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Abstract

One of the most important challenges facing the intrusion
detection systems (IDSs) is the huge number of generated
alerts. A system administrator will be overwhelmed by
these alerts in such a way that she/he cannot manage
and use the alerts. The best-known solution is to corre-
late low-level alerts into a higher level attack and then
produce a high-level alert for them. In this paper a new
automated alert correlation approach is presented. It em-
ploys Fuzzy Logic and Artificial Immune System (AIS)
to discover and learn the degree of correlation between
two alerts and uses this knowledge to extract the attack
scenarios. The proposed system doesn’t need vast domain
knowledge or rule definition efforts. To correlate each new
alert with previous alerts, the system first tries to find the
correlation probability based on its fuzzy rules. Then,
if there is no matching rule with the required matching
threshold, it uses the AIRS algorithm. The system is eval-
uated using DARPA 2000 dataset and a netForensics hon-
eynet data. The completeness, soundness and false alert
rate are calculated. The average completeness for LL-
DoS1.0 and LLDoS2.0, are 0.957 and 0.745 respectively.
The system generates the attack graphs with an accept-
able accuracy and, the computational complexity of the
probability assignment algorithm is linear.

Keywords: Alert correlation, artificial immune system,
fuzzy logic, intrusion detection system

1 Introduction

Intrusion Detection System (IDS) is a rapidly growing
field that deals with detecting and responding to ma-
licious network traffic and computer misuse. Intrusion
detection is the process of identifying and (possibly) re-
sponding to malicious activities targeted at computing
and network resources [7].

Based on their functionality IDSs are divided into two
categories, misuse detection and anomaly detection sys-
tems. Misuse detection systems use a database of known
attack signatures, then compare any new activity by this
database and decide about its safety status. On the other
hand, anomaly detection systems use a profile of normal
behavior for each user or system, and compare each new
activity with the normal profile. Any notable changes or
anomalies could be considered as a possible attack [1].

The number of false alerts for the misuse detection
systems is less, but they cannot identify new attacks.
On the other hand, anomaly detection systems can de-
tect some new attacks, but the rate of false alarms for
them is higher. Both types of IDSs have a more serious
common problem: the huge and unmanageable number
of produced alerts. In most cases the large number of
low-level alerts confused the system administrator. Each
alert has a little information, and if there are a large num-
ber of these alerts that contain little information then the
system administrator may ignore alerts because she/he
cannot handle a large number of alerts.

The best known solution for this problem is to corre-
late alerts with each other and create higher level scenar-
ios. Alert correlation is the process of analyzing alerts
that are produced by one or more IDSs to provide a more
succinct and concise high-level view of the occurring or
attempted intrusions [28]. The most important goal of
alert correlation is to reduce the number of alerts that
the administrator should investigate manually to find the
signs of attacks. The administrator prefers to have a high-
level scenario of an attack instead of a large numbers of
low-level alerts.

An alert correlator usually carries out its job by remov-
ing false alerts, aggregating related alerts and prioritizing
alerts. Most of the correlators use a complex knowledge
base of rules that define the relationship between alerts
and store metadata about the protected network. Thus it
has to use some expert people to enter the proper knowl-



International Journal of Network Security, Vol.15, No.3, PP.190-204, May 2013 191

edge in the knowledge base. It is hard work and needs
a deep knowledge of network and security. Also consid-
ering the changes in network configuration and everyday
new-appearing attacks, it has to maintain this knowledge
up-to-date. It is also a hard, time-consuming and error-
prone work.

In this paper we propose an alert correlator, which
uses a combination of predefined fuzzy rules and dynamic
learning-based solution. To facilitate the rule definition
process a limited number of general rules are used. The
number of the rules in our implementation is limited to
31 and the rules are not related to any specific network
configuration or any specific attack type or predefined sce-
nario. Besides the predefined rules there is a learning sub-
system, which uses Artificial Immune Recognition System
(AIRS) algorithm. AIRS is trained using the predefined
fuzzy rules in order to discover and remember the correla-
tion relationship between each two alert types. For a new
alert, the system finds its correlation with the previous
alerts. Firstly, it tries to find a rule in its predefined rule
set with matching value higher than a tuneable threshold
(rule selection threshold). If it cannot find a proper rule,
then it uses the AIRS. AIRS uses the same fuzzy rules as
input to generate a collection of memory cells. The corre-
lation system uses these memory cells to find correlation
probability.

After correlating two alerts, the system stores its expe-
riences about these two alert types and their correlation in
three matrices, Alert Correlation Matrix (ACM), forward
strength correlation matrix (Πf ) and backward strength
correlation matrix (Πb). The new values of these three
matrices affect the calculation of probability of correla-
tion for future alerts. It is also possible to use the ACM
and Πf to extract the attack scenario and to create the
attack graph.

The proposed system needs no deep knowledge about
attacks and the protected network. Also, it is a self-
organizing system with the ability to adapt to the changes
in order to detect new attacks and scenarios. As men-
tioned before, the system uses AIRS as its learning al-
gorithm. The algorithm is very fast and has a low com-
putational cost, so the overall computational cost of the
system depends on the correlation algorithm and not the
learning and correlation probability estimation algorithm.

For each new alert (ai), the system searches all hyper-
alerts (groups of related alerts) for an alert (aj) with
the highest correlation probability with ai. If correla-
tion probability between ai and aj is greater than a given
threshold, then ai is inserted in the hyper-alert which con-
tains aj . Otherwise, a new hyper-alert is created and ai
is inserted in it.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents our system.
It illustrates the architecture of the system and provides
the details of its components. Section 4 reports the re-
sult of running the system with the DARPA2000 and net-
Forensics honeynet data. Finally, Section 5 provides the
conclusion and some suggestions for future work.

2 Related Works

As mentioned before, alert correlation has two main goals:
reducing the number of alerts and increasing the relevance
and abstraction level of the produced reports [28]. Com-
monly used techniques for alert correlation can be cate-
gorized as follows:

• Fusion-based
• Filter-based
• Causality-based

Fusion-based correlation [10, 13, 27] is based on the
similarity between two alerts. It defines a function for
similarity and looks for alerts that are similar. If the
similarity value is more than some threshold, alerts are
placed in one cluster. Filter-based approaches [14, 15,
16, 19, 20, 29] either identify the false positive and the
irrelevant alert or assign a priority to each alert. For in-
stance, an alert could be classified as irrelevant if it rep-
resents an attack against a non-existent service. Priori-
ties are usually assigned to alerts depending on how im-
portant attacked assets are. Causality-based approaches
use the logical relationships between alerts to correlate
them [2, 3, 5, 18, 21, 22, 23, 24, 30]. They either use
the knowledge of experts to find related alerts or aim to
infer it from the statistical or machine learning analysis.
Because our work is more related to the causality-based
approach, we focus on the work that uses this approach.

There are several causality-based approaches that use
known scenarios to find relationships among alerts. They
match the sequence of incoming events with some pre-
defined scenarios. These scenarios should be defined
by an attack language (e.g., LAMDBA [4], STATL [6],
ADeLe [26]) or learned using machine learning tech-
niques [5, 30]. Specifying all scenarios in advance is time-
consuming and error-prone work and needs a deep knowl-
edge of the domain. Moreover, it has problem with the
new attack pattern. Wang et al. [30] proposed a multi-
step attack pattern discovering method that aims at solv-
ing the problems of new attack pattern discovery and
overcoming the difficulty in complex attack association
rule definition and maintenance. They mine multi-step
attack activity patterns with the attack sequential pat-
tern mining method from history aggregated high-level
alerts. Their method requires good integration of history
database, which should include various multi-step attack
instances.

Another type of causality-based correlation systems
use the rule-based correlation approach [2, 3, 18, 24].
They rely on the fact that complex attacks are usually
executed in several phases or steps, where the first step
prepares for attacks executed in the later steps. Each
step of the attack has its prerequisites and consequences.
Thus, analyzing alerts based on the predefined rules con-
taining prerequisites and consequences of the attack steps
is sufficient to identify related alerts.

Both scenario-based and rule-based approaches rely on
expert knowledge to find related alerts and cannot han-
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dle novel attacks. Statistical approaches [21, 22, 23, 33]
analyze relationships among alerts based on their co-
occurrence within a certain time period, and thus, are
generally independent of the prior domain knowledge.

Qin [21] presented a Bayesian correlation engine for dis-
covering the statistical relationship between alerts. They
analyze statistical patterns among aggregated alerts, with
the assumption that alerts are causally related if a strong
statistical correlation exists among them. The degree of
relevance of alerts is evaluated by calculating the condi-
tional probability among each pair of hyper alerts. The
approach builds an attack scenario by evaluating the
causal relationship between each pair of hyper alerts. Be-
cause of the large number of possible combinations be-
tween hyper alerts, the running of the system in online
mode is infeasible.

Ren et al. [22] presented an approach for adaptive on-
line alert correlation. The approach incorporates two
components: the offline module that is responsible for re-
trieving relevant attack information from the previously
observed alerts based on the Bayesian causality mech-
anism; and the online component that is based on the
extracted information. It correlates raw alerts and con-
structs attack scenarios online.

There are other works that use machine learning algo-
rithm to estimate the correlation probability among alerts
and use it in correlation time. Zhu et al. [33] used Mul-
tilayer Perceptron and Support Vector Machines to esti-
mate the alert correlation probability, and Sadoddin et
al. [23] used the frequent structure mining technique. All
statistical and machine learning-based approaches do not
require expert knowledge and are capable of representing
unknown attacks. However, the most important draw-
back is their high computational cost, which makes them
impractical for online computation.

3 The Proposed System

The main goal of the alert correlation process is to re-
duce the number of alerts that the system administrator
encounters and has to handle manually. It is a complex
and multifaceted problem, and there are many different
ways to face it. In this paper we introduce a combinatory
fuzzy and AIS-based solution.

3.1 An Overview

The goal of our system is to assign a correlation probabil-
ity to each pair of input alerts and to use this probability
for next correlation. In order to accomplish this, firstly,
It creates a feature vector from each pair of input alerts,
then the system searches among its rules for a rule that
matches with this vector with the value higher than the rs
threshold (rule selection threshold). If it finds such rule,
then simply uses the probability in that rule as the corre-
lation probability of two alerts. Otherwise, it uses AIRS
algorithm to find the correlation probability. The AIRS
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Figure 1: The architecture and components of the system

algorithm is a supervised learning algorithm that is able
to classify the unseen data based on its previous training
data. Here the training data is a set of fuzzy rules and
AIRS discovers and remembers the relationships between
the values of the features in the rules. The correlation
probability that is produced by fuzzy rules or AIRS is
stored in three matrices as the experience of the system
about these two alert types. If the correlation probability
is higher than a predefined threshold (correlation thresh-
old) then the incoming alert will be added to the collection
of alerts, which contains the alert previously encountered.
The name for this collection of related alerts is a hyper-
alert. If the correlation probability for two alerts is less
than the correlation threshold, then a new hyper-alert is
created and the new alert is inserted into it. Figure 1
illustrates the overall structure of the correlation system.
The system contains 6 main components.

• Collection of fuzzy rules;

• Feature vector (cell) generator;

• Fuzzy rule matcher;

• AIS-based classifier;

• Hyper-alert generator and acquired knowledge;

• Attack graph generator.

As mentioned before, the system uses two classifiers
in correlation probability calculation: fuzzy rule matcher
and AIS-based classifier. One of the most important pa-
rameter of our system is the rule selection threshold (rs).
By changing the value of rs, we can change our system
from a completely static system that uses only fuzzy rules
to a completely learning-based system that uses AIRS al-
gorithm. If the value of 0 is assigned to rs, then the
system uses only fuzzy rule matcher and if the value of 1
is assigned to it, then the system uses only the AIS-based
classifier. Although the static system may work rapidly
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and accurately in predefined cases it cannot work properly
in undefined situation. It is better to have a dynamic sys-
tem that learns other cases from the presented one. Then
the learning-based algorithm can work properly in this
undefined situation. By changing the value of rs from 0
to 1 we can change the balance from a pure fuzzy correla-
tor to a fuzzy AIS-based correlator and a pure AIS-based
correlator. Choosing the value of rs is an important task
and may affect both accuracy and performance of the sys-
tem.

3.2 Feature Selection

Before starting its work, the correlator needs to extract
some useful information from alert stream. Suppose that
a2 is the last generated alert by an IDS, and a1 is an alert
that is chosen from one existing hyper-alerts to investigate
its correlation with a2. To decide about the correlation of
a2 with a1 the value of some feature in two alerts should
be selected to generate a feature vector (we call the feature
vector also cell or antigen in some cases). Seven features
are chosen for this proposes. Five of them are calculated
directly from a1 and a2, and two of them are calculated
from the history of the experience of the system about
alerts similar to a1 and a2. This experience is stored in
three matrices ACM, Πb and Πf . Selected features are as
below.

• F1: Similarity between source IP addresses of a1 and
a2 (between 0 and 1);

• F2: Similarity between destination IP addresses of a1
and a2 (between 0 and 1);

• F3: Equality of destination port of a1 and a2 (0 or
1);

• F4: Equality of destination IP address of a1 with the
source IP address of a2 (0 or 1);

• F5: Backward strength correlation between alerts of
type a1 and a2 (between 0 and 1);

• F6: Correlation frequency between alerts with the
same type as a1 and a2 (between 0 and 1);

• F7: Freshness of a1 in the arrival time of a2 (between
0 and 1).

F1-F6 are adopted from [33]. F7 is added to the feature
vector in order to add the time as an important param-
eter to the correlation system. Features F1 and F2 are
the similarity of IP addresses for source and destination
addresses. To calculate the similarity between two ad-
dresses, it should count the number of common higher
order bits of two addresses and divide it by 32. The val-
ues of these features are between 0 and 1. For example,
two IP addresses 192.168.10.60 and 192.168.42.25 have 18
similar higher order bits, and the similarity of 0.56.

Next two features (F3 and F4) are about the port num-
ber of the source and destination addresses. Because the

destination port number of two alerts are either equal or
not, the value of F3 is either 1 or 0. The value of F4

is also either 0 or 1. F4 is important, because in multi-
step attacks the success in one step is the precondition of
starting the next step, and usually the attacker tries to
compromise one host and use it to compromise the next
one. Thus, equivalence of the target IP address of a1 with
the source IP address of a2 may indicate a multi-step at-
tack.

F5 is backward correlation strength. It is the probabil-
ity of correlation between two alerts a1 and a2 when a1
has been seen before a2. This value is extracted from a
matrix with the same name. The matrix initially is set to
zero, and during the process of correlation it is updated
with proper values according to the process that will be
described later in Section 3.3.

F6 is correlation frequency. If two types of alert fre-
quently are correlated, then it is acceptable to say that
there is a meaningful correlation between them. Subse-
quently if we have two choices of correlation with equal
values in all other features, then it is acceptable to choose
the alert with the higher value of F6 for correlation. Ini-
tially F6 is 0. During the correlation process with each
correlation between a1 and a2, the F6’s value for these
two types of alerts is increased.

F5 and F6 together can be used to improve the process
of correlation, especially when the other feature values
are not strong enough. Assume that two alerts of type t1
and t2 have occurred ten times before, and seven of these
occurrences have led to correlation because of strong value
in the other features other than F5 and F6. If two alerts of
these types occur for the 11th time with the weak values
of other features, then because of the strength value of F5

and F6, it is possible to correlate them without the high
value in other features. On the other hand, after several
observations of two alerts, the system learns that they are
in correlation with each other even if the other features
are not strong enough [33].

F7 is freshness. It is about alerts’ arrival times. When
a new alert arrives, it is fresh and its freshness value is
1, which indicates a possible new attack. Over time, the
level of freshness declines, and after a definable time, the
freshness reaches zero. This feature is added in order
to add the time as an important feature to the correla-
tion process. It increases the correlation probability of
an alert with the most recently arrived alerts. Even after
the freshness reaches zero, an alert can be correlated with
other alerts if its other 6 features are high. A parameter,
t, is defined to adjust this feature. The freshness value of
a1 with respect to the arrival time of a2 can be calculated
by using Equation (1) [11]. We consider t=3600 then F7

reaches zero after one hour.

F7=1−
√

(a2.time− a1.time)

t
(1)

Therefore, when two alerts a1 and a2 arrive the system
delivers them to the feature vector generation module.
It extracts required features from alerts and from stored
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Figure 2: An Alert Correlation Matrix

matrices and creates a feature vector. Suppose for alert
a1 the timestamp, source address, destination address and
alert type are 4:13:20, 172.16.114.50 : 1227, 172.16.113.50
: 25 and Email Ehlo, and for a2 are 5:06:16, 172.16.113.50
: 1048, 172.16.112.50 : 21 and FTP User. Their corre-
sponding feature vector is (F1=.6872, F2=.7187, F3=0,
F4=1, F5=.2424, F6=1, F7=.06).

3.3 Knowledge Acquiring Matrices

In this section, three matrices that are used in the corre-
lation process are introduced: the Alert Correlation Ma-
trix (ACM), the forward correlation strength matrix (Πf )
and the backward correlation strength matrix (Πb). ACM
contains the correlation weights between every two alerts.
For example, if possible alerts in the system are a1 to a4,
then ACM is as shown in Figure 2.

The ACM elements are the correlation weights of two
corresponding alerts and are the sum of correlation prob-
abilities for two alerts during the correlation process until
now. It is calculated by using Equation (2) [33].

Wc(ai,aj) =
n∑

k=1

Pi,j (k), (2)

where, Pi,j(k) is the correlation probability for ai and aj
in the kth correlation of them when ai was occurred be-
fore aj . Because of this time ordering, the ACM is not
symmetric. It encodes the temporal relationship between
two alerts. Pi,j(k) is produced by the correlation engine,
and for its calculation F5 is used from the Πb matrix. On
the other hand, the calculated values in the ACM are used
later for generating two strength matrices (Πb, Πf ). Sub-
sequently, ACM is updated dynamically by correlating
each pair of new alerts, and the updated values cause the
changes in the next correlation of these two alert types.
Two strength matrices’ elements are calculated by using
Equation (3) and Equation (4) [33].

Πb
c(ai,aj)

=
Wc(ai,aj)∑n

k=1 Wc(ak,aj)

(3)

Πf
c(ai,aj)

=
Wc(ai,aj)∑n
k=1 Wc(ai,ak)

(4)

Unlike correlation weights in the ACM, these two ma-
trices’ values are between 0 and 1. Πf (ai, aj) is calculated

by dividing the correlation weight of ai and aj to the sum
of correlation weights of ai with all alerts that happened
after ai with it. It can be used to predict the correlation
probability of one alert to another alert that happens af-
ter it. It will be used for generating the attack graph
later.

On the other hand, Πb(ai, aj) is calculated by dividing
correlation weight of ai and aj by the sum of correlation
weights of all alerts that happened before aj with it. It
can be used to find the correlation probability of one alert
with another alert that happened before it. As mentioned
before, Πb(ai, aj) is used as one feature (F5) in the pro-
cess of feature vector generation. Both matrices initially
are filled with zero, and the correlation process is done
considering the other five features. After each correlation
ACM, Πb and Πf matrices are changed. After several cor-
relations, the contents of matrices are meaningful. These
matrices play the role of some sort of memory or acquired
knowledge for the correlation system.

3.4 Fuzzy Rules

We define a limited number of fuzzy rules in order to be
able to assign a correlation probability to each feature
vector. These rules declare the relation between seven
features (F1-F7) and the class number (correlation prob-
ability). For example, one rule says that if the similarity
of source and target IP addresses in two alerts are high
and the target ports for both alerts are the same and
the target port of the first alert is not the same as the
source port of the second alert and the frequency of pre-
vious correlation for alerts of these types are high and the
backward correlation strength of these two types are high
and the freshness of first alerts in the arrival time of the
second one is high, then the class of the feature vector
is 20 (means that probability of correlation is 1). The
format of each rule is as following.

If (F1 = V1) and . . . (F7 = V7) Then (Class = C)

The antecedent of each rule contains seven features
(F1 − F7) and their corresponding values (V1 − V7). Two
features (F3 and F4) have crisp values (0 or 1). The value
of five other features are expressed by linguistic terms
such as high, low and medium. These linguistic terms are
defined by proper fuzzy sets. The consequent of a rule is a
class number that is assigned to it. The class number is an
integer value between 1 and 20. The class number of 1 is
equal to the probability value of 0 and the class number of
20 is equal to the probability value of 1. Each other class
number simply can be mapped to its probability value
with the step length of 0.05. Table 1 shows some sample
rules of our defined rules. To classify an input vector such
as x with the value of (v1, v2, v3, v4, v5, v6, v7) all rules are
investigated and three rules with the most compatibility
with the x are determined.

To calculate the compatibility of feature vector x with
rule Rj we use the average membership value of the seven
features with respect to rule Rj . It is calculated by using



International Journal of Network Security, Vol.15, No.3, PP.190-204, May 2013 195

Equation (5).

Compatibility(x,Rj) =
1

n

n∑
i=1

µ(vi, Vi), (5)

where n is the number of features, vi is the value of ith

feature in x, Vi is the value of i
th feature in the antecedent

part of rule Rj and µ is the membership function for the
fuzzy set Vi. We calculate the compatibility of x with each
rule to find the most compatible rule. If the compatibility
value for the most compatible rule is more than a given
rule selection threshold (rs), then the class number for
x is determined by our fuzzy rule matcher. Otherwise,
the system tries to calculate the correlation probability
by using AIS-based classifier.

As mentioned before, the three most compatible rules
are identified by the system. In the case of using the fuzzy
rule matcher the probability value is calculated based on
the class number in the consequent part of these three
rules. First, we determine the class number, Ci, of x and
then map it to a probability value. To calculate the class
number, Ci, we consider not only the class number of
three most compatible rules but also their compatibility
value and their distances from each other. Algorithm 1
outlines the probability mapping function.

After determining the class number, Ci, we need a
mapping function in order to convert a class number to a
probability value. Equation (6) is used to do this.

P =
Ci − 1

λ
+

1

2 ∗ λ
(6)

Table 1: Sample predefined rules

F1 F2 F3 F4 F5 F6 F7 Class
Med Med 1 0 High High Low 16
High High 1 0 Low Low High 19
High High 1 0 Low Low Low 18
Med Med 0 0 Med Low High 4
Med Med 0 0 Med Low Low 3

3.5 AIRS Algorithm

AIRS is a supervised-learning algorithm. It was intro-
duced in 2001 for the first time by Watkins [31]. A re-
vised version of it was introduced later [32]. It is more
efficient than the original version, but with the same level
of accuracy. We refer to this new version as AIRS in this
paper. The main goal of the algorithm is to produce a
population of memory cells from the training data with
the ability to classify the new data. The AIRS design
refers to many immune system metaphors including re-
source competition, clonal selection, affinity maturation,
memory cell retention. It also uses the resource limited
artificial immune system concept. In this algorithm, the

Algorithm 1 Probability calculation for rule x in fuzzy
classifier
1: Begin
2: R1, R2, R3 ← The Three most compatible rules with

x
3: λ← The number of classes
4: if (R1.cmpt-R2.cmpt> .15) or (R1.cmpt-R3.cmpt >

.25) then
5: return (R1.class-1)/λ+1/(2*λ)
6: end if
7: Sort R1, R2, R3 to Ra, Rb, Rc based on Ri.class
8: if (Rb.class-Ra.class ≥3) and (Rc.class-Rb.class ≥3)

then
9: return (R1.class-1)/λ+1/(2*λ)

10: end if
11: if Rb.class-Ra.class ≥3 then
12: d← min(Rc.cmpt,Rb.cmpt)

(Rc.cmpt+Rb.cmpt) ∗ (Rc.class−Rb.class)

13: if Rb.cmpt > Rc.cmpt then
14: C ← Rb.class+ d
15: else
16: C ← Rc.class− d
17: end if
18: return (C-1)/λ+1/(2*λ)
19: end if
20: if Rc.class-Rb.class ≥3 then
21: d← min(Rb.cmpt,Ra.cmpt)

(Rb.cmpt+Ra.cmpt) ∗ (Rb.class−Ra.class)

22: if Ra.cmpt > Rb.cmpt then
23: C ← Ra.class+ d
24: else
25: C ← Rb.class− d
26: end if
27: return (C-1)/λ+1/(2*λ)
28: end if
29: if (Rb.class-Ra.class=2) and (Rc.class-Rb.class=2)

then
30: return (R1.class-1)/λ+1/(2*λ)
31: end if
32: return (Rb.class-1)/λ+1/(2*λ)
33: End

feature vectors presented for training and test are named
as antigens while the system units are called as B cells.
Similar B cells are represented with Artificial Recognition
Balls (ARBs) which compete with each other for a fixed
number of resources. The ARBs with higher affinities to
the training antigen improve. Each antigen in training
data is presented to algorithm once and the algorithm
creates a memory cell for it. The memory cells formed
after the presentation of all training antigens are used to
classify test antigens.

The AIRS has four stages: Normalization and initial-
ization; ARB generation; Competition for resources and
nomination of candidate memory cell; and memory cell
introduction [31, 32]. The mechanism to develop a candi-
date memory cell is as follows:

1) A training antigen is presented to all the memory
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cells belonging to the same class as the antigen. The
memory cell most stimulated by the antigen is cloned.
The memory cell and all the recently generated clones
are stored into the ARB pool. The number of clones
generated depends on the affinity between the mem-
ory cell and antigen, and affinity in turn is deter-
mined by Euclidean distance between the feature vec-
tors of a memory cell and a training antigen. The
smaller the Euclidean distance, the higher the affin-
ity, the more is the number of clones allowed.

2) Next, the training antigen is presented to all the
ARBs in the ARB pool. All the ARBs are appropri-
ately rewarded based on affinity between the ARB
and the antigen. The rewards are in the form of
number of resources. After all the ARBs have been
rewarded, the sum of all the resources in the system
typically exceeds the maximum number allowed for
the system. The excess number of resources held by
ARBs are removed in order starting from the ARB
of lowest affinity and moving higher until the number
of resources held does not exceed the number of re-
sources allowed for the system. Those ARBs, which
are not left with any resources, are removed from the
ARB pool. The remaining ARBs are tested for their
affinities towards the training antigen. If the average
normalized stimulation level for all instances does not
meet a user defined stimulation threshold, then the
ARBs are mutated and their clones are placed back
in the ARB pool. The mutation range for highly
stimulated ARBs is more limited than the mutation
range of less stimulated ARBs. (class mutation is not
valid). Step 2 is repeated until the affinity meet the
stimulation threshold.

3) The most stimulated ARB is chosen as a candidate
memory cell. If its affinity for the training antigen is
greater than that of the original memory cell selected
for cloning at step 1, then the candidate memory
cell is placed in the memory cell pool. If in addition
to this the difference in affinity of these two mem-
ory cells is smaller than a user defined threshold, the
original memory cell is removed from the pool.

These steps are repeated for each training antigen. Af-
ter completion of training the test data are presented only
to the memory cell pool, which is responsible for actual
classification. The class of a test antigen is determined
by majority voting among the k most stimulated memory
cells, where k is a user defined parameter.

AIRS has been applied to a wide variety of publicly
available classification benchmarks. AIRS proved to be a
very good classifier, thus far it has been among the ten
most accurate classifiers known in every case to which it
has been applied [12]. In order to use the AIRS for alert
correlation purpose we propose some improvements to it.
The main goals of these improvements are to improve the
accuracy of the algorithm for our usage and to enable
AIRS to produce real value (probability) instead of inte-

ger value (class number) for its input antigens. In order
to use the fuzzy rules as training cell for AIRS, we make
a slight change in the rules that is shown in the Table 1.
We replace the terms such as high and low with some ap-
propriate real value such as 1 and 0 and make a vector of
real value for each rule. This vector of real value is called
antigen and is used in training process of AIRS. Table 2
shows some sample training antigens for our algorithm
and Table 3 is some sample memory cells that are pro-
duced by the AIRS algorithm. These memory cells will
be used later for probability calculation. We describe the
improvements in the AIRS for alert correlation in more
details in next three subsections.

Table 2: The training cells corresponding to rules of Ta-
ble 1

F1 F2 F3 F4 F5 F6 F7 Class
0.5 0.5 1 0 1.0 1.0 0.0 16
1.0 1.0 1 0 0.0 0.0 1.0 19
1.0 1.0 1 0 0.0 0.0 0.0 18
0.5 0.5 0 0 0.5 0.0 1.0 4
0.5 0.5 0 0 0.5 0.0 0.0 3

Table 3: Sample generated memory cells

F1 F2 F3 F4 F5 F6 F7 Class
0.55 0.99 1 0 0.38 0.62 0.40 16
0.98 1.0 1 0 0.10 0.61 0.15 19
1.0 1.0 1 0 0.50 0.07 0.85 18
0.20 0.46 0 0 0.24 0.20 0.57 4
0.65 0.50 0 0 0.10 0.11 0.43 3

3.5.1 Weight Calculation

In distance calculation in the AIRS algorithm the weights
of all features are equal, therefore, the stimulation of one
cell (antigen) by the other is calculated by the following
Equation

Stimulation(a1, a2) = 1−Distance(a1, a2).

Where Distance(a1, a2) is the Euclidean distance of
two cells a1 and a2.

Since the number of classes is high and the number
of training data are limited, a more accurate method for
computing the distance values is needed. By examining
the training data, we found out that the features do not
have an equal effect in the calculation of the probability
values.

To determine the effect of each feature, we use the no-
tion of Symmetrical Uncertainty [8]. This score is a vari-
ation of the Information Gain measure. It compensates
for InfoGains bias toward attributes with more values and
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normalizes its value to the range [0,1]. Symmetrical Un-
certainty is defined by Equation (7).

SU(X,Y ) = 2×
[
InformationGain(X|Y )

H(X) +H(Y )

]
(7)

where H(X) and H(Y ) are the entropies of the random
variables X and Y , respectively. Before using this score,
all continuous attributes should be discretized into inter-
vals. We discretized F1, F2, F5, F6 and F7 into 10 inter-
vals. Using Symmetric Uncertainity between the Class
and each feature (F1-F7) in the training dataset produced
the following coefficients, which are used for weight esti-
mation.

W1=0.272, W2=0.292, W3=0.253, W4=0.107,
W5=0.224, W6=0.388, W7=0.160. The weighted
Euclidean distance is calculated by using Equation (8).

Distance (a1, a2) =
2

√√√√ n∑
i=1

Wi ∗ (a1.Fi − a2.Fi)
2

(8)

Note that the weight estimation is done only once in the
parameter discovery phase of the system.

3.5.2 Class Selection Policy

The other improvement that is applied to the last step
of the AIRS algorithm is to change the policy of class
selection. The standard version of AIRS uses the majority
vote in the KNN algorithm. Our experimental results
show that, replacement of majority vote selection with
the least average distances selection improves the output
of AIRS in the correlation engine. This means that for
identifying the proper class label of a vector of data x,
it is better to choose the class label with least average
distances from the x, instead of the class label with the
most members.

3.5.3 Probability Mapping

To map the class number to the probability value we use
again Equation (6). We also consider the predecessor and
successor class numbers of each class to calculate its accu-
rate probability value. Suppose that the class label that
is generated for an antigen Ag is Ci, and the average dis-
tance of Ag to Ci is di. If Ci−1 is the predecessor and
Ci+1 is the successor class of Ci, then the distances of Ag
with Ci−1 and Ci+1, are di−1 and di+1. Note that, it is
possible that di−1 or di+1 do not exist because Ci−1 and
Ci+1 are not necessarily one of the K nearest neighbors
of Ag. By using di−1 and di+1, Equation (6) is changed
as Equation (9).

P =
Ci − 1

λ
+

1

2 ∗ λ
+∆ (9)

Where,

∆ =



− 1+di
2−di−1

2

2∗λ if (di−1 < di+1) or (@Ci−1)

if (di = 0) or (di−1 = di+1)
0

or (@Ci−1 and @Ci+1)

1+di
2−di+1

2

2∗λ if (di+1 < di−1) or (@Ci+1)

In Equation (9) the initial probability is shifted toward
one of the two classes, Ci−1 or Ci+1 respectively. The
value of the shift is ∆, and the direction of the shift is
dependent on the value of di−1 and di+1 (toward the one
with the least value). By using Equation (9), the value
of probability changes continuously between 0 and 1, and
it would be accurate enough. Algorithm 2 outlines the
probability assignment algorithm for an input cell.

Algorithm 2 Probability calculation for cell x in AIRS

1: Begin
2: n← The number of memory cells in MC
3: λ← The number of classes
4: for j = 1 to n do
5: dj ← Weighted Euclidean (x, MCj)
6: end for
7: KNN ← K Memory cells with least distances to x
8: i ← The index of memory cell with least distance to

x
9: Ci ←MCi.class // class number of MCi

10: if di = 0 then
11: ∆← 0
12: end if
13: if (∃j, MCj ∈ KNN) and (MCj .class =

MCi.class− 1) then
14: di−1 ← Weighted Euclidean (x, MCj)
15: end if
16: if (∃k, MCk ∈ KNN) and (MCk.class =

MCi.class+ 1) then
17: di+1 ← Weighted Euclidean (x, MCk)
18: end if
19: if ((@Ci−1) and (@Ci+1)) or (di−1= di+1) then
20: ∆← 0
21: end if
22: if (@Ci−1) or (di−1 > di+1) then

23: ∆← 1+d2
i−d2

i+1

2∗λ
24: end if
25: if (@Ci+1) or (di−1 < di+1) then

26: ∆← − 1+d2
i−d2

i−1

2∗λ
27: end if
28: return (Ci-1)/λ+1/(2*λ)+∆
29: End

3.6 Alert Correlation Process

After acquiring the proper accuracy in the probability cal-
culation process, it is possible to give a stream of alerts to
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our correlator to process it. Input alerts first go through
the feature vector generator one by one, then the corre-
lation probability for each vecotr is calculated by using
fuzzy matcher. If the matching value is less than rs (rule
selection threshold) then the AIRS algorithm and memory
cells are used for probability calculation. Each alert prob-
ably is correlated with few previous alerts and is added
to a structure called hyper-alert. Each hyper-alert con-
tains alerts with some degree of correlation that could be
placed in a possible attack scenario. When a new alert
such as ai arrives, its correlation with all previous alerts
in existing hyper-alerts is calculated, and the hyper-alert
such as Hj that contains the maximum probability of cor-
relation (Cmax) with ai is identified. If the probability is
higher than a minimum predefined threshold, then ai is
added to Hj . Otherwise, a new hyper-alert with only one
alert (ai) is created. If Hj exists, then all alerts in Hj

are checked, and each alert with the correlation probabil-
ity near to the (Cmax) is correlated with ai. The value
of nearness can be defined in the system parameters as
the correlation sensitivity. In this process each time an
alert is correlated with another one, the ACM, Πb and
Πf matrices are also updated. As a result, the system
changes its acquired knowledge dynamically and adapts
itself incrementally with the new correlation results. The
result of this process is the hyper-alerts. Each hyper-alert
contains a number of alerts and is considered as a possible
attack scenario.

3.7 Attack Graph Generation

Hyper-alert is a valuable means for presenting alerts’ re-
lationships. However, by considering the number of gen-
erated alerts in a real system, it can be concluded that
the size of the hyper-alerts increase very quickly, and it
becomes very difficult to extract the required information
from it. Each hyper-alert contains the step by step ac-
tivities of an attacker. But, an attack graph is a directed
graph that shows the overall scenario of an attack, and it
contains one node for each alert type. By using the attack
graph, it is possible to have an overall and concise view
of the attack scenario. As mentioned before, Πf matrix
is generated during the correlation process, and it is used
in attack graph generation.

The algorithm starts with an alert that represents a
particular type of attack. Then it performs a horizontal
search in the ACM to find alerts that are most likely to
happen after this alert. These alerts become new starting
points to search for alerts that are more likely to happen
next. The process is repeated until no other alerts are
found to follow any existing alerts in the graph [33].

4 Evaluation and Results

The alerts produced by Realsecure [25] on the
DARPA2000 [9] dataset are employed to evaluate the ac-
curacy of the system in the extracting two attack scenarios

LLDoS1 and LLDoS2. The alerts produced by Snort on
the netForensics honeynet data [17] are also employed to
evaluate the performance of the system. We use 31 gen-
eral rules in our rule set and use their corresponding 31
training antigens for AIRS training part. Before system
starting its work, the AIRS algorithm is executed and the
result memory cells are stored in the system. Therefore
the initial knowledge of the system consists of the fuzzy
rules and memory cells. System uses this initial knowl-
edge to correlate the input alert stream. To evaluate the
accuracy of our system, we use three measures, complete-
ness, soundness and false error rate.

Completeness is defined as the ratio of the correctly
correlated alerts to the related alert for a scenario. Sound-
ness is defined as the ratio of the correctly correlated
alerts to the total correlated alerts for a scenario and
false alert rate is defined as the ratio of the incorrectly
correlated alerts to the related alerts for a scenario.

There are so many parameters in the system. We used
many different values for each parameter in order to test
the system. After finding the best value of parameters
in the system we execute our system for two mentioned
scenarios (LLDoS1 and LLDoS2). Each scenario is ex-
amined 10 times for each setting and the reported results
are based on the average values. We change the rule se-
lection threshold (rs) from 0 to 1 to investigate the effect
of each classifier (fuzzy and AIS-based) in the accuracy of
the system. The value of 0 for rs means that the system is
working only with fuzzy rules and is not relies on the AIS-
based correlator, and the value of 1 for rs means that the
system completely uses AIS-based correlator. By chang-
ing the value of the rs system can work from a pure fuzzy
correlator to a combinatory fuzzy and AIS-based correla-
tor and finally to a pure AIS-based correlator. Our goal
here is to use as less as possible initial knowledge and gain
the best accuracy. As results we use only 31 initial rules
in our rule collection. Although the pure fuzzy correlator
(rs=0) may work with higher number of rules it is not
possible to define all situations of two alerts for correla-
tion and to declare their correlation probability. With
our limited number of rules the results of the pure fuzzy
correlator is weak and we do not report them here. As
the result we increase the value of rs and investigate the
results. By increasing the value of rs the accuracy of the
system is increased until it reach near 0.9. For rs=0.9 the
system uses fuzzy rules if the matching value of a rule is
more than or equal to 0.9. It is reasonable to use a rule
with matching value more than 0.9, beacuse it is accu-
rate enough and there is no need to learn anything to be
able to classify this data. By increasing the value of rs
from this point (0.9) we neglect the existence of matched
rules and this cause to increase the execution time and
to decrease the accuracy of the results. The best results
are obtained by rs=0.9 to 1 in different datasets. We re-
port the results of rs=0.9 as fuzzy AIS-based and rs=1
as pure AIS-based correlator. We also change the value of
the lymphocyte number for both scenarios and for both
pure AIS-based and fuzzy AIS-based correlator from 100
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to 2000 and report the results.
To evaluate the performance of the system two types of

experiments are done. We change the number of lympho-
cyte from 100 to 2000 for both rs=1 and rs=0.9 and com-
pare the execution time of the correlator. We also change
the number of alerts in netForensics honeynet data from
1000 to 5000 and investigate the execution time for three
values of rs: 0.1, 0.9 and 1.0.

4.1 Experiments with LLDoS1.0

In this experiment the produced alerts by Realsecure for
inside1 traffic are used. Realsecure produces 922 alerts
from 22 types for this data. The LLDoS1.0 is a five stages
attack. It consists of the following stages:

• IPsweep of the network from a remote site;

• Probe of live IPs to look for the sadmind daemon;

• Break-ins via the sadmind vulnerability;

• Installation of the trojan mstream DDoS;

• Launching the DDoS.

We examine this data with rs=1 and rs=0.9 (pure AIS
correlator and fuzzy AIS correlator). Both correlators
are examined ten times for each different number of lym-
phocytes (from 100 to 2000). Both correlator are able
to extract the attack scenario almost completely. The
alerts that appear in almost all extracted scenario are
Sadmind Ping, Admind, Sadmind Amslverify Overflow,
Rsh and Mstream Zombie. The last step of the at-
tack is not extracted in every experiment. Its re-
lated alert(Stream DoS ) is placed in an hyper-alert with
only one alert. There are also alert types such as
SSH Detected, TelnetEnvAll, TelnetXdisplay and Telnet-
Terminaltype that apear in some runs. We consider all
these alert types as false correlation. Figure 3 shows one
sample extracted scenario by fuzzy AIS-based correlator
(rs=0.9).

The differences of the results for two values of rs is in
the number of required lymphocytes to get the best re-
sults. Although the fuzzy AIS-based correlator (rs=0.9)
is able to extract the scenario with less number of lym-
phocytes (even 100) the pure AIS-based correlator (rs=1)
do the same with more number of lymphocytes (about
2000). Table 4 shows the comparison of the complete-
ness, soundness and false error rate for two correlators
with the same parameters. It shows that although the
soundness and false error rate for two correlators are very
close the compleness of the fuzzy-AIS-based is better than
pure AIS-based. Choosing the value of rs=0.9 means that
the system first tries to find a fuzzy rule with the match-
ing value of 0.9 or more with the input alerts and if it
cannot find such rule it uses AIS-based correlator. The
results show that there are some evidences of attack in
inside1 dataset that is extractable with our general fuzzy
rules. But AIS-based correlator needs to train with more
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Figure 3: The attack graph generated for LLDoS1.0
(rs=0.9)

number of lymphocytes to be able to extract these evi-
dences. Figure 4 shows the completeness of both correla-
tors with different number of lymphocytes for LLDoS1.0.
We consider the number of related alerts for scenario of
LLDoS1.0 58.

4.2 Experiments with LLDoS2.0

In this experiment the produced alerts by Realsecure for
inside2 dataset are used. Realsecure produces 494 alerts
from 20 different types for this data. The LLDoS2.0 is also
a five stages attack. It consists of the following stages:

• Probe of a public DNS server on the network, via the
HINFO query;

• Breakin-to the DNS server via the sadmind vulnera-
bility;

• FTP upload of mstream DDoS software and the at-
tack script;

• Initiate the attack on the other hosts of the network;

• Launching the DDoS.

We examine this data with rs=1 and rs=0.9 (pure
AIS correlator and fuzzy AIS correlator). Both corre-
lators are examined ten times for each different num-
ber of lymphocytes (from 100 to 2000). Both correla-
tors are able to extract the attack scenario almost com-
pletely. The alerts appear in almost all extracted scenario
are Admind, Sadmind Amslverify Overflow, FTP Put
and Mstream Zombie. The last step of the attack is
not extracted in every experiment. Its related alert
(Stream DoS) is placed in an hyper-alert with only one
alert. There are also alert types such as FTP User,
FTP Pass, FTP Syst, TelnetEnvAll, TelnetXdisplay and
TelnetTerminaltype that apear in a few runs. We con-
sider all these alert types as false correlation. Figure 5
shows one sample extracted scenario by fuzzy AIS-based
correlator (rs=0.9).
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Table 4: Accuracy comparison of pure AIS-based and Fuzzy AIS-based method for LLDoS1.0

rs=1 (Pure AIS) rs=0.9 (Fuzzy-AIS)
Completeness Soundness False Alert Completeness Soundness False Alert

Mean .720 .977 .022 .957 .948 .053
Std. Dev. .097 .017 .017 .013 .007 .008

Table 5: Accuracy comparison of pure AIS-based and Fuzzy AIS-based method for LLDoS2.0

rs=1 (Pure AIS) rs=0.9 (Fuzzy-AIS)
Completeness Soundness False Alert Completeness Soundness False Alert

Mean .750 .792 .296 .745 .82 .245
Std. Dev. .056 .082 .131 .053 .082 .119

Figure 4: Comparing the completeness of the correlator
for rs=1 and rs=0.9 with different number of lymphocyte
for Inside1 traffic

Here two correlators are working almost in the same
way and they work with different number of lymphocytes
almost the same. The advantages of fuzzy AIS-based cor-
relator (rs=0.9) are its better execution time and its bet-
ter average soundness and average false alert rate than
the pure AIS-based correlator (rs=1.0). Table 5 shows
the comparison of the completeness, soundness and false
error rate for two correlators with the same parameters.
The average false alert rate for both correlators is rel-
atively high the reason is that we do not consider the
telnet alerts as related alerts in this scenario. By con-
sidering the telnet alerts as related alerts the mean false
alert rate decreases to 0.1 with standard deviation of 0.05
for both correlator. The results show that the accuracy of
our system is comparable with some more complex corre-
lators without the need to complex rules definition task.
Figure 6 shows the soundness and false alert rate for both
correlators with different number of lymphocytes for LL-
DoS2.0.
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Figure 5: The attack graph generated for LLDoS2.0
(rs=0.9)

4.3 Experiments with netForensics Hon-
eynet Dataset

The netForensics honeynet dataset contains 35 days of
traffic logs collected from February 25, 2005 to March 31,
2005 [17]. During this period, attackers issued several
multi-step attacks to compromise the honeynet. Here,
the word compromised is defined as a successful attack,
followed by some follow-up activities. From the hon-
eynet owner’s point of view, the most compelling evi-
dence of compromise was the outbound IRC communi-
cation, which implies that the intrusion succeeded, the
attacker has some degree of control over the machine and
that he managed to install his own software (an IRC client
or Bot). The owner of the honeynet also pointed out that
their victim server was first compromised on February 26
and then continued in March. The traffic of the two first
days of netForensics honeynet data is employed to test the
ability of our system for extracting the attack scenarios.

Snort generates 3419 alerts belonging to 43 different
alert types for these two days. Results show that all
43 types of alerts in the input data are correlated with
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Figure 6: Comparing soundness and false alert rate for
rs=1 and rs=0.9 with different number of lymphocyte
for inside2 traffic
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Figure 7: The attack graph generated for netForensics
honeynet (rs=0.9)

each other with different strengths. The ACM, Πb and
Πf matrices are created and the correlation information
are stored in them and are used for hyper-alert gener-
ation and attack graph generation. As mentioned be-
fore, the most compelling evidence of compromise is the
outbound IRC communication, which implies that the
intrusion succeeded. Our extracted scenario is started
by three types of alerts: WEB-ATTACKS rm command
attempt, BLEEDING-EDGE EXPLOIT Awstats Remote
Code Execution Attempt and WEB-ATTACKS wget com-
mand attempt. The attacker uses these remote command
attempts to download and install malicious software on
the target machines. Then the attacker issues IRC at-
tacks from those compromised targets to the final vic-
tim. Snort is produced alerts such as CHAT IRC nick
change, BLEEDING-EDGE IRC-Nick change on non-std
port, BLEEDING-EDGE POLICY IRC connection and
CHAT IRC message for the rest of the attack, and our
system correlates these alerts with alerts of the first step
of the attack scenario. Figure 7 shows the extracted at-
tack scenario for rule selection value of 0.9.

4.4 Performance Analysis

To evaluate the performance of our correlator, we con-
sidere its execution time with different number of lym-
phocytes and with different values of rs. Figure 8 shows
the execution time with different number of lymphocytes
for LLDoS2.0. As it is expected the execution time has
a direct relation with the value of rs. For rs=0.1 the
time is the least and for rs=1 the time is the most. The
reason is that less value for rs means the more selection
of fuzzy rule matcher and bypassing the AIS-based cor-
relator. With increasing the value of rs the possibility of
finding a rule is decreased and the system uses AIRS for
more times and as result the execution time is increased.
Moreover, as the number of lymphocytes increases the ex-
ecution time is increased very slowly. For example in Fig-
ure 8 when the number of lymphocytes increases from 100
to 2000 the execution time increases from 5 to 10 seconds
for rs=1. It means that 20 times increment in lymphocyte
number creates an increasing of two times for execution
time. Then the effect of the number of lymphocytes is
low.

Figure 9 shows the effect of the number of alerts in
the execution time for netForensics honeynet data. The
number of alerts is increased from 1000 to 5000 and the
execution time of the system is measured for different val-
ues of rs. Results show that, the execution time of the
algorithm is O(n2) ( n is the number of alerts). For exam-
ple for 1000 alerts and rs=0.9 the execution time of the
system is 19 seconds and with 2000 alerts the execution
time is 76 seconds that is four times increasing. It seems
that the execution time of the correlation algorithm with
higher number of alerts is not acceptable. In this version
of the system we try to show the ability of our correla-
tion engine to correlate alerts accurately but, for using
our correlator in online mode it is better to work more
on the correlation process to improve its performance.
One possible improvement is to define a time window for
correlation. Time window can considerably decrease the
execution time of the system. It is not necessary to cor-
relate each alert with all previous alerts. It is sufficient to
correlate it with a limited number of alerts during a time
window. In a real environment, it is possible to adjust the
execution time of the algorithm by an acceptable length
of time window.

5 Conclusion and Future Work

We use AIS and fuzzy logic as two soft computing tech-
niques for alert correlation. Our proposed system needs
only a few general rules about the relation between seven
selected features. These rules are defined by some linguis-
tic terms such as low, high and medium to simplify the
rule definition and make it more general. Also, we need
these rules as input to AIRS algorithm. AIRS is a su-
pervised learning algorithm and by using our initial rules,
it extracts more information for correlation of previous
unseen patterns and stores them in the form of memory
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Figure 8: Execution time of the correlator for rs=0.1,
rs=0.9 and rs=1 with different number of lymphocyte
for inside2 traffic

cells. During the correlation process we use a simple fuzzy
rule matcher to find the proper rule for each feature vec-
tor. It needs that the matching value become more than
a threshold (rs). If it is not, then it uses the memory
cells produced by the AIRS algorithm to find the corre-
lation probability. In this way, we use both the simplic-
ity and speed of fuzzy rules and the learning ability of
AIRS to correlate input alerts. Our system is examined
by two traffic data of DARPA2000 and netForensics hon-
eynet data and its ability to extract the attack scenario is
proven. Our system is simple to run, it needs no compli-
cated initial data. It can learn and remember the corre-
lation between different attack types. The rs parameter
is an important parameter and makes our system more
flexible. It is used to balance between the static nature of
predefined fuzzy rules and dynamic nature of AIS-based
learning system. We get the best results for both datasets
with the value of 0.9 for rs. But it is possible to define
more number of rules and decrease the rs value. The
execution time of the system is increased gradually with
the number of lymphocytes. It is more dependent to the
number of alerts. The results show that the execution
time of the system is in the order of n2 with the number
of alerts but in fact, in a real environment it is not neces-
sary to correlate each alert with all previous alerts. It is
sufficient to correlate each alert with a limited number of
alerts during a time window. Then it is possible to adjust
the execution time of the algorithm by an acceptable time
window.
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