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Abstract

Good point set scanning-based self learning worms can
reach a stupendous propagation speed in virtue of the
non-uniform vulnerable-host distribution. In order to ter-
minate such self-learning worms, this paper proposes an
interaction model. Using the interaction model, we obtain
the basic reproduction number. The impact of different
parameters of predators is studied. Simulations results
show that the performance of our proposed model is ef-
fective in combating such worms, in terms of decreasing
the number of hosts infected by the prey and reducing the
prey propagation speed.

Keywords: network security, predator, interaction model,
self-learning worms, equilibrium

1 Introduction

Internet worms can reduplicate themselves and attack
computers which have vulnerability and are connected to
the Internet without any human intervention. They have
addressed a serious threat to confidentiality, integrity,
and availability of computer resources on the Internet.
Internet worms have reached a horrendous propagation
speed because of their increasingly sophisticated spread-
ing mechanisms. The time required for the infection of
global targets has shrunk from days to minutes. More-
over, some worms exploiting the non-uniform vulnerable-
host distribution may use advanced scanning strategies,
e.g., good point set scanning, to infect a large number of
hosts in a shorter time. This type of worms is called as
self-learning worms. How to combat self-learning worms
effectively is an urgent issue confronted by defenders.

The concept of predator is addressed by Toyoizumi [15].
The concept is to transform a malicious worm into a
predator which spreads itself using the same mechanism
as the original worm and immunizes a host. Some cases

of predators, e.g., Welchia and CRClean worms, have
been released to terminate Blaster and Code Red, re-
spectively. However, they did not achieve the intended
purpose, which create unprecedented dynamic and com-
plex scenarios as well as detrimental effect on the Internet
infrastructure [13].

Mathematical epidemiology is an important branch of
science, aiming at devising optimal defense strategies to
fight Internet worms. Several worm interaction models
have been proposed [3, 5, 6, 10, 11, 12, 13, 14, 20], which
are all based on epidemic models. However, those worm
interaction models focusing on random-scan worm inter-
actions have not considered the vulnerable-host distri-
bution, are inadequate to model the war between self-
learning worms and predators.

The goal of this paper is to mathematically model the
behavior of containing worms. According to actual net-
works, we take the network-delay factor into account.
This paper models prey-predator dynamics, further in-
vestigate the existence and stability of worm-free equilib-
rium point and endemic equilibrium point. We find that
such effectiveness does not only depend on scan rate of
predators but also on the number of groups.

The rest of the paper is organized as follows. Section 2
provides the background on vulnerable-host distributions,
good point set scanning strategy, and predator/prey mod-
els. We propose a mathematical model in Section 3. Sec-
tion 4 discusses the existence and stability of worm-free
equilibrium point and endemic equilibrium point of the
model. Section 5 studies the effect of some parameters
on the infected population. We conclude our paper in
Section 6.
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2 Preliminaries

2.1 Distribution of Vulnerable Hosts

The distribution of vulnerable hosts in the Internet is not
uniform. The reasons are as follows. Our measure re-
sults demonstrate that the vulnerable-host distribution is
highly non-uniform by two collected data sets.

The first data set is a traffic log of the Witty worm
obtained from CAIDA (the Cooperative Association for
Internet Data Analysis) [1]. CAIDA used a Network Tele-
scope approximately contains 224 addresses. The col-
lected data can accurately reflect the distribution of hosts
which are vulnerable to the Witty worm [9]. The collected
victim addresses are then formed a group distribution in
8 subnets, where

pe(i) =
number of addresses with the first byte equal to i

total number of collected addresses
,

(1)

where i = 0, 1, · · ·, 255. The results are shown in Figure 1.
It is observed that the distribution of vulnerable hosts is
far from uniform.

The second data set is the web-server distribu-
tion. To estimate the distribution of web servers,
we exploited two random uniform resource loca-
tor (URL) generators (http://www.uroulette.com and
http://www.randomsite.net) to collect 46,082 random
websites on October 16, 2007. Using a program written
by the Perl language, however, we obtain 20,342 unique
addresses of web servers. The results are shown in Fig-
ure 2. Although there are some differences from the values
between Figure 1 and Figure 2, they demonstrate that the
distributions of Witty-worm victims and web servers are
far from uniform.
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Figure 1: Uneven distribu-
tion of hosts infected by the
Witty worm
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Figure 2: Uneven
distribution of Web
servers

2.2 Good Point Set Scanning

Good point set scanning (GPSS) [17] is inspired by the
theories of the good point set in number-theoretic meth-
ods [4]. Due to a large IP address space and some IP
addresses scanned many times, the probability of hitting
a vulnerable host is very small, which results in a slow
propagation speed and a small scale. The advantages of
the GPSS are to reduce the number of scans needed for

accurately and quickly attacking a large number of vul-
nerable hosts.

Let Zn denote the IP address of an arbitrarily infected
host, which consists of d (d = 32) bits and is seen as a
d-dimensional cube. Each bit represents 1 or 0. That is,
Zn = (zn1 , z

n
2 , · · ·, znd ). When using the GPSS to generate

next IP address, the detail process is as follows.
In the d-dimensional unit cube, we set a good point set

with n points.

Pn(i) = {{α1 × i}, {α2 × i}, · · ·, {αd × i}}, (2)

where i = 1, 2, · · ·, n, αk = 2 cos(2πk/p), 1 ≤ k ≤ d, p is
the smallest prime number which satisfies p ≥ 2d+3, {ν}
denotes the fractional part of ν.

Among the n newly generated IP addresses, we assume
that the k IP address < B >k is represented as < B >k=
(bk1 , b

k
2 , · · ·, bkd), where bki = {αi × k},

bki =

{
1 if {αi × k} ≥ 0.5;

0 otherwise.
(3)

Using this method, we can obtain n newly generated
IP addresses, which can be targeted by the worm. At each
infected host, the worm generates newly IP addresses by
the use of the good point set scanning and attacks the
rest of vulnerable hosts.

2.3 Predator/Prey Models

In Reference [15], Toyoizumi et al. propose the use of
predator as a defensive mechanism to protect the Inter-
net from worms and viruses. The model employs the bio-
logically inspired “Lotka-Volterra” equation to model the
interaction of the predator-prey relationship between the
malicious code and predator vaccination, with the goal
of minimizing the number of predators required to elimi-
nate the worm threat. The authors show that predators
can be made to perform their tasks without flooding the
network and consuming all available resources. Preda-
tors are benign programs that replicate and migrate from
host to host across the Internet, which spread in much the
same way malicious worms do but try to eliminate their
designated “victim” worms.

Castaneda et al. [2] suggest modifying existing worms
such as Code Red, Slammer and Blaster to terminate the
original worm types, and discuss four anti-worm propa-
gation schemes: a passive predator, an active scanning
predator, an active-passive hybrid predator, and an in-
trusion detection system-based predator. The modified
code will retain portion of attacking method so that it
can choose and attack the same set of susceptible hosts.
This paper assumes that the existence of this technology,
and focuses on the first two predators. Active defense us-
ing beneficial worms is proposed [7]; however, the authors
focus only on delay-limited worms with different type of
interactions and do not consider network-related factors.
In [10], Tamimi et al. propose some worm interaction
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models based on Lotka-Volterra equations, do not take
network-related factors into account. Tanachaiwiwat et
al. investigate some worm interaction models focusing on
random-scan worm interactions, and propose a new set of
metrics to quantify effectiveness of one worm terminating
other worm [11, 12, 13, 14]. The common problem of the
above models is that they do not consider the non-uniform
vulnerable-host distribution. Therefore, this paper em-
phasizes the effect of underlying network characteristics,
e.g., reaction time, predator replication size, the number
of groups on the interaction between self-learning worms
and predators with the non-uniform vulnerable-host dis-
tribution.

3 Worm Interaction Model

The total population N is partitioned into four groups,
and any host can potential be in any of these groups at
any time tick t: Susceptible (S) - all hosts have not en-
countered the preys and have no circulating predators;
Prey (IA) - all hosts have encountered the preys in the
Internet during the outbreak; Predator (IB) - all hosts
in this group are infected by predators and no longer sus-
ceptible to infection; Recovered (R)-all hosts in this group
are not infectious and no longer susceptible to infection.

We base our model on the following assumptions: (1)
We ignore the removal times. (2) The total population N
is fixed, and does not vary with time t. (3) Once hosts
are recovered or infected by predators, they have gained a
certain period of permanent immunity and can no longer
be infected by the same prey. This assumption is reason-
able, because predators embedded relevant patches can
guarantee hosts’ security.

From the assumptions above, the standard incidence
of the total population size can be expressed as

N = S(t) + IA(t) + IB(t) +R(t). (4)

3.1 Infection Rate

A self-learning worm (named as a prey) replication can be
significantly slowed down by network delay (ND) [13, 11,
12], e.g., transmission delay, link delay, processing delay,
and queuing delay, which can momentously affect preys’
propagation speed. Let φA and φB denote the network-
delay factor which attenuates infection rate of prey and
predator. Let sA and sB be the respective average scan
rate of prey and predator. The Internet is partitioned
into m groups. As shown in [9], the infection rate of prey
βA and the infection rate of predator βB are{

βA = φAsA
∑m

i=1

pg(i)p
∗
g(i)

Ωi
,

βB = φBsB
∑m

i=1

pg(i)p
∗
g(i)

Ωi
,

(5)

where pg(i), referred to as the group distribution, is
the percentage of live vulnerable hosts in group i (i =
1, 2, · · ·,m), Ωi is the size of address space in group i,

p∗g(i), referred to as the group scanning distribution, is
the probability that a scan will hit group i.

Because self-learning worms (preys) can exploit the
vulnerable host distribution, and scan the entire Internet
according to this probability distribution, i.e., p∗g(i) =√

Ωipg(i)∑m
j=1

√
Ωjpg(j)

, which is the optimal static strategy. If

Ω1 = Ω2 = · · · = Ωm = Ω/m, p∗g(i) =

√
pg(i)∑m

j=1

√
pg(j)

. The

infection rate of prey and predator are
βA = sA

Ω φA ×m
∑m

i=1

√
p3
g(i)∑m

j=1

√
pg(i)

,

βB = sB
Ω φB ×m

∑m
i=1

√
p3
g(i)∑m

j=1

√
pg(i)

.
(6)

Therefore, good point set scanning-based self-learning
worms (preys) can increase the infection rate with the fac-

tor of m
∑m

i=1

√
p3
g(i)∑m

j=1

√
pg(i)

, compared to random-scanning

worms (where βA = sA
Ω φA).

Let NDA and NDB denote the network delay for prey
and predator, respectively. We can derive φA and φB as
follows: {

φA = 1
1+sANDA

,

φB = 1
1+sBNDB

.
(7)

The infection rate will be dynamic if the network con-
gestion happens, which is consistent with the practical
network. Let l be the number of targeted sub networks.
For sub network i, let hAi and hBi denote the probability
of network i being scanned for prey and predator, gA and
gB be the worm replication size for prey and predator, qAi

and qBi be the average queue length of outgoing links for
prey and predator, bwAi and bwBi be the average band-
width of outgoing links for prey and predator, cAi and
cBi be the average packet drop rate for prey and preda-
tor, ldAi and ldBi be the average link delays for prey and
predator. We can derive NDA and NDB as follows:

{
NDA =

∑l
i=1(hAi(1− cAi)(ldAi +

gA(qAi+1)
bwAi

)),

NDB =
∑l

i=1(hBi(1− cBi)(ldBi +
gB(qBi+1)

bwBi
)).

(8)

3.2 Interaction Model

When there is a prey (A) and a predator (B), and the
predator does not infect (or vaccinate) any susceptible
host, but terminate any found prey, we consider this as
infection-driven interaction. We propose the model rep-
resented in Figure 3 for the dynamics of the interaction
in the Internet.

We assume that timeout period in this model is indef-
inite for both prey and predator. Let γS be the manual
vaccination rate, and γA and γB be the manual removal
rate for prey and predator, respectively. In our case γS is
smaller than γA and γB . The influx of susceptible hosts
comes from a constant recruitment Π. Let µ denote the
death rate. from Figure 3, according to the theory of the
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Figure 3: Interaction model

compartment model, we can easily write down the com-
plete differential equations of the interaction Model (9).


dS
dt = Π− βASIA − µS − γSS,
dIA
dt = βASIA − µIA − βBIAIB − γAIA,
dIB
dt = βBIAIB − µIB − γBIB,
dR
dt = γSS + γAIA + γBIB − µR.

(9)

4 Model Analysis and Basic Prop-
erties

Summing the equations in (9), we obtain that the total
population N satisfies the differential equation

dN

dt
= Π− µN. (10)

Thus, we assume that the initial value is N0 =
S0 + IA0 + IB0 + R0 = Π

µ in order to have a

population of constant size (that is, S(t) + IA(t) +
IB(t) + R(t) ≡ Π

µ ). Obviously, the state variables

(S(t), IA(t), IB(t), R(t)) remain in the biologically mean-
ingful set Φ = {(S, IA, IB , R) ∈ R4

+|0 ≤ S+IA+IB+R ≤
Π
µ } for (S(0), IA(0), IB(0), R(0)) ∈ R4

+, which is a posi-
tively invariant region.

Using R(t) = Π/µ − S(t) − IA(t) − IB(t) to eliminate
R(t) from the equations in (9) leads to the following re-
duced three-dimensional model:


dS
dt = Π− βASIA − µS − γSS,
dIA
dt = βASIA − µIA − βBIAIB − γAIA,
dIB
dt = βBIAIB − µIB − γBIB .

(11)

The dynamical behavior of (9) on Φ is equivalent to
that of (11). Thus, in the rest of the paper we will study
Model (11) in the feasible region Φ1 = {(S, IA, IB) : S ≥
0, IA ≥ 0, IB ≥ 0, 0 ≤ S + IA + IB ≤ Π

µ } is also a posi-

tively invariant region for Model (11), and Model (11) is
obviously well-posed in Φ1.

Firstly, we derive the basic reproduction number of
Model (11). It is easy to see that Model (11) always has a
worm-free equilibrium, P0 = (S∗

0 , I
∗
A0, I

∗
B0) = (Π/µ, 0, 0).

Let x = (IA, IB , S)
T , then Model (11) can be written

as

dx

dt
= F (x)− Y (x),

where

F (x) =

 βASIA
0
0

 ,

Y (x) =

 µIA + βBIAIB + γAIA
−βBIAIB + µIB + γBIB
−Π+ βASIA + µS + γSS

 .

Differentiating F (x) and V (x) with respect to IA, IB , S
and evaluating at the worm-free equilibrium P0 =
(S∗

0 , I
∗
A0, I

∗
B0) = (Π/µ, 0, 0), we have

F (P0) =

(
F2×2 0
0 0

)
,

Y (P0) =

 Y2×2 0
0

βAΠ/µ 0 µ+ γS

 ,

where

F2×2 =

(
βAΠ/µ 0

0 0

)
,

Y2×2 =

(
µ+ γA 0

0 µ+ γB

)
.

F (P0)Y
−1(P0) is the next generation matrix for

Model (11). It then follows that the spectral radius (the
largest absolute eigen value) of the matrix F (P0)Y

−1(P0).
Thus,

ρ(F (P0)Y
−1(P0)) =

βAΠ

µ(µ+ γA)
.

According to Theorem 2 in [16], the basic reproduction
number of Model (11) is

R0 =
βAΠ

µ(µ+ γA)
. (12)

Let the right-hand side of equalities in Model (11) be
zero, then calculating straightforwardly we can obtain
IA = 0 or IA > 0.

For the case of IA = 0, we have the worm-free equilib-
rium P0 = (S∗

0 , I
∗
A0, I

∗
B0) = (Π/µ, 0, 0).

For the case of IA > 0, we can obtain the endemic
equilibrium P ∗(S∗, I∗A, I

∗
B), where

S∗ =
Π

βAI∗A + µ+ γS
, I∗A =

µ+ γB
βB

,

I∗B =
Π− (βAI

∗
A + µ+ γS)(µ+ γA)

βB(βAI∗A + µ+ γS)
.

We have the following results on the stability of equi-
librium P0 and P ∗:

Theorem 4.1. The worm-free equilibrium P0 is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1.
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Proof. According to P0 = (S∗
0 , I

∗
A0, I

∗
B0) = (Π/µ, 0, 0),

the Jacobian matrix at the worm-free equilibrium P0 is

J(P0) =

 −µ− γS −βAS
∗
0 0

0 βAS
∗
0 − µ− γA 0

0 0 −µ− γB

 .

The corresponding eigenvalues of J(P0) are
λ1 = −µ− γS ,

λ2 = βAS
∗
0 − µ− γA,

λ3 = −µ− γB.

(13)

All parameters of the model are assumed to be positive.
Therefore, for λ1, λ3 to be negative, i.e., for a worm-free
equilibrium to be locally asymptotically stable, the follow-
ing condition has to be required: (βAΠ−µ2−γAµ)/µ < 0.
By the stability theory [8], the sufficient condition for the
three-dimensional model to be asymptotically stable is
that λi < 0, for i = 1, 2, 3. It is easy to show λ1 < 0 and
λ3 < 0 in Model (11). As to λ2 < 0 is equal to S∗

0 < µ+γA

βA
.

If we substitute S∗
0 = Π/µ into the above inequality, we

have βAΠ
µ(µ+γA) < 1, which is exactly the sufficient condition

in the lemma.

Further, we can obtain the following theorem.

Theorem 4.2. The worm-free equilibrium P0 is globally
asymptotically stable if R0 ≤ 1.

Proof. Learn from the first equation of Model (11)

S
′
(t) ≤ Π− (µ+ γS)S(t).

Thus

S(t) ≤ Π

µ
+ (S(0)− Π

µ
)exp[−µt],

when t → ∞, we obtain S(t) ≤ Π
µ .

Let us consider the following Lyapunov function de-
fined by

L(t) = IA(t).

The time derivative of L(t) along the solution of
Model (11) is given by

L
′
(t) = I

′

A(t)
= βASIA − µIA − γAIA − βBIAIB
≤ βASIA − µIA − γAIA
≤ βAIAΠ/µ− (µ+ γA)IA
= IA[

βAΠ
µ − (µ+ γA)]

≤ 0.

Thus, we prove that the worm-free equilibrium P0 is
globally stable. This completes the proof.

For the case of the endemic equilibrium P ∗. The Jaco-
bian matrix at P ∗ is

J(P ∗) =

 C −βAS
∗ 0

βAI
∗
A D −µ− γB

0 βBI
∗
B 0

 ,

where C = −µ − γS − βAI
∗
A, and D = βAS

∗ − µ − γA −
βBI

∗
B.
The eigenfunction of J(P ∗) is f(λ) = λ3+a1λ

2+a2λ+
a3, where

a1 = βBI
∗
B + γA + βAI

∗
A + 2µ+ γS > 0,

a2 = γSβBI
∗
B + µ2 + µγS + 2µβBI

∗
B − γSβAS

∗

+ βAβBI
∗
AI

∗
B + γSγA + γBβBI

∗
B + γAβBI

∗
A

+ µγA + βAI
∗
Aµ− βAµS

∗,

a3 = γSγBβBI
∗
B + βAβBγBI

∗
AI

∗
B + µ2βBI

∗
B

+ βAβBµI
∗
AI

∗
B + µβBI

∗
BγB + γSµβBI

∗
B > 0.

By the Routh-Hurwitz theorem, the Routh-Hurwitz ar-
ray for P ∗ is as follows:

1 a2
a1 a3

(a1a2 − a3)/a1 0
a3 0

 .

Thus, if we can verify that (a1a2 − a3)/a1 has the
same sign with a2, then the three eigenvalues all have
negative real parts. Obviously, a1 > 0, a3 > 0. Also,
(a1a2 − a3)/a1 > 0 ⇐⇒ a1a2 − a3 > 0 holds by the lit-
tle algebraic calculation of a1, a2, a3. Thus, the Routh-
Hurwitz stability conditions are satisfied, which implies
that the endemic equilibrium P ∗ is locally asymptotically
stable.

From the above discussion, we can summarize the fol-
lowing conclusion.

Theorem 4.3. As long as R0 > 1 holds, the endemic
equilibrium P ∗ is locally asymptotically stable.

Theorem 4.4. The endemic equilibrium P ∗ is globally
asymptotically stable if R0 > 1.

Proof. It is easy to see that the model has unique positive
equilibrium P ∗ if R0 > 1 holds. Then we consider the
following Lyapunov function [18] defined as

L(t) =

∫ S

S∗

x− S∗

x
dx+

∫ IA

I∗
A

x− I∗A
x

dx. (14)

The time derivative of L(t) along the solution of Equa-
tion (11) is given by

L
′
(t) = (S−S∗

S )S
′
+ (

IA−I∗
A

IA
)I

′

A

= (1− S∗

S )[Π− βASIA − µS − γSS]

+ (1− I∗
A

IA
)[βASIA − µIA − βBIAIB − γAIA]

≤ (1− S∗

S )[Π− βASIA − µS − γSS]

+ (1− I∗
A

IA
)[βASIA − µIA − γAIA]

= −Π( S
S∗ )(

S∗

S − 1)2

≤ 0.
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Thus, we prove that the endemic equilibrium P ∗ is
globally stable. This completes the proof.

5 Experiments

5.1 Simulation Settings

Our main goal is to verify the accuracy of our mathe-
matical model and have better understanding of worm
infection in a rich set of environments. We choose the
Slammer-like self-learning worm as basic behavior of a
prey in this experiment. Slammer worm is chosen be-
cause, despite its simplicity, it still holds the world record
of fastest-spread worm yet [19]. The Blaster worm of
2003 infected at least 100,000 Microsoft Windows sys-
tems. Therefore, in our simulation, we assume that the
total vulnerable population is N = 100, 000. Slammer
is a bandwidth-limited worm with an average scan rate
sA = 4000 scans/second [19]. A “bandwidth-limited
worm” is a worm that fully uses the link bandwidth of
an infected host to send out infection traffic. Slammer
worm uses UDP scan to transfer worm replication to
random chosen vulnerable hosts of the network. Each
UDP infection packet sent out by Slammer is 404 bytes
(gA = 404) [19]. We also assume IA(0) = 10, i.e., 10 vul-
nerable hosts in the system are infected by the worm at
the beginning.

To implement Model (9), we must first obtain the
group distribution pg(i). However, the group distribu-
tion is unknown before the Slammer-like worm is released.
Therefore, we can use the web-server distribution as an
example of real vulnerable-host distribution. The empiri-
cal distribution pe(i) (Equation (1)) can be used to reflect
the relative distribution of the number of web servers as
a function of the first byte values.

Thus, we assume

pg(i) = pe(i). (15)

We simulate prey (A) and predator (B) which may
have different scan rates, initial number of infected hosts
and the same group distribution information. We assume
that the average scan rate of predators is sB = 4000
scans/second, the worm replication size of predators is
gB = 404 bytes, and the initial infective of predators is
IB(0) = 1.

In order to obtain the authentic network delay, we gen-
erate a two-level topology with 1000 vulnerable hosts.
It can help us test our model with bottleneck network
having large number of hops (1-4 hops) with moderate
bandwidth (512 kbps, 10Mbps local network) and delay
between hosts (1 ms on average). The topology has 10
local networks; each local networks has 100 hosts with
one of them acting as a router. One AS (Autonomous
System) has one or two local networks. We use BRITE
Internet topology generator to generate the links between
routers. We obtain the relatively actual network delay
(NDA = NDB = 0.011 seconds).

Other parameters in these simulations are given as fol-
lows: the manual vaccination rate of susceptible hosts is
γS = 6× 10−6; manual removal rates for prey and preda-
tor are γA = 6 × 10−4 and γB = 5 × 10−4, respectively.
The death rate is µ = 0.00001. The results are based on
the average of at least 10 simulation runs.

5.2 Performance Evaluations

The basic reproduction number is R0 = 0.294 through
the calculation by the use of the above parameter values.
The prey will gradually disappear from the theory. From
Figure 4, we can clearly see that the tendency of the prey
propagation is depressive, which is consistent with the
theory analysis. Hosts infected by the prey vanish and the
network, in the long term, is in a good operational state.
Finally, all vulnerable hosts are vaccinated or recovered,
and become healthy hosts that are no longer infected by
the prey.

Intuitively, predators must have a greater scan rate
in order to combat preys effectively. To study the ef-
fect of scan rate of predators, we run the simulation with
sB = 100, 1000, 2000, 4000, 8000 scans/second and show
the simulation results in Figure 5. When we increase the
scan rate of predators, the number of hosts infected by
preys should have an obvious decrease from the theory.
However, Figure 5 does not represent our expectation.
Predators can combat preys effectively even though they
have a relatively small scan rate. Thus, the scan rate of
predators plays an unimportant role in combating preys.
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Figure 4: Dynamics with an
asymptotically stable worm-
free equilibrium point
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Figure 5: The effects of
scan rate of predators

Figure 6 shows the effect of changing the network de-
lays (which vary between 5ms and 22ms) on prey prop-
agation. As expected, a larger network delay results in
diminishing the prey propagation speed, lowering the to-
tal number of infected hosts, and prolonging the time at
which infected population reaches its peak. Network de-
lay NDA and NDB rely mainly on transmission delay,
link delay, processing delay, and queuing delay, which can
momentously affect preys’ propagation speed.

Predator replication size gB is a transmission over-
head reflecting the efficiency of coding and compression
technique that automatic generation or programmer uses.
Figure 7 shows the effect of changing the predator repli-
cation size (which vary between 404 and 1212 bytes) on
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prey propagation. To our surprise, the increase of preda-
tor replication size almost has no impact on the number
of hosts infected by preys, and has a slightly decrease on
the propagation speed of preys.
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Figure 6: The effects of net-
work delay
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Figure 7: The effects
of replication size of
predators

The reaction time is the time required before releas-
ing predators by automated worm-generation or program-
mer. In general, it takes some time (T ) from the appear-
ance of preys to the generation of predators. That is, in
Model (9), each IB(t) should be replaced by the corre-
sponding IB(t− T ). Our interaction models assume that
predators have been generated in advance, with emphasis
on the effect of the reaction time. Our model do not take
the delay of patch applying into account. Furthermore,
we also assume that patch takes effect instantly without
need of rebooting the host. Figure 8 shows the effect of
changing the reaction time (which vary between 10 and
40 seconds) on prey propagation. From Figure 8, the con-
clusion can be drawn that the longer the reaction time is,
the longer the prey infection prolongs. Also we can see
that just because of the effect of predators, the prey in-
fection descends rapidly after predators burst out. The
reaction time is a key parameter that plays an important
role in combating preys effectively.

What happens if we enlarge the number of groups m?
To study the effect of the number of groups, we run the
simulation with m = 256, 65536 and show the simulation
results in Figure 9. From Figure 9, we can see that a larger
m in the infection-driven and vulnerability-driven models
can more effectively combat preys, which can terminate
preys in a shorter time. The number of groups (m) play
an important role in combating preys.
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tion time of predators
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6 Conclusions and Future Direc-
tions

This paper proposed an interaction model based on based
on Lotka-Volterra equations and deduced the conditions
for the existence and stability of the worm-free equilib-
rium and endemic equilibrium point for the interaction
model. Simulation results showed the propagation of
preys being mainly governed by the network delay, the
number of groups and the reaction time of predators.
However, the scan rate and replication size of predators
did not significantly affect the number of hosts infected by
the prey and the preys’ propagation speed. This can pro-
vide an important guideline in the control of self-learning
worms.

Our future work will validate the model with simu-
lations obtained by NS2 (Network Simulator Version 2),
and compare our model with existing models to verify
the accuracy. We will also focus on the following key
techniques: the control strategies of predators; the op-
timal time of releasing predators; detecting methods of
self-learning worms; the traceability and safety of preda-
tors.
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