 we list known attacks for each protocol. An
attack weakens the security of the protocol. We find that
almost all the existing protocols are prone to different
attacks.

6 Conclusion

Although many password based key exchange protocols
are being developed, most of them are vulnerable to vari-

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 262

Table 1: Performance of S-3PKE protocols
Protocol Random no. Mod.expon. Hash function XOR operation Round efficiency

A\B\S A\B\S A\B\S
S-3 PAKE 1 1 1 4 4 6 4 4 2 0 0 0 5

Fixed STPKE’ 2 2 1 5 5 6 4 4 2 1 1 2 5
Modified STPKE’ 1 1 1 4 4 6 4 4 2 0 0 0 4

HS-3PAKE 1 1 1 2 2 2 4 4 4 2 2 4 5
Proposed Protocol 1 1 1 1 4 4 7 4 4 2 0 0 0 5
Proposed Protocol 2 1 1 1 3 3 5 4 4 4 2 2 4 5

Table 2: Known attacks on the existing protocols
Protocol Known attacks

S-3PAKE protocol Undetectable online dictionary attack by Guo et al.(2008)
Off line dictionary attack by Nam et al. (2009)
Off line dictionary attack by Debiao et al. (2010)

Impersonation of initiator attack
Impersonation of responder attack

Man in the middle attack by Chung and Ku (2008)
Fixed STPKE’protocol Undetectable online password guessing attack by Tallapally(2010)

Modified STPKE’protocol Man in the middle attack
HS-3PAKE protocol Undetectable on line password guessing attack

Off line password guessing attack by Yoon and Yoo (2011)
Proposed Protocol 1 —
Proposed Protocol 2 —

ous attacks. With the increasing need for authentication
and secure communication we have proposed two sim-
ple three party key exchange protocols via twin Diffie-
Hellman problem and showed that they are more secure
and efficient than the existing protocols and can resist all
the known attacks. Finally, we have also validated the
proposed protocols using AVISPA, an automated tool for
the verification of security protocols.

References

[1] “Avispa - a tool for automated validation of internet
security protocols,”. http://www.avispa-project.org.

[2] “Span - a security protocol animator for avispa,”.
http://www.irisa.fr.

[3] “Specification of the problems in the high-level spec-
ification language,”. http://www.avispa-project.org.

[4] M. Abdalla and D. Pointcheval, “Simple password-
based encrypted key exchange protocols,” in Proceed-
ings of the CT-RSA, YEAR =.

[5] S. M. Bellovin and M. Merritt. “Encrypted key
exchange:password-based protocols secure against
dictionary attacks,”, 1992.

[6] D. Boneh and M. Franklin, “Identity-based encryp-
tion from the weil pairing,” in Crypto’ 01, vol. LNCS
2139, pp. 213–229, 2001.

[7] D. Cash, E. Kiltz, and V. Shoup, “The twin diffie-
hellman problem and applications,” Journal of Cryp-
tology, vol. 22, pp. 470–504, 2009.

[8] H. R. Chung and W. C. Ku, “Three weaknesses in a
simple three-party key exchange protocol,” Informa-
tion Sciences, vol. 178, no. 1, pp. 220–229, 2008.

[9] R. Cramer and V. Shoup, “A practical public key
cryptosystem provably secure against adaptive cho-
sen ciphertext attack,” in Crypto’ 98, vol. LNCS
1462, pp. 13–25, Berlin, 1998.

[10] W. Diffie and M. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information The-
ory, vol. 22, pp. 644–654, 1976.

[11] Y. Ding and P. Horster, “Undetectable on-line pass-
word guessing attacks,” ACM Operating Systems Re-
view, vol. 29, no. 4, pp. 77–86, 1995.

[12] H. Guo, Z. Li, Y. Mu, and X. Zhang, “Cryptanal-
ysis of simple three party key exchange protocol,”
Computers Security, vol. 27, pp. 16–21, 2008.

[13] D. He, J. Chen, and J. Hu, “Cryptanalysis of a sim-
ple three party key exchange protocol,” Informatica,
vol. 34, pp. 337–339, 2010.

[14] H. F. Huang, “A simple three-party password-based
key exchange protocol,” International Journal of
Communication Systems, vol. 22, pp. 857–862, 2009.

[15] H. S. Kim and J. Y. Choi, “Enhanced password-
based simple three-party key exchange protocol,”
Computers and Electrical Engineering, vol. 35, no. 1,
pp. 107–114, 2009.

[16] C. L. Lin, H. M. Sun, and T. Hwang, “Three
party-encrypted key exchange:attacks and a solu-
tion,” ACM Operating Systems Review, vol. 34, no. 4,
pp. 12–20, 2000.

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 263

[17] R. Lu and Z. Cao, “Simple three-party key exchange
protocol,” Computers Security, vol. 26, no. 1, pp. 94–
97, 2007.

[18] J. Nam, J. Paik, H. K. Kang, U. M. Kim, and
D. Won, “An off-line dictionary attack on a simple
three-party key exchange protocol,” IEEE Commu-
nications Letters, vol. 13, no. 3, pp. 205–207, 2009.

[19] M. Steiner, G. Tsudik, and M. Waidner, “Refinement
and extension of encrypted key exchange,” ACM Op-
erating Systems Review, vol. 29, no. 3, pp. 22–30,
1995.

[20] H. M. Sun, B. C. Chen, and T. Hwang, “Secure key
agreement protocols for three-party against guess-
ing attacks,” The Journal of Systems and Software,
vol. 75, no. 2, pp. 63–68, 2005.

[21] S. Tallapally and R. Padmavathy, “Cryptanalysis on
a three party key exchange protocol-stpke’,” Jour-
nal of Information processing systems, vol. 6, no. 1,
pp. 43–52, 2010.

Appendix

The HLPSL specification for the proposed Protocol 2:

%% PROTOCOL: S3PKE protocol using twin DH
%% ALICE BOB SERVER:
%% Macros:
%%FM1: H(PA.A.B.exp(G,X).exp(UA,Z)).exp(L,Z)
%%FM2: H(PB.A.B.exp(G,Y).exp(UB,Z).exp(L,Z)
%%Key: exp(exp(GY,Z), X) = exp(exp(GX,Z), Y)
%%GX: exp(G,X)
%%GY : exp(G,Y)
%%1.A→ B : xor(exp(G,X),H(PA.A.B))
%%2.B → S : xor(exp(G,X),H(PA.A.B)),
%% xor(exp(G, Y),H(PB.A.B))
%%3.S → B : xor(exp(GY,Z), FM1),

xor(exp(GX,Z)FM2)
%%4.B → A : xor(exp(GY,Z), FM1).H(A.B.Key)
%%5.A→ B : H(A.B.Key)
%% HLPSL:
role alice(A,B, S : agent,

SND, RCV : channel(dy),
H : hash func,
PA : symmetric key,
G : text)

played by A
def=
local State : nat,

X,Z : text,
UA : public key,
GY , Key, L : message,
const sec m Key : protocol id

init State := 0
transition
1. State = 0∧RCV(start)= | >

State’:= 1 ∧ X ′ := new()
∧ SND(xor(exp(G,X ′), H(PA.A.B)))

2. State = 1 ∧ RCV (xor(exp(GY ′, Z ′),

H(PA.A.B.exp(G,X).exp(UA′, Z ′))).L) = | >
State’:= 2 ∧ Key’ := exp(exp(GY’,Z’),X)

∧ SND(H(A.B.Key′))
∧ witness(A,B, key1,Key′)

3. State = 2 ∧ RCV (A.B.Key) = | >
State’:= 3 ∧ request(A,B, key,Key)

∧ secret(Key, sec m Key,A,B)
end role
role bob (A, B, S : agent,

SND, RCV : channel(dy),
H : hash func,
PA, PB : symmetric key,
G :text)

played by B
def=
local State : nat,

X,Y, Z : text,
GX,GY : message,
UB :public key,
Key :message,
FM1: hash(symmetric-key.agent.agent.message.

message).message,
FM2: hash(symmetric-key.agent.agent.message.

message).message
const sec v Key : protocol id

init State := 0
transition
1. State = 0 ∧ RCV (xor(exp(G,X ′), H(PA.A.B))) = | >

State’:= 1 ∧ Y ′ := new()
∧ SND(xor(exp(G,X ′),
H(PA.A.B)).xor(exp(G, Y ′),H(PB.A.B)))

2. State = 1 ∧ RCV (xor(exp(GY,Z ′), FM1′).
xor(exp(GX ′, Z ′), FM2′)) = | >

State’:= 2 ∧ SND(xor(exp(GY,Z ′), FM1′))
3. State = 2 ∧ RCV (H(A.B.exp(exp(GX ′, Z ′), Y)))= | >

State’:= 3 ∧ Key′ := exp(exp(GX ′, Z ′), Y)
∧ SND(H(A.B.Key′))
∧ request(B,A, key1,Key)
∧ secret(Key, sec v Key,B,A)
∧ witness(B,A, key,Key′)

end role
role server (A, B, S : agent,

SND,RCV : channel(dy),
H : hash func,
PA,PB : symmetric key,
G : text)

played by S
def=
local State : nat,

X,Y, Z : text,
UA,UB : public key,
GX,GY : message

init State := 0
transition
1. State = 0 ∧ RCV (xor(exp(G,X ′),
H(PA.A.B)).xor(exp(G,Y ′),H(PB.A.B)))= | >

State’:= 1 ∧ Z ′ := new()
∧ UA′ := new()

International Journal of Network Security, Vol.15, No.4, PP.256-264, July 2013 264

∧ UB′ := new()
∧ GY ′ := new()
∧ GX ′ := new()
∧ SND(xor(exp(GY ′, Z ′),
H(PA.A.B.exp(G,X ′).exp(UA′, Z ′)).
exp(G,Z ′)).
xor(exp(GX ′, Z ′), H(PB.A.B.
exp(G,Y ′).exp(UB′, Z ′)).exp(G,Z ′)))

end role
role session(A,B, S : agent,

H : hash func,
PA,PB : symmetric key,
UA,UB :public key,
G : text)

def=
local SND,RCV : channel (dy)
composition
alice(A,B, S, SND,RCV,H, PA,G)
∧ bob(A,B, S, SND,RCV,H, PA, PB,G)
∧ server(A,B, S, SND,RCV,H, PA, PB,G)
end role
role environment()
def=
consta, b, s : agent,

h : hash func,
key, key1 : protocol id,
pa, pb, pi :symmetric key,
ua, ub, ui :public key,
g : text

intruder knowledge = {a, b, s, g, h, pi, ua, ub, ui}
composition
session(b, a, s, h, pa, pb, ua, ub, g)
∧ session(i, b, s, h, pi, pb, ui, ub, g)
∧ session(a, i, s, h, pa, pi, ua, ui, g)
end role
goal
authentication on key
authentication on key1
secrecy of sec m Key, sec v Key
end goal
environment()

H. K. Pathak received Post Graduate degree in
Mathematics from Pt. Ravishanker Shukla University,
Raipur. He was awarded Ph.D in 1988 by the same
University. He has published more than 185 research
papers in various international journals in the field
of non linear analysis-Approximation and expansion,
Calculus of variations and optimal controls Optimization,
Field theory and polynomials, Fourier analysis, General
topology, Integral equations, Number theory, Operations
research, Mathematical programming, Operator theory,
Sequences, series, summability. At present he is Professor
and Head in S.o.S in Mathematics in Pt. Ravishanker
Shukla University.

Manju Sanghi received the post graduate degree in
Mathematics from Ravishanker Shukla University, Raipur
in 1996. Since 2001 she has been working as lecturer in
Rungta college of Engineering & Technology Bhilai. Cur-
rently she is pursuing PhD from School of studies in Math-
ematics Pt. Ravishanker Shukla University Raipur. Her
research interests include cryptography, Network security.

