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Abstract

In this paper we analyzed the algorithms related to
threshold cryptography based protocols in networks secu-
rity. We showed the hardness of threshold minimum cut
problem, revealed its relationship with two other prob-
lems. Two approximation algorithms for threshold mini-
mum cut were presented. We also show the hardness of
determining the probability of threshold access to service
nodes in a node-based stochastic graph, and propose a
heuristic algorithm for the optimal service node assigning
problem. To the best of our knowledge, this is the first
work to address these algorithmic problems for threshold
cryptography based protocols in network security and re-
liability.

Keywords: Algorithm design, minimum cut, security pro-
tocol, threshold cryptography

1 Introduction

Threshold cryptography and threshold related protocols
have wide applications in network security. They can be
used in many protocols for different types of networks.

Dharma Agarwal et al. [6] proposed a distributed
key management and authentication scheme for networks
with mobile ad hoc wireless nodes, that entirely relies on
identity-based cryptography and threshold secret sharing.
In [18], threshold cryptography is employed to distribute
Certificate Authority functionality over specially selected
nodes based on the security and physical characteristics
of the nodes. The selected nodes that collectively provide
the PKI functionality are called Mobile Certificate Au-
thorities (MOCA)s. Di Crescenzo et al. [3, 4] proposed a
suite of threshold cryptography based key generation and
signature protocols. S. Sarkar et al. [16] proposed a new
RSA-threshold cryptography-based scheme for MANETs
(Mobile Ad hoc Networks) using verifiable secret shar-
ing(VSS) scheme. The main challenge of threshold cryp-

tography based protocols is that there are some topologi-
cal requirements to ensure that the protocols can be cor-
rectly executed, for example, it may be required that a
client node must be connected to at least a certain amount
of service nodes, or a node must have at least a certain
amount of neighbors. These requirements pose new prob-
lems in network security, for example, how to assign and
distribute service nodes in a network to make sure ev-
ery client can execute the threshold cryptography based
protocols, how to balance the load among different ser-
vice nodes, how to recover quickly from node failure, etc.
From the adversary’s point of view, it needs to find an
optimal way to thwart the execution of the protocol, or
crack some crucial information by compromising a num-
ber of nodes.

In this paper we discuss the algorithmic aspects of
the threshold cryptography based protocols in a network.
Note that the purpose of our work is not to design a spe-
cific threshold based security protocol. Here we mainly
investigate algorithms related to general threshold based
security protocols. For the attacks against the threshold
based protocols, we mainly discuss blocking attacks. We
show the intractability of the minimum threshold node
cut problem, and propose some algorithms for them. We
also investigate the hardness and algorithms of service
node assigning in threshold based protocols. Our main
contribution includes:

• We show that the minimum threshold node cut prob-
lem doesnot have polynomial time approximation
scheme, and the relationship between this problem
and other NP-hard problems.

• We devise two approximation algorithms for the
threshold minimum cut problem, and proved their
ratios.

• We investigate the hardness and algorithms of the
optimal service assigning problems. We show that
determining the probability of threshold access to
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service nodes in a node-based stochastic graph is #P-
hard, and propose a heuristic algorithm for the opti-
mal service node assigning problem.

To the best of our knowledge, our work is the first to
address the threshold minimum cut problem and the opti-
mal service node assigning problem. These two problems
also have important applications in some areas other than
network security, for example, in emergency responding,
when a certain number of network nodes are compromised
or a certain number of water resources of a water flow
system is contaminated, how to block a threshold num-
ber of harmful flow with minimum cost? This is similar to
the threshold minimum cut problem. The optimal service
node assigning problem can also be applied to other ar-
eas in operational research, for example, how to assign a
number of service stations in a region optimally that every
mobile device in the region can access at least a certain
number of stations at any time. So we believe that it is
important to investigate the hardness and algorithms of
these problems.

The remaining sections of the paper are organized as
follows: Section 2 discusses the hardness and algorithms
of the threshold minimum cut problem. Section 3 dis-
cusses the hardness and algorithms of the optimal service
node assigning problem. Section 4 shows related works.
Section 5 concludes the paper.

2 Threshold Minimum Cut Prob-
lem

There are several possible types of attacks against the
threshold cryptography based protocols. An adversary
may compromise some nodes or intercept threshold num-
ber of transmitted messages to obtain the some secret
information. An adversary may also use wormhole at-
tacks to attract as many traffic flows as possible to pass
through it. Here we consider the blocking attacks. The
goal of the adversary is to block some nodes, such that a
client node cannot connect to a threshold number of ser-
vice nodes. If the adversary can achieve this, the protocol
cannot be executed normally. Suppose there is an associ-
ated cost to block a node, the objective of the adversary
is to find a set of nodes that blocking them will cause the
client node cannot connect to more than a given number
of service nodes, and the total cost of the selected nodes
is minimized.

We can formalize the problem as the following opti-
mization problem.

Given a graph G = (V,E) and k service nodes
S1, S2, . . . , Sk, (Si ∈ V for 1 ≤ i ≤ k), a client node
A, and a threshold integer l, and every node v in G has
an associated cost c, how to find a minimum cost node
cut such that at least l out of the k service nodes will be
disconnected from A?

The decision version of the problem is:
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Figure 1: The graph G1

Given a graph G = (V,E) and k service nodes
S1, S2, . . . , Sk, (Si ∈ V for 1 ≤ i ≤ k), a client node
A, and a threshold integer l, and another integer B, and
every node v in G has an associated cost c, how to find
a node cut such that at least l out of the k service nodes
will be disconnected from A and the total cost of the cut
is no more than B?

We name this problem as threshold minimum node cut
problem. The threshold minimum edge cut problem can
also be similarly defined.

2.1 Hardness of the threshold minimum
node cut problem

We can show that the problem is NP-complete.

Theorem 1. The threshold minimum node cut problem
is NP-complete.

Proof. We can reduce clique to the problem. Given an
instance of clique with a graph G1 = (V1, E1) (|V1| = n)
and number k1, we can construct a new graph G. For
every edge ei of G1, we have a service node Si in G. For
every node vi in G1, we also have a node Ai in G. For
every edge ei in G1, if its two incident nodes are vi and vj
inG1, then we connect node Si to Ai and Aj inG. Finally,
all nodes Ai(1 ≤ i ≤ n) inG are connected to a client node
A. For example, Figure 2 is the constructed G for graph
G1 as in Figure 1. We set k to be |V1|, l = k1(k1 − 1)/2,
and B = k1. Set the weight of nodes Ai (1 ≤ i ≤ n) to be
1, and the weight of other nodes inG to be infinity. Now it
is easy to see if G1 has a clique with size k1, then in G, we
can choose to cut the nodes in {A1, . . . , An} correspond
to the nodes in the clique of G1. Now the cut has total
cost k1, and it can block l = k1(k1 − 1)/2 service nodes.
On the other hand, if a cut with total cost no more than
k1 can block l = k1(k1 − 1)/2 service nodes, then the cut
must correspond to a clique in G1. This means threshold
minimum node cut problem is NP-complete.

Next we show that even for degree 3 graphs, the prob-
lem is NP-complete.

Corollary 1. The problem is NP-complete even for de-
gree 3 graphs.
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Figure 2: The constructed graph G
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Figure 3: The conversion for G

Proof. In the construction of G in the above proof, for all
nodes that have degree more than 3, we can convert it as
in Figure 3. In the construction, all newly added nodes
have an infinity cost. It is easy to see the transformed
graph now has degree at most 3, and the minimum node
cut in the new graph is equivalent to the minimum node
cut in the original graph. This means the problem is NP-
complete even for degree 3 graphs.

Note that the above hardness result cannot be applied
to threshold minimum edge cut. The hardness of thresh-
old minimum edge cut is an open problem.

Based on the proof of the NP-completeness of threshold
minimum cut, it is easy to see the following problem is
NP-complete.

Definition 1. Given an undirected graph G = (V,E) and
a number m, can one find a subgraph with at least m
edges, and the number of nodes in the subgraph is mini-
mized?

Note that this is the inverse problem of the maximum
k-subgraph problem (unit weight case). And this inverse
k-subgraph problem can be further generalized to the fol-
lowing set minimum cover problem:

Definition 2. Given a set S of n elements, a collection
C of m1 subsets of S, and positive integer m ≤ m1, can
one find m subsets from C such that the total number of
distinct elements in the union of the m subsets is mini-
mized?

We can see the set minimum cover problem is the gen-
eralization of the inverse k-subgraph problem, so the set
minimum cover problem is also NP-complete.

For the max k-subgraph problem, it is known that there
exists a n1/3−ϵ ratio approximation algorithm where ϵ is
a small number [9]. It is conjectured that the problem
cannot be approximated within nδ for some 0 < δ < 1,
but currently the best known hardness result is that it
has no polynomial time approximation scheme [9, 12].

Next we show the relationship of the approximation be-
tween the max k-subgraph problem and its inverse prob-
lem.

Theorem 2. If the inverse k-subgraph problem can be ap-
proximated within ratio 1 + ϵ (0 < ϵ < 1, that is, there is
an algorithm that can return a subgraph with no more than
1+ϵ times number of nodes compared with the optimal so-
lution), then the max k-subgraph problem can be approxi-
mated within ratio 16ϵ (that is, there exists an algorithm
that can return a subgraph with at least 16−ϵ times number
of edges compared with the optimal solution).

Note that 16−ϵ is very close to 1 if ϵ is very close to 0.

Proof. Suppose we have an algorithm A for the inverse k-
subgraph problem that can achieve ratio 1+ϵ (0 < ϵ < 1).
For input graph G and integer m, we define A(G,m) to
be the output of algorithm A. For an instance of max
k-subgraph problem (G and integer k), we can use binary
search method to find an integerm0 such that A(G,m0) ≤
⌊k(1+ϵ)⌋ and A(G,m0+1) > ⌊k(1+ϵ)⌋. Then the optimal
solution of max k-subgraph (denoted as OPTk) will be
≤ m0. Now consider the output subgraph of applying
A on input G and m0, we denote it as Gm0 . Apply the
following algorithm on Gm0 :

Algorithm 1.
Repeat remove the node with lowest degree in the current
graph (choose an arbitrary node in case of tie).
Until the number of nodes in Gm0 becomes k.

We denote the resulting graph of the above algorithm
to be G1. Now it is easy to see the number of edges in G1

(denoted as e(G1) ) is

e(G1) ≥ (1− 2

k1
)(1− 2

k1 − 1
) . . . (1− 2

k + 1
)m0

≥ (1− 2

k + 1
)k1−km0

≥ (1− 2

k + 1
)

k+1
2 · 2kϵ

k+1m0

Where k1 = ⌊k(1 + ϵ)⌋. Without loss of generality, we
can assume k > 3. Then

e(G1) ≥ 4
−2kϵ
k+1 m0

= 16−
kϵ

k+1m0

≥ 16−
kϵ
k m0

= 16−ϵm0
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But we have OPTk ≤ m0, and we constructed a sub-
graph of k nodes with at least 16−ϵm0 edges, this means
we find an algorithm that can approximate the max k-
subgraph problem within ratio 16ϵ.

Corollary 2. The inverse k-subgraph problem does not
have polynomial time approximation scheme.

Proof. This follows from the above theorem and the result
that max k-subgraph problem does not have polynomial
time approximation scheme.

Corollary 3. Both the threshold minimum node cut prob-
lem and the set minimum cover problem do not have poly-
nomial time approximation scheme.

We conjecture that the threshold minimum cut prob-
lem and the set minimum cover problem cannot be ap-
proximated with nϵ for some ϵ < 1. Though the inap-
proximability result we obtain is rather weak, we believe
that to approximate the two problems is hard.

2.2 Two Approximation Algorithms

We present two algorithms for the threshold min cover
problem. The first is a greedy algorithm, the second one
is an LP based algorithm.

The main idea of the greedy algorithm is that one al-
ways adds a new server node that will increase the cut by
a minimum value.

Algorithm 2. C = Φ
Repeat
for every v ∈ V \C, compute the minimum cut between

A and C ∪ v, denote this value as cv. Add the v has the
minimum cv into C

Until | C |= l
Return the cut between nodes in C and A.

We can show that the algorithm achieves a ratio of l.

Theorem 3. The greedy algorithm achieves a ratio of l.

Proof. Suppose in the optimal solution, service nodes
S1, S2, . . . Sl are blocked. We denote Cut(v) to be the
value of the minimum cut to separate node v and A. Sup-
pose h = max(Cut(S1), . . . Cut(Sl)). In every step of the
algorithm, the current cut value will increase at most h.
Since the optimal solution is at least h, so the returned
cut value of the algorithm is at most lh.

The second algorithm is a linear programming based
algorithm.

Algorithm 3. Solve the following LP:

Maximize
∑

all nodes v

Xvwv

Subject to

Yi ≤ Xi + Yj for all neighbors vj of vi ∀vi

0 ≤ Xi ≤ 1 , 0 ≤ Yi ≤ 1 , for all node vi

YA = 0

k∑
i=1

YSi ≥ l

After solving the LP, sorting the nodes S1, S2, . . . Sk

according to their accumulated cut value (YSi
) in de-

scending order, and return the minimum cut between
S1, S2, . . . Sl and A.

Theorem 4. The LP based algorithm achieves a ratio of
k − l + 1.

Proof. The LP defines a fractional cut between the nodes
S1, S2, . . . Sk and A, and the summation of the accumu-
lated cut value of nodes S1, S2, . . . Sk is at least l. If we
sort the nodes S1, S2, . . . Sk according to their cut value
(YSi) in descending order, consider the lth largest value
YSl

, this value will be at least 1/(k − l + 1). Between
nodes S1, S2, . . . Sl and A, we have a fractional cut with
value at least 1/(k − l + 1), so the value returned by the
algorithm is at most k− l+1 times of the value returned
by the LP, which is at most the optimal value.

3 Service Nodes Assigning in
Threshold Cryptography Based
Protocols

The central idea of threshold cryptography is to divide a
cryptographic action into k participants (usually the par-
ticipants are servers, in some occasion they can also be
clients), in such a way only a number of more than thresh-
old (denoted as l) of participants can execute the proto-
cols correctly. The adversary cannot obtain certain secret
information by intercepting less than threshold number of
messages. Also the adversary cannot thwart the execution
of the protocol by compromising less than k − l partici-
pants. This means threshold cryptography can greatly
improve the security and reliabiliy of the network proto-
cols.

3.1 Choose Service Nodes in a Static
Network

In a static network, how to choose a set of service nodes is
an optimization problem. We can give a formal definition
of the minimization problem:

Definition 3. Suppose we have a graph G = (V,E),
where V = V1 ∪ V2,|V1| = n1, |V2| = n2, n1 + n2 = n,
V1 ∩ V2 = ϕ (here V1 is the set of client nodes, V2

is the set of candidate service nodes), and every node
vi ∈ V2 (i = 1, 2, . . . , n2) has an associated cost ci, can
one find a subset V3 of V2 such that every node ui ∈ V1

(i = 1, 2, . . . , n1) is connected to at least l nodes in V3 and
the total cost of nodes in V3 is minimized?



International Journal of Network Security, Vol.15, No.3, PP.205-211, May 2013 209

The above problem is equivalent to the set multi-cover
problem, and some greedy algorithms or LP based algo-
rithms can be used to solve it [10].

3.2 Service Nodes with Patterned Mo-
bility

Next we consider the case that the service nodes in wire-
less networks can have patterned mobility. In many
wireless networks, the mobility pattern of the nodes (or
routers) can be predicted, that is, they have a certain
kind of mobility orbit and the position of a node has
a probability distribution over the positions of the or-
bit. In this case, we can consider the service nodes with
patterned mobility as the dynamic nodes in a stochas-
tic graph. Now we first give the definition of node-based
stochastic graphs.

Definition 4. (node-based stochastic graph): A node-
based stochastic graph is an undirected graph such that
a subset of node in the graph is dynamic, that is, every
such node may be located in multiple positions. Formally,
suppose we have a graph with n nodes and these nodes
form an undirected graph G = (V,E), where

V = {v11, . . . , v1t1 , . . . ,
vh1, . . . , vhth , vh+1, . . . , vn},
which means V contains two types of nodes, which

are fixed nodes and dynamic nodes, respectively. Nodes
vh+1, . . . , vn are fixed nodes, nodes vi1, . . . , viti , 1 ≤ i ≤ h
are possible positions of node vi, 1 ≤ i ≤ h, and there
is an associated probability pij for every vij, 1 ≤ i ≤ h,
1 ≤ j ≤ ti, which means node vi has probability pij in
position vij of G. Also in the edge set E, there is no edge
between any two nodes in vi1, . . . , viti(This means no edge
exists between two possible positions of a dynamic node).

We have the following hardness result for determining
the probability of threshold access to service nodes in a
node-based stochastic graph.

Prop 5. Suppose we have a node-based stochastic graph
G = (V,E), a set of service nodes K, where K ⊆
{v1, . . . , vh}, a set of client nodes C, where C ⊆
{v1, . . . , vh, vh+1, . . . vn}, C ∩K = ∅, and a positive inte-
ger value l, the problem to determine the probability that
every node in C have direct access to at least l of the
service nodes is #P -hard.

Proof. We can reduce #SAT to this problem (which we
call #Access). Given a 3SAT instance, we create a dy-
namic node for every variable, which has two possible
positions in the stochastic graph, and every position has
probability 1/2. We also create a new fixed node for every
clause, which is connected to the 3 dynamic nodes corre-
spond to the three variables in the clause. Now consider
the probability that all fixed nodes have direct access to
one of their corresponding dynamic nodes in the clause
(here we set the threshold number to be 1), it is easy to
see that this probability is exactly the probability that
the 3SAT instance is satisfied, which means #Access is

A B

x x x x  1
 2  2

 3
x
_ _

 1

_
x 3

Figure 4: Stochastic graph instance

#P hard. Figure 4 shows the #Access instance we con-
structed through this procedure for the #SAT instance:

(x1 ∨ x2 ∨ x3 ∧ (x1 ∨ x2 ∨ x3)

3.3 Static Service Nodes in Stochastic
Graph

If we consider the problem of choosing fixed service nodes
in a stochastic graph, we can have a new optimization
problem. Before we give the formal definition of the new
problem, we define the connection probability of a single
node in a node-based stochastic graph.

Definition 5. Given a positive integer l and a node-based
stochastic graph G = (V,E), in which v1, . . . vh are dy-
namic client nodes, vh+1, . . . , vn are fixed candidate ser-
vice nodes, and V1 ⊆ {vh+1, . . . , vn} is the set of service
nodes chosen by the network designer, for every client

node vi, 1 ≤ i ≤ h, the connection probability is
∑
j

pij in

which the summation is over the j such that vij is con-
nected to at least l nodes in V1.

Now we give the formal definition of fixed node assign-
ing in stochastic graphs (minimization version).

Definition 6. Given a positive value p (0 < p < 1) and a
node-based stochastic graph G = (V,E), in which v1, . . . vh
are dynamic client nodes, and vh+1, . . . , vn are fixed can-
didate service nodes, can one find a set (denoted by V1,
and V1 ⊆ {vh+1, . . . , vn}) of service nodes such that every
client node has a connection probability at least p and the
total cost of nodes in V1 is minimized?

Since even the static case of service node assigning
problem is NP-hard and cannot be approximated by any
ratio less than c lnn for some constant c, the above prob-
lem has at least the same hardness as the static case. For
the most simple case when l = 1, we propose the following
heuristic algorithm. The basic idea is to always choose the
candidate service node with the largest “potential” value.
When a node with the largest “potential” value is chosen,
the “potential” value of other candidate service nodes and
the current accumulated connection probability of every
client node are updated.
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Algorithm 4.
1. Set V1 := ∅, V2 := {v1, . . . , vh}, V3 :=

{vh+1, . . . , vn}, and ∀v ∈ V2, set f(v) := 0
2. Repeat

2.1 For every u ∈ V3, set c(u) := 0
2.2 For every neighbor vij (1 ≤ i ≤ h) of u, if

vi ∈ V2, set

c(u) := c(u) +min(pij , p− f(vi))

2.3 Choose the u′ with the largest c(u′)
2.4 For every neighbor vij (1 ≤ i ≤ h) of u′, set

f(vi) := f(vi) +min(pij , p− f(vi))

if f(vi) ≥ p, set V2 = V2\vi
2.5 V1 := V1 ∪ u′, V3 := V3\u′

Until V2 = ∅

The algorithm runs in time O(n3), which means that
it can be practically applied.

4 Related Works

Threshold cryptography was first addressed in [7], the ap-
plication of threshold cryptography in network security
was discussed in [1, 3, 4, 6, 8, 13, 16]. In [1], the au-
thors surveyed the threshold cryptography based schemes
and the authentication schemes that have been proposed
to secure ad hoc networks, and identified the challenges
and open research areas associated with each of these ap-
proaches. In [3] the authors formalized and presented
satisfactory solutions for the general problem of thresh-
old cryptography in Mobile Ad Hoc Networks. A dis-
tributed key management and authentication approach
by deploying the concepts of identity-based cryptography
and threshold secret sharing was proposed in [6]. This
work effectively solved the problem of single point of fail-
ure in the traditional public key infrastructure (PKI)-
supported system without any assumption of prefixed
trust relationship between nodes. In [4] the authors inves-
tigated and presented a new MANET threshold signature
scheme that is secure under significantly improved topol-
ogy assumptions. A new RSA-threshold cryptography-
based scheme for MANETs using verifiable secret shar-
ing (VSS) scheme was proposed in [16] and a new ap-
proach to facilitate certificate packet delivery and reduce
the overhead caused by threshold cryptography was pro-
posed in [13]. Threshold based cryptography can also be
applied in identity-based key escrow [14] and dealer-less
key sharing [11].

Greedy algorithm and other related algorithms for set
cover was discussed in [2, 17], and approximation algo-
rithms for the partial set cover problem was discussed
in [10]. The classical max-flow min-cut problem is well
known to be solvable in polynomial time [15, 17]. The
minimum multi-terminal cut problem is known to be
MAXSNP-hard but have constant approximation algo-
rithms [5]. The max k-subgraph problem (also called the

dense k-subgraph problem) has no polynomial time ap-
proximation scheme [12], but can be approximated within

n
1
3−ϵ where ϵ is a small positive number [9].
However, none of the above works addressed the opti-

mization algorithms we investigate in this work, we be-
lieve that our work is the first to address these algorithms
related threshold based protocols in network security.

5 Conclusion and Future Re-
search

In this paper we investigate some new problems related
to threshold cryptography protocols in network security
and reliability. We show the hardness of the threshold
minimum cut problem and propose two approximation
algorithms. We also show the hardness of the optimal
service node assignment problem and present a heuris-
tic algorithm. These problems are important in thresh-
old cryptography protocols and have applications in some
other areas.

There are a lot of new problems that can be addressed
in future research. The security and reliability of thresh-
old cryptography based protocols are dependent on the
topology of the networks. Further research, both theoreti-
cally and experimentally, can be done on this relationship.
As we have pointed out, the optimal assignment of service
nodes is intractable in general, but in some practical situ-
ations there may exist good algorithms. For the threshold
minimum cut problem, we only get a weak inapproxima-
bility result, there is much room for improvement.
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