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Abstract

Decentralizing attribute based encryption is a variant of
multi-authority attribute based encryption which doesn’t
require a trusted central authority to conduct the system
setup. In this paper, we propose an expressive decentral-
izing KP-ABE scheme with constant ciphertext size. In
our construction, the access policy can be expressed as
any non-monotone access structure. Meanwhile, the ci-
phertext size is independent on the number of attributes
used in the scheme. We prove that our scheme is seman-
tic secure in so-called Selective-Set model based on the
n-DBDHE assumption. To the best of our knowledge,
this is the first multi-authority attribute based encryp-
tion scheme realizing such expressive access policy and
constant ciphertext size.
Keywords: Access structure, attribute based encryption,
constant ciphertext size, decentralizing

1 Introduction

Traditional public key encryption (PKE) [20] and iden-
tity based encryption (IBE) [22] are useful mechanisms
to ensure confidential data storage and transformation.
However, one drawback of them is that they can only re-
alize coarse-grained access control in encrypted data. Sa-
hai and Waters proposed a new cryptographic primitive
called attribute based encryption (ABE) [21] which pro-
vides a new viewpoint of encryption for new one-to-many
and fine-grained access control application environment.
In ABE, decrypt ability depends on user’s attribute. Only
the one who has the required attribute can get decryp-
tion key from a trustworthy authority. Goyal et al. [13]
divided ABE into two flavorers, ciphertext-policy ABE
(CP-ABE) and key-policy ABE (KP-ABE). In CP-ABE,
encipher specifies an access structure in ciphertext which
defines over universal attributes set. User’s key is asso-

ciated with some attributes, if user’s attributes satisfy
the access structure, then it can decrypt the ciphertext.
In KP-ABE, situation is inversed. That is user’s key is
attached with an access structure and ciphertext is asso-
ciated with attributes. Only if ciphertext’s attributes is
the authorized set of the access structure, decryption will
proceed.

In reality, it is impossible for attributes to be moni-
tored by one authority. For example, a professor’s driving
license is managed by Vehicle Management Institutions
while his professional titles are authorized by a university.
Chase [7] addressed this problem affirmatively by firstly
proposing a multi-authority ABE (MA-ABE) scheme. In
MA-ABE, universal attributes set are divided into sev-
eral domains and managed by corresponding authorities.
A user will issue his attributes to all the authorities to
get his decryption key. Decentralizing ABE is a special
MA-ABE and it does not require a trusted central au-
thority to conduct the system setup. In general ABE
schemes, the size of ciphertext always grows linearly with
universal attributes. When enlarging the number of sys-
tem attribute, the ciphertext size is also growing. In cloud
storage system or other bandwidth-limited transmission
system, this problem is noticeable. Another problem for
current ABE schemes is that their access formula is not
expressive enough. In most of them, any monotone access
structure is supported while others only realize AND-Gate
structure for the reasons of getting provably secure [10]
and some special functions [16]. Therefore, it is meaning-
ful to devise ABE scheme which supports more expressive
formula. Ostrovsky et al. [19] considered ABE scheme
which realizes any non-monotone access structure - the
most complex policy in ABE field.

In Chase’s work [7], except for attribute authorities,
there is a central authority that can decrypt all cipher-
text because it masters the system secret key and thus
key-escrow problem is aroused. Following Chase’s work,
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Table 1: Comparisons between MA-ABE
Scheme Central

Authority
Adaptive
Secure

Standard
Model

Access Structure Ciphertext
Size

CP or KP

[7] Yes No Yes Any Monotone O(n) KP
[17] No No Yes Any Monotone O(n) KP
[8] No No Yes Any Monotone O(n) KP
[15] No Yes No Any Monotone O(ℓ) CP
[18] No Yes Yes Any Monotone O(ℓ) CP
Our Scheme No No Yes Any Non-Monotone O(1) KP

there are several MA-ABE schemes proposed. Lin et al.
[17] solve this problem by proposing a MA-ABE which
uses distributed key generation (DKG) protocol and joint
zero secret sharing (JZSS) protocol. However, both the
security and the efficiency of their scheme depends on a
special parameterm which has to be fixed in system setup
phase. With regard to security, the system will be broken
when more thanm users are colluded. On the other hand,
if m becomes large, efficiency will decrease dramatically.
V. Božović et al. [4] proposed a MA-ABE scheme. In
their scheme, central authority is viewed as ”Honest but
Curious”, and new authorities can be jointed to system
whenever there is no system re-initial. In the above MA-
ABE schemes, every user has a global identifier (GID)
to realize collusion resistance which ensures that multiple
users cannot combine their keys to perform decryption if
one of them can’t decrypt message individually. Every
user can only use its GID once to apply for decryption
key from the same authority. In general MA-ABE, since
each user is bonded with GID, if each attribute authority
unites all the attributes summited by users, a comprehen-
sive attribute description about the users will be formed.
This will disclose users’ privacy in sensitive and private
settings, such as medical consultation. In [8], Chase and
Chow gave a decentralizing KP-ABE scheme. They con-
sidered both the user privacy and key-escrow problem
in MA-ABE. In their scheme, distributed pseudorandom
function (PRF) and anonymous credential technique are
used to fix the problem of key-escrow and user’s privacy
respectively. Their scheme can also be extended to sup-
port any monotone access structure. Lewko et al. [15]
proposed the first ciphertext-policy Decentralizing ABE.
They use the famous proof technology, ”Dual system en-
cryption” [23], to prove that their scheme is adaptively
secure in the Random Oracle Model. Liu et al. [18] give
an adaptively secure MA-ABE in Standard Model.

For the aspect of constant size ciphertext ABE, Emura
et al. [12] first proposed a constant ciphertext size ABE
scheme. However, it requires a one-to-one correspondence
among user’s attributes and AND-Gate access structure
and this is equivalent to ID-based encryption. Zhou et al.
[25] proposed a constant ciphertext size CP-ABE scheme
by using Boneh et al.’s broadcast encryption scheme [3].
This scheme support monotone AND-Gate with wildcard
access policy. Herranz et al.[14] proposed a threshold
attribute based encryption scheme with constant-size ci-

phertext. Its security based on non-standard aMSH-DDH
assumption. Chen et al. [9] proposed an AND-Gate with
wildcard CP-ABE scheme. In their scheme, both cipher-
text size and computational consuming are constant mag-
nitude. By utilizing public inner product technique, At-
trapadung et al. [1] proposed the first expressive KP-
ABE scheme with constant-size ciphertext and supports
any non-monotone access structure.

In this paper, based on [8] and [1], we propose a decen-
tralizing KP-ABE scheme with constant ciphertext size
which supports any non-monotone access structure. In
our scheme, the size of ciphertext is independent on the
number of attributes and the access policy can be more
expressive than former MA-ABE schemes. Our scheme
does not rely on central authority and the security is
guaranteed when at least one authorities are uncorrupted.
Meanwhile, in our scheme users can receive the decryption
key acquired through the joint calculation with authority
without letting the authority know any useful information
about this key. Therefore, user’s privacy has been im-
proved. Our scheme can be proved to be semantic secure
in so-called Selective-Set Model based on the n-DBDHE
assumption. We give a brief comparison between some
well-known MA-ABE scheme and our’s proposition in Ta-
ble 1, where n denote the number of attributes used in ci-
phertext and ℓ is the size of an access formula. To the best
of our knowledge, this is the first MA-ABE which realizes
constant ciphertext size and such expressive policy.

In Section 2, we provide some necessary back ground
knowledge about access structure and linear secret-
sharing scheme. After that, we define decentralizing KP-
ABE algorithm and its security notion formally. Our con-
struction and its security argument will be proposed in
Section 3 and Section 4 respectively. Some discussion will
be given in Section 4, and finally, we conclude in Section 5.

2 Background

In this section, we give the definitions for access structure
and relevant background on linear secret share scheme.
Then, we present the formal definition of decentralizing
KP-ABE scheme and its security model. At last, we offer
the basic knowledge of bilinear map and the computa-
tional assumption which our scheme is based on.
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2.1 Access Structure and Linear Secret
Share Scheme

Definition 1. (Access structure[2]) Let {P1, P2, . . . , Pn}
be a set of parties. A collection A ⊆ 2{P1,P2,...,Pn} is
monotone if ∀B,C:if B ∈ A and B ⊆ C then C ∈ A.
An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection)
A of non-empty subsets of {P1, P2, . . . , Pn}, i.e A ⊆
2{P1,P2,...,Pn}\{ϕ}. The sets in A are called authorized
sets, and the sets not in A are called unauthorized sets.

In the context, all the parties can be seen as attributes.
Thus, the access structure A will contain the authorized
sets of attributes. [19] suggests a way to convert any
monotone formula to non-monotone formula. For any
monotone access structure A, the underlying parties in
set P = {P1, P2, . . . , Pn} can be named as positive or
negative, which is denoted by x or x′ respectively. Neg-
ative attributes are conceptually seen as the negation of
positive attributes. In reality, if one person possesses a
certain attribute, he is of its positive attribute value; if
not, he is of its negative attribute value. Meanwhile, it
is required that if x ∈ P, then x′ ∈ P and vice versa.
For each monotone access structure A over a set P, one
can define a non-monotone access structure Ã = NM(A)
over P̃ of all the positive parties in P. Firstly, an oper-
ator N(·) is defined as follow. For every set S̃ ∈ P̃, one
imposes S̃ ⊂ N(P̃); and for each party x ∈ P̃ such that
x /∈ S̃, x ∈ N(P̃). Finally, NM(A) is defined by saying
that S̃ is the authorized set of NM(A) if and only if S is
the authorized set of A.

Definition 2. (Linear Secret-Sharing Schemes
(LSSS)[24]) A secret-sharing scheme Π over a set
of parties P is called linear (over Zp) if

1) The shares for each party form a vector over Zp.

2) There exists a matrix an L with ℓ rows and n columns
called the share-generating matrix for Π. For all
i = 1, 2, . . . , ℓ, the i’th row of L we let the function
ρ defined the party labeling row i as ρ(i).When we
consider the column vector v⃗ = (s, r2, . . . , rn), where
s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp

are random chosen, then Lv is the vector of ℓ shares
of the secret s according to Π. The share (Lv)i be-
longs to the party ρ(i).

As it is pointed out in [24], every LSSS enjoys the
linear re-construction property which is defined as fol-
low: suppose Π is an LSSS for the access structure A.
If ω ∈ A be any authorized set and let I ⊂ {1, . . . , ℓ}
be defined as I = {i : ρ(i) ∈ ω}. Then there exist con-
stants {µi ∈ Zp}i∈I such that, if {λi} are valid shares
of any secret s according to Π, then

∑
i∈I µiλi = s. In

[2], the author has proved the equivalence between mono-
tone access structure and LSSS. Therefore, both in our
main construction and proof we will use LSSS to express
monotone access structure.

2.2 Bilinear Map

In our construction, bilinear map is the crucial compo-
nent. The definition is as follow. Let G1, G2 and GT are
three cyclic groups of prime order p with the multiplica-
tive group action. g1 and g2 is the generators of G1 and
G2 respectively. Bilinear map ê(·, ·) : G1 × G2 → GT is
a deterministic function that takes as input one element
from G1, one element from G2, and outputs an element
in target group GT which satisfies following properties:

1) Bilinearity: ê(g1
a, g2

b) = ê(g1, g2)
ab for ∀a, b ∈ Zp;

2) Non-degeneracy: ê(g1, g2) ̸= 1, where 1 is the iden-
tity element of GT ;

3) Computability: There is an efficient algorithm to
compute ê(u, v) for all u ∈ G1 and v ∈ G2.

In our paper, we assume there exist a computable iso-
morphic ψ : G2 → G1 from G2 to G1 with ψ(g2) = g1.
Meanwhile we assume there isn’t an efficient computable
isomorphic ψ′ from G1 to G2. We recommend the paper
[6] for reference where the realizing of this kind of bilinear
map is discussed.

2.3 n-Decisional Bilinear Diffie-Hellman
Exponent Assumption

Security of our system is based on the intractable com-
plexity assumption which is called the n-decisional bi-
linear Diffie-Hellman Exponent assumption (n-DBDHE).
Let algorithm G takes as input a security parameter
λ, and outputs the parameters of bilinear map Υ =
(p,G1,G2,GT , g1, g2, ê) where p is a big prime with |p| =
λ, G1, G2 and GT are three cyclic groups of prime
order p, g1 and g2 are generator of G1 and G2, ê :
G1 × G2 → GT is a bilinear map. Meanwhile, there
exist an efficient computable isomorphic ψ from G2 to
G1 and there isn’t an efficient computable isomorphic ψ′

from G1 to G2. We define n-DBDHE problem as fol-
low: Giving the bilinear map parameters Υ and a vector
y⃗ = (g1, g2, g2

γ , g2
γ2

, . . . , g2
γn

, , g2
γn+2

, . . . , g2
γ2n

, g2
s, T )

for some unknown random numbers γ, s ∈ Zp. It is re-

quired to distinguish whether T = ê(g1, g2)
γn+1s or T as

a random element in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage

ε in solving n-DBDHE if

|Pr[B(y⃗, T = ê(g1, g2)
γn+1s) = 0]−Pr[B(y⃗, T = R) = 0]| ≥ ε

and the probability depends on the coin tosses used by B.
We note with the existence of efficient computable iso-

morphic ψ, we can efficiently compute g1
γi

and g1
s, since

we know g2
γi

and g2
s for ψ(g2

γi

) = g1
γi

and ψ(g2
s) = g1

s.

Definition 3. We say that the (t, ε)-decisional n-DBDHE
assumption holds if no t time algorithm has most ε negli-
gible advantage in solving the n-DBDHE problem.
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2.4 Syntax and Secure Definition for De-
centralizing KP-ABE

Without loss of generality, we assume that there are N at-
tribute authorities in our decentralizing KP-ABE scheme
and k’th authority denoted by AAk. Our decentralizing
KP-ABE scheme consists of four PPT algorithms and is
defined as follow:

Setup(1λ, n): The setup algorithm takes as input the se-
cure parameter λ and upper bound n of the attribute
numbers used in ciphertext. Then, it outputs the
public parameters MPK and N authorities’ master
secret key {MSKk}k∈{1,2,...,N}.

KeyGen(MPK, {MSKk}k∈{1,2,...,N}, u, {Ãk}): The key
generation algorithm takes as input the public pa-
rameters MPK, the master secret key, user’s GID u
and an access structure set {Ãk} for every authority.
It then outputs the user’s decryption key SKu.

Encryption(MPK,M,ω): Encryption algorithm takes
as input the public parameters MPK, message M
and attribute set ω which describes the ciphertext.
It outputs the ciphertext CT .

Decryption(MPK,SKu, CT ): The decryption algorithm
takes as input the public parameters MPK, user’s
decryption key associated with the access structure
{Ãk} and a ciphertext encrypted under attribute ω.
If {Ãk} is satisfied by ω, then the decryption proce-
dure will recover the message M . Otherwise, it will
output a special symbol ⊥.

We now describe the sematic secure definition of de-
centralizing KP-ABE scheme in the Selective-Set model
which is analogous to Selective-ID model in identity based
encryption [5]. In this model, adversary must declare the
attribute set ω∗ which it intends to challenge upon before
it sees the public parameters, and it is also allowed to
request decryption key for any access structure which is
not satisfied by ω∗. Now, we give the formal secure game
between adversary A and challenger B as follow:

Init: Adversary A firstly declares the set of attribute
ω∗ = {ω∗

k}, which it wants to be challenged on, where
ω∗
k denotes the partial attributes monitored by AAk.

Besides, A also submits a corrupted authorities list
Kcorr ⊂ {1, . . . , N}.

Setup: Challenger B runs setup algorithm of decentral-
izing KP-ABE and delivers the public parameters
MPK and {MSKk}k∈Kcorr to A.

Phase1: In this phase, A may provide any {Ãk} and GID
u to B to require decryption key with restriction that:
1) {Ãk} is not satisfied by ω∗ (i.e. at least one j
such that ω∗

j /∈ Ã∗
j ); 2) For one GID u and one au-

thority AAk, A can require the secret decryption key
component only once and 3) A cannot make key re-
quirement for AAk, where k ∈ Kcorr. Then B runs

KeyGen algorithm and returns the corresponding de-
cryption key to A.

Challenge: In this phase, A submits two messages
M0 and M1 with equal length. Challenger B
then flips a fair coin b ∈ {0, 1}, and runs
Encrypt(MPK,Mb, ω

∗). The challenge ciphertext
is given to A.

Phase2: This phase is as same as Phase1.

Guess: A output the guess bit b′ for b and we say A
success if b′ = b.

We define the advantage of adversary A in above game
by: AdvN−MA−ABE

A (1λ) = |Pr[b′ = b]− 1/2|.

Definition 4. A decentralizing KP-ABE scheme is
(t, l, ε)-sematic secure in the Selective-Set model if for
any t-times adversary, who corrupts most l authorities
(l ≤ N), has most ε negligible advantage in above game.

3 Our Construction

Now we describe our decentralizing KP-ABE construction
with constant-size ciphertext. Firstly, we give some nota-
tions and states used in our scheme. We will treat a vector
as a column vector. For group G = ⟨g⟩ with prime order
p and any vector α⃗ = (α1, α2, . . . , αn)

⊤ ∈ Zn
p , g

α⃗ stands

for the vector group elements (gα1 , gα2 , . . . , gαn)⊤ ∈ Gn.
For α⃗ and z⃗, we denote their inner product as ⟨α⃗, z⃗⟩ =
α⃗⊤z⃗ =

∑n
i=1 αizi. We assume that when an user, with

GID u ∈ Zp, applies for her secret decryption key, a non-
monotone access structure set is input, which is denoted
by {Ãk}. We have Ãk = NM(Ak) for some monotone ac-
cess structure Ak associated with some LSSS Πk = (L, ρ)k
over the attribute parties Pk, which is monitored by au-
thority AAk.

Setup(1λ, n): The algorithm inputs security parameter λ
and upper bound n of the number of attributes used
in the ciphertext. It calls algorithm G(1λ) to get the
parameters of bilinear map (p,G1,G2,GT , g1, g2, ê).
For every k, AAk chooses vk ∈ Zp randomly and
computes public value Yk = e(g1, g2)

vk . Then
Y = e(g1, g2)

Σn
k=1vk is publicly accessible to everyone.

Consequently, each pair of AAk and AAj selects a se-
cret pseudo random function (PRF) seed skj ∈ Zp.
AAk chooses xk ∈ Zp, computes yk = gxk

1 and defines

a PRF by PRFkj(u) = g
xkxj/(skj+u)
1 . It then picks

two random vectors α⃗ = (α1, α2, . . . , αn)
⊤ ∈ Zn

p

and β⃗ = (β0, β1, . . . , βn)
⊤ ∈ Zn+1

p . It sets β′ =

(β1, β2, . . . , βn)
⊤, then defines H⃗ = (h1, . . . , hn)

⊤ =

gα⃗1 and U⃗ = (u0, . . . , un)
⊤ = gβ⃗1 . The public param-

eters is formed as:

MPK = (Y, yk, H⃗, U⃗),
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and every authority keeps

MSKk =
(
xk, {skj}j∈{1,...,N}\{k}

)
as secret key.

KeyGen(MPK, {MSKk}k∈{1,...,N}, u, {Ãk}): A user

submits an access structure set {Ãk} and its GID u.
Then it executes the following procedure with AAk:

1) For j ∈ {1, . . . , N}\{k}, user u starts N −
1 independent invocations of the anonymous
key issuing protocol of [8] with input g =
yxk
j , h = g1, αk = δjkRkj , βk = δkj and
get {Dkj}j∈{1,...,N}\{k} from AAk. We have

Dkj = g
Rkj

1 /PRFkj(u) if k > j and Dkj =

g
Rkj

1 /PRFkj(u) otherwise.

2) AAk sets its own secret value for user u as
yk,u = vk −

∑
j∈{1,...,N}\{k}Rkj , then generates

a vector (yk,u, s2, . . . , sn), and uses Πk = (L, ρ)k
to get the shares of yk,u, denoted by {λi}.

3) For party x̌i ∈ Pk who has the positive
attribute value xi ∈ Zp, AAk picks a
random value ri ∈ Zp, computes Dk,i =
{Dk,i,1, Dk,i,2,Kρ⃗i,i} as follow: set vector
ρ⃗i = (ρi,1, . . . , ρi,n)

⊤ = (1, xi, x
2
i , . . . , x

n−1
i )⊤

and computes Dk,i,1 = gλi
1 u

ri
0 , Dk,i,2 =

gri2 , Kρ⃗i,i = (Ki,2,Ki,3, . . . ,Ki,n) =

((u−xi
1 u2)

ri , . . . , (u
−xn−1

i
1 un)

ri) = g
riM

⊤
ρ⃗i

β⃗′

1 ,

where Mρ⃗i
=

(
−ρi,2

ρi,1
,−ρi,3

ρi,1
, . . . ,−ρi,n

ρi,1

In−1

)
=(

−xi,−x2i , . . . ,−x
n−1
i

In−1

)
, In−1 denotes

identity matrix with order n− 1.

4) For party x̌i ∈ Pk who has the negative
attribute value xi ∈ Zp, AAk picks a
random value ri ∈ Zp, computes Dk,i =
{Dk,i,1, Dk,i,2,Kρ⃗i,i} as follow: set vector
ρ⃗i = (ρi,1, . . . , ρi,n)

⊤ = (1, xi, x
2
i , . . . , x

n−1
i )⊤

and computes Dk,i,1 = gλi
1 h

ri
1 , Dk,i,2 =

gri2 , Kρ⃗i,i=(Ki,2,Ki,3, . . . ,Ki,n) =

((h−xi
1 h2)

ri , . . .,(h
−xn−1

i
1 hn)

ri) = g
riM

⊤
ρ⃗i

α⃗

1 .

5) When user u get Rkj from all
authorities, it computes Du =∏

(k,j)∈{1,...,N}×({1,...,N}\{k})Dkj = gRu
1 where

Ru =
∑

(k,j)∈{1,...,N}×({1,...,N}\{k})Rkj . At
last, user u gets its secret key

SKu = ({Dk,i}k∈{1,...,N},x̌i∈P , {Ãk}, Du).

Note the Access Structure set {Ãk} is included
in SKu.

Encryption(MPK,M,ω): To create the ciphertext, the
encryption algorithm chooses s ∈ Zp randomly, uses
ω = (ω1, ω2, . . . , ωq) (where q ≤ n) to get a vector

Y⃗ = (y1, y2, . . . , yn)
⊤ ∈ Zn

p as a coefficient vector

from Pω[Z] =
∏

σ∈ω(Z−σ) =
∑q+1

i=1 yiZ
i−1, where if

i > q + 1, the coordinates yq+2, yq+3, . . . , yn are set
to 0. The ciphertext CT is computed as follow:

C0 =MY s, C1 = gs2, C2 = (u0

n∏
i=1

uyi

i )s, C3 = (

n∏
i=1

hyi

i )s

Decryption(MPK,SKu, CT ): The decrypting al-
gorithm first extracts {Ãk} from SKu and
ω = (ω1, ω2, . . . , ωq) from CT . Use the same

manner to generate vector Y⃗ = (y1, y2, . . . , yn)
⊤

as above. For non-monotone Ãk ∈ {Ãk}, we must
have Ãk = NM(Ak) for some monotone access
structure Ak associated with LSSS Πk = (L, ρ)k
defined over the attribute parties Pk. Therefore,
If I ′k = {i : x̌i ∈ ωk} is the authority set of Ãk,
Ik = {i : x̌i ∈ ω′

k} is the authority set of Ak. So
We can get reconstructing coefficients {µi}i∈Ik of
Πk = (L, ρ)k such that

∑
i∈Ik

λiµi = yk,u. Then the
algorithm computes as follow:

1) For the party x̌i ∈ Pk who has the posi-
tive attribute value xi ∈ ω, the decryption
procedure sets ρ⃗i = (ρi,1, . . . , ρi,n)

⊤ =
(1, xi, x

2
i , . . . , x

n−1
i )⊤ and computes

Ďk,i = Dk,i,1

n∏
j=2

K
yj

i,j = gλi
1 (u0

n∏
i=1

uyi

i )ri ,

(since Pω[xi] =
∑q+1

j=1 yix
j−1
i = ⟨Y⃗ , ρ⃗i⟩ =∏

σ∈ω(xi − σ) = 0) and then gets

ê(Ďk,i, C1)/ê(C2, Dk,i,2) = ê(g1, g2)
sλi .

2) For the party x̌i ∈ Pk who has the posi-
tive attribute value xi /∈ ω, the decryption
procedure sets ρ⃗i = (ρi,1, . . . , ρi,n)

⊤ =
(1, xi, x

2
i , . . . , x

n−1
i )⊤ and computes

Ďk,i =
n∏

j=2

K
yj

i,j = (h
−⟨ρ⃗i,Y⃗ ⟩/ρi,1

1

n∏
i=1

hyi

i )ri , Then

we have [ê(Ďk,i, C1)/ê(C3, Dk,i,2)]
ρi,1/⟨ρ⃗i,Y⃗ ⟩ =

ê(h1, g2)
sri . and ê(Dk,i,1, C1) =

ê(g1, g2)
sλi ê(h1, g2)

sri . Thus ê(g1, g2)
sλi is

recovered.

3) Finally, decryption algorithm uses {µi}i∈Ik

to compute
N∏

k=1

∏
i∈Ik

(ê(g1, g2)
sλi)µi ê(Du, C1) =

ê(g1, g2)
s
∑

k vk = Y s and C0/Y
s = M to get

the message.

If we split each Ik into Ik,0∪Ik,1 where Ik,0 and Ik,1 cor-
respond to positive and negative attributes respectively,
decryption can more efficiently compute ê(g1, g2)

syk,u =

ê
(∏

i∈Ik,0
Ďµi

k,i

∏
i∈Ik,1

(Dµi

k,i,1 · Ď
µi·ρi,1/⟨ρ⃗i,Y⃗ ⟩
k,i ), C1

)
ê(C2,

∏
i∈Ik,0

Dµi

k,i,2) · ê
(
C3,

∏
i∈Ik,1

Ď
µi·ρi,1/⟨ρ⃗i,Y⃗ ⟩
k,i,2

) .
Then we get the blinding factor:

Y s =
∏N

k=1
ê(g1, g2)

syk,u ê(Du, C1).
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so as to recover the message. Therefor, decryption al-
gorithm only needs to do 3 pairing calculations for each
authority and constant (i.e. 3N + 1, where N is the con-
stant number of authority) pairing calculations totally,
which are uncorrelated with the number of attributes.

4 Security Proof

We prove our scheme is selective secure based on the fol-
lowing theorem:

Theorem 1. Above decentralizing KP-ABE scheme with
the maximal bound n for the number of attributes per ci-
phertext is (poly(t), N−1, ε)-semantic secure in Selective-
Set model, if (t, ε)-n-DBDHE assumption hold.

(Note the user’s privacy relies on the security of key
issuing protocol. However, it follows the assumptions and
security proof of Theorem 7.5 in Section 7.5.1 of [11].)

Proof. We now show how to construct a simulation algo-
rithm B to solve n-DBDHE problem by using an adversary
A.

Without loss of generality, we assume the attribute
universal set is P = {Pk}, where k ∈ {1, 2, . . . , N} and
Pk is managed by authority AAk.

Init B gets the instance of n-DBDHE problem
y⃗ = (g1, g2, g2

γ , g2
γ2

, . . . , g2
γn

, , g2
γn+2

, . . . , g2
γ2n

, g2
s, T ).

It needs to decide whether T = ê(g1, g2)
γn+1s or T

is a random element in GT . At the same time, B
receives the challenge attribute set ω∗ = {ω∗

k} and a
corruption AA list Kcorr ⊂ {1, 2, . . . , N}. We write
ω∗ = {ω∗

1 , ω
∗
2 , . . . , ω

∗
n} in some order.

Setup B uses the received parameters to simulate
the public parameters MPK. Firstly, it uses ω∗ to
compute vector Y⃗ = (y1, y2, . . . , yn)

⊤ as the coefficients

of Pω[Z] =
∏

σ∈ω(Z −σ) =
∑q+1

i=1 yiZ
i−1 (B sets yi = 0 if

i > n−1). We let γ⃗ = (γ, γ2, . . . , γn)⊤ which will be used
later and B randomly picks k∗ ∈ {1, 2, . . . , N}\Kcorr.

1) For honest AAk: B chooses a random value xk ∈ Zp

and computes yk = gxk
1 . if k ̸= k∗, it randomly picks

tk ∈ Zp and sets vk = tk; otherwise, it implicitly sets
vk∗ = γn+1δ0+ tk∗ for some random tk∗ and δ0 ∈ Zp.
For each pair of honest authorities k and j, B picks
a random PRF seed skj ∈ Zp.

2) For corrupted AAk: B chooses a random value xk ∈
Zp and a random PRF seed skj ∈ Zp for each pair
of corrupted authorities k and j. Then it gives these
values to adversary A.

Now, B simulates Y = ê(g1, g2)
∑

k vk , vector U⃗ and H⃗ as
follow:

1) B computes Y = ê(g1, g2)
γn+1δ0 ê(g1, g2)

∑
k/∈Kcorr

tk

ê(g1, g2)
∑

k∈Kcorr
vk . We note ê(g1, g2)

γn+1δ0 =

ê(gγ1 , g
γn

2 )δ0 which is computable for B.

2) For the vector U⃗ which is related to positive at-
tributes: B picks θ0 ∈ Zp and computes u0 =

gθ01 g
−⟨γ⃗,Y⃗ ⟩
1 . For u⃗′ = (u1, u2, . . . , un)

⊤, it chooses

a random vector θ⃗ ∈ Zn
p , and then sets u⃗′ = gγ⃗1 g

θ⃗
1

(i.e. β⃗′ = γ⃗ + θ⃗). It is easy to see U⃗ is uniformly
distributed.

3) For the vector H⃗ which is related to positive at-
tributes: For ω∗ = {ω1, ω2, . . . , ωn}, B defines

their corresponding vectors X⃗1, X⃗2, . . . , X⃗q as X⃗k =
(1, ωk, . . . , ω

n−1
k )⊤ ∈ Zn

p . From above, we know

Mx⃗k
=

(
−ωk,−ω2

k, . . . ,−ω
n−1
k

In−1

)
. Then, for each

k ∈ [1, q], it picks vector b⃗k which forms a n×nmatrix

B = (⃗b1, b⃗2, . . . , b⃗q, 0⃗, . . . , 0⃗) such that b⃗⊤kMx⃗k
= 0⃗. B

chooses a random vector δ⃗ ∈ Zn
p and set H⃗ = gBa⃗

1 gδ⃗1,

where a⃗ = (γn, γn−1, . . . , γ)⊤ ∈ Zn
p . It is easy to see

H⃗ is distributed uniformly.

Now B gives the public parameter MPK to A. And for
each authority AAk:

1) If AAk is a honest authority, then k /∈ Kcorr, and
AAk’s private key MSKk = (xk, {skj}j∈{1,...,N}\{k})
are kept by B;

2) If AAk has been corrupted, that is k ∈ Kcorr. AAk’s
private key MSKk = (xk, {skj}j∈{1,...,N}\{k}) are
given to adversary A.

Phase 1 In this phase, A may query some access struc-
ture set {Ãk} to honest authorities (especially, Ãk for
AAk) with a GID u to get corresponding attribute key
components including {Dkj}j∈{1,...,N}\{k} and Dk,i. Let

k = k̂(u) be the first authority the adversary A queried
such that ωk /∈ Ãk. The attribute key will depend on k:

1) For k ̸= k̂(u), B sets yk,u = tk + zk,u for random
zk,u ∈ Zp. It picks s2, s3, . . . , sn ∈ Zp, uses vector
(yk,u, s2, . . . , sn)

⊤ ∈ Zn
p and Πk = (L, ρ)k) to gener-

ate shares {λi}.

• If x̌i ∈ Pk who has the negative attribute
value xi ∈ Zp. B first picks a random

value ri ∈ Zp, computes Dk,i,1 = gλi
1 h

ri
1 ,

Dk,i,2 = gri2 . Then it sets vector ρ⃗i =
(ρi,1, . . . , ρi,n)

⊤ = (1, xi, x
2
i , . . . , x

n−1
i )⊤ and

computes Kρ⃗i,i = (Ki,2,Ki,3, . . . ,Ki,n) =

((h−xi
1 h2)

ri , . . . , (h
−xn−1

i
1 hn)

ri). So Dk,i =
{Dk,i,1, Dk,i,2,Kρ⃗i,i}.

• If x̌i ∈ Pk who has the positive attribute value
xi. B can compute Dk,i as the same manner

above. That is Dk,i,1 = gλi
1 u

ri
0 , Dk,i,2 = gri2 ,

and Kρ⃗i,i = ((u−xi
1 u2)

ri , . . . , (u
−xn−1

i
1 un)

ri).

Then, B must simulate AAk to generate
{Dkj}j∈{1,...,N}\{k} which is computed from PRF.
Since yk,u = tk + zk,u = vk − Σj∈{1,2,...,N}\{k}Rkj ,
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we let R = Σj∈{1,2,...,N}\{k}Rkj . Therefore, when
k = k∗, vk∗ = γn+1δ0 + tk∗ and R = γn+1δ0 − zk,u;
otherwise, k ̸= k∗, we have R = −zk,u. Now let’s
calculate Dkj in two different situations:

• k ̸= k∗: In this condition, gvk1 and is com-

putable and gR1 = g
yk,n

1 /gvk
1 = g

−zk,u

1 . Then
B picks R′

kj randomly for j ∈ {1, . . . , N}\{k}
which satisfies Σj∈{1,2,...,N}\{k}R

′
kj = −zk,u. So

for k > j, B sets Dkj = g
R′

kj

1 PRFkj(u) and

Dkj = g
R′

kj

1 /PRFkj(u) otherwise. (Note B im-
plicitly sets Rkj = R′

kj);

• k = k∗: In this case, gvk1 = gγ
n+1δ0+tk

1 is not
computable for B. At this time, B chooses R′

kj

which satisfies Σj∈{1,2,...,N}\{k}R
′
kj = −zk,u.

Now, B implicitly sets Rkk̂(u) = γn+1δ0+R
′
kk̂(u)

and then uses PRFkk̂(u)g
γn+1δ0
1 instead of nor-

mal PRFkk̂(u) (Note, we must also use this to
compute PRFk̂(u)k later for consistency. With-

out loss of generality, we assume some k > k̂(u)
here. Therefore, B can compute Dkj as above.

2) For k = k̂(u), B implicitly sets yk,u = γn+1θ0 + tk +

zk,u for some random zk,u ∈ Zp. Since ω∗
k /∈ Ãk,

so we have ω∗
k
′ = N(ω∗

k) and ω∗
k
′ /∈ Ak for some

monotone access structure Ak which is defined over
Pk and satisfies Ãk = NM(Ak). Meanwhile, Ak is
associated with a LSSS Πk = (L, ρ)k. Therefore,
1⃗ = (1, 0, . . . , 0)⊤ ∈ Zn

p is not in the span of Lω∗
k
′

which is the sub-matrix of L formed by rows corre-
sponding to attributes in ω∗

k
′. Due to the proposi-

tion 1 of appendix A.2 in [13], we have that there
must exist an efficiently computable vector ω⃗ ∈ Zn

p

such that ⟨Lω∗
k
′ , ω⃗⟩ = 0 and ⟨⃗1, ω⃗⟩ = 1. Now B im-

plicitly sets v⃗ = ξ⃗ + (γn+1δ0 + tk + zk,u − ξ1)ω⃗ for

some random vector ξ⃗ = (ξ1, ξ2, . . . , ξn)
⊤ ∈ Zn

p and
it is apparent to see v⃗ is distributed uniformly. If
xi ∈ ω∗

k
′, then ⟨Lω∗

k
′ , v⃗⟩ = ⟨Lω∗

k
′ , ξ⃗⟩ which is uncorre-

lated with γn+1δ0 + tk + zk,u; otherwise, if xi /∈ ω∗
k
′,

there must exist computable values V1 and V2 ∈ Zp

so that λi = ⟨Lω∗
k
′ , v⃗⟩ = V1(γ

n+1δ0 + tk + zk,u) + V2.
Now B computes private attribute key components
Dk,i as follow:

• For party x̌i ∈ Pk who has the negative at-
tribute value xi:

– If xi ∈ ω∗
k(and thus xi /∈ ω∗

k
′), so

⟨Lω∗
k
′ , v⃗⟩ = V1(γ

n+1δ0 + tk + zk,u) + V2
for some V1 and V2 ∈ Zp. Assume
xi = ωi ∈ ω∗

k, ρ⃗i = (1, xi, x
2
i , . . . , x

n−1
i )⊤ ∈

Zn
p . B chooses ri

′ randomly and im-

plicitly sets ri = ri
′ + δ0γ

i. We argue

that D1 = g
γn+1δ0+tk+zk,u

1 hri
′

1 is com-
putable for simulator B. The reason is

as follow: D1 = g
γn+1δ0+tk+zk,u

1 hri
′

1 =

g
tk+zk,u

1 gγ
n+1δ0

1 hri
′

1 and h1 =

g
δ1+

∑q
i=1 ai

1 = gδ11 Πq
i=1g

γn+1−i

1 . So, D1 =

g
tk+zk,u

1 gγ
n+1δ0

1 hri1 (gδ11 Πq
i=1g

γn+1−i

1 )−δ0γ
n+1

=

g
tk+zk,u

1 hri1 ((gδ11 )γi
∏

i=1,i ̸=j g
γn+1−i+j

1 )−δ0 ,

which is independent on term γn+1.
Then B picks a random value r′ ∈ Zp

and computes Dk,i,1 = DV1
1 gV2

1 hr
′

1 =

g
V1(γ

n+1δ0+tk+zk,u)+V2

1 h
r′iV1+r′

1 =

gλi
1 h

r′iV1+r′

1 and Dk,i,2 = DV1
2 gr

′

2 =

gri
′V1+r′

2 , where D2 = gri2 (gγ
i

2 )−δ0 .
For Kρ⃗i

, B first computes
K ′

ρ⃗i,i
= (K ′

i,2,K
′
i,3, . . . ,K

′
i,n) =

{(h
− ρi

ρ1
1 hi)

r′i}i=2,...,n = g
r′iM

⊤
ρ⃗i

α⃗

1 . We

note that M⊤
ρ⃗i
α⃗ = M⊤

ρ⃗i
Ba⃗ +M⊤

ρ⃗i
δ⃗ is inde-

pendent on γn+1−i, so g
r′iM

⊤
ρ⃗i

α⃗

1 does not

include term gγ
n+1

1 (recall ri = ri
′ + δ0γ

i).
Therefore K ′

ρ⃗i,i
is computable for B.

At last B computes Kρ⃗i,i by Ki,j =

(K ′
i,j)

V1(h
− ρi

ρ1
1 hj)

r′ = (h
− ρi

ρ1
1 hj)

r′iV1+r′ , and
then forms Dk,i properly.

– If xi /∈ ω∗
k(and thus xi ∈ ω∗

k
′), as men-

tioned above, λi = ⟨Lω′
k
, v⃗⟩ is independent

on γn+1δ0+tk+zk,u and thus is computable
for B. So B can choose random exponent ri
to form Dk,i normally.

• For party x̌i ∈ Pk who has the positive attribute
value xi:

– If xi ∈ ω∗
k(and thus xi ∈ ω∗

k
′), λi = ⟨Lω′

k
, v⃗⟩

is independent on γn+1δ0 + tk + zk,u and B
is able to compute Dk,i

– If xi /∈ ω∗
k(and thus xi /∈ ω∗

k
′), B implicitly

sets λi = ⟨Lω∗
k
′ , v⃗⟩ = V1(γ

n+1δ0 + tk +
zk,u) + V2 and then considers n × (n − 1)

matrix:

(
−xi,−x2i , . . . ,−x

n−1
i

In−1

)
.

Since xi /∈ ω∗, we have ζ⃗⊤Mρ⃗i
= 0⃗

where ζ⃗ = (ζ1, ζ2, . . . , )
⊤ =

(1, xi, x
2
i , . . . , x

n−1
i )⊤ ∈ Zn

p . We now
explain how to compute (D1, D2,K

′
ρ⃗i,i

) =

(g
γn+1δ0+tk+zk,u

1 uri0 , g
ri
2 , g

r′iM
⊤
ρ⃗i

β⃗′

1 ) where

β⃗′ = (β1, β2, . . . , βn)
⊤ having been

defined above. B implicitly sets
ri = R′

i+δ0(ζ1γ
n+ζ2γ

n−1+. . .+ζnγ)/⟨Y⃗ , ζ⃗⟩
(since ⟨Y⃗ , ζ⃗⟩ ̸= 0). Note, the coefficient

of ⟨Y⃗ , γ⃗⟩ is δ0⟨Y⃗ , ζ⃗⟩/⟨Y⃗ , ζ⃗⟩ = δ0, so

when computing g
γn+1δ0+tk+zk,u

1 uri0 =

g
γn+1δ0+tk+zk,u

1 (gθ01 g
−⟨Y⃗ ,γ⃗⟩
1 )ri , term gγ

n+1δ0
1 ,

which B cannot compute, will be canceled
out. Therefore B is able to compute D1.

Meanwhile, D2 = gri2 = g
r′i
2 g

δ0
∑n

i=1 γn+1−i

2

is also computable from n-DBDHE pa-
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rameters. Because in each coordinate of
vector (ζ1γ

n + ζ2γ
n−1 + . . .+ ζnγ)M

⊤
ρ⃗i
γ⃗, no

term γn+1 will appear. So we can compute

K ′
ρ⃗i,i

= g
riM

⊤
ρ⃗i

β⃗′

1 = g
riM

⊤
ρ⃗i

(γ⃗+θ⃗)

1 without

knowing of gγ
n+1

1 .

Again, let’s calculate Dkj in two different situations:

• k = k∗: In this case, we have vk∗ = γn+1δ0 + tk
and note yk,u = γn+1δ0 + tk + zk,u, so R =∑

j∈{1,2,...,N}\{k}Rkj = −zk,u. B randomly

picks R′
kj ∈ Zp for j ∈ {1, 2, . . . , N}\{k},

which satisfies
∑

j∈{1,2,...,N}\{k}R
′
kj = −zk,u,

and gets Dkj = g
R′

kj

1 PRFkj(u) or Dkj =

g
R′

kj

1 /PRFkj(u).

• k ̸= k∗: In this case, we must have some
k′ = k∗ < k̂(u) and k′ ̸= k̂(u) = k. Re-

member that we use PRFk̂(u)k′g
γn+1δ0
1 instead

of normal PRFk̂(u)k′ . Then B chooses R′
kj ∈ Zp

which satisfies
∑

j∈{1,2,...,N}\{k}R
′
kj = zk,u for

all j ̸= k′ and computes Dkj = g
R′

kj

1 PRFkj(u)

or Dkj = g
R′

kj

1 /PRFkj(u). B implicitly sets
R′

kk′ = Rkk′ − γn+1δ0 and gets Dkk′ =

g
R′

kk′
1 /(PRFkk′(u))gγ

n+1δ0
1 .

Above all, B gets all the attribute decryption key compo-
nents and forms

SKu = ({Dk,i}k∈{1,...,N},x̌i∈P , {Ãk})

and {Dkj}j∈{1,2,...,N}\{k} for adversary A.

Challenge In this phase simulator B sets challenge
ciphertext as follow:

C0 = T δ0 ê(g1, g
s
2)

∑
k/∈Kcorr

tk ê(g1, g
s
2)

∑
k∈Kcorr

vk ,

C1 = gs2, C2 = hθ0+⟨γ⃗,θ⃗⟩, C3 = h⟨Y⃗ ,δ⃗⟩.

It is easy to see that C0, C1, C2 are well-formed ciphertext
and then We make it clear that the same is true for C3.

Here we have C3 = (
∏n

i=1 h
yi

i )s = g
⟨Y⃗ ,Ba⃗+δ⃗⟩s
1 =

g
(⟨Y⃗ ,Ba⃗⟩+⟨Y⃗ ,δ⃗⟩)s
1 and argue ⟨Y⃗ ,Ba⃗⟩ = 0. Recall Y⃗ is com-
puted from challenge attribute set ω∗ = {ω∗

1 , ω
∗
2 , . . . , ω

∗
n}

and B sets X⃗k = (1, ωk, . . . , ω
n−1
k )⊤. So we have a vector

η⃗ = (y2, y3, . . . , yn)
⊤ such that MX⃗k

η⃗ = Y⃗ . Therefore

⟨Y⃗ ,Ba⃗⟩ = Y⃗ ⊤ ·Ba⃗ = Y⃗ ⊤ ∑q
k=1 ak b⃗k =

∑q
k=1 akY⃗

⊤b⃗k =∑q
k=1 akη⃗

⊤M⊤
X⃗k
b⃗k = 0 (recall M⊤

X⃗k
b⃗k = 0).

Phase 2 In this phase, B acts as same as Phase 1.

Guess Finally, A outputs its guess b′. If b′ = b, B
output T = ê(g1, g2)

γn+1s or T is a random element
∈ GT , otherwise.

we can see that if the adversary A has non-negligible
advantage over above scheme, we will also have non-
negligible advantage to find the solution of the instance
of n-DBDHE problem. This completes the proof.

5 Discussions

In this section, we briefly discuss the structure and effi-
ciency of our scheme which is proposed above.

The main advantage in the scheme is that the number
of ciphertext size isO(1). There are only 4 group elements
in the ciphertext regardless of the number of attribute be
used. The cost of this advantage is longer private key of
size O(t · n), where t denotes the number of attribute in
access structure. Another advantage of our scheme is that
any non-monotone access structure is supported. There-
fore, more expressive access policy on encrypted data in
multi-authority setting can be realized. What’ more, by
using the anonymous key issuing protocol, any user can
use any alias to apply for its private key without letting
authority know its real GID. This improves the privacy
of users. We also note that our scheme supports large
attribute universe. One drawback in construction is that
we can only realize AND-Gate structure between the au-
thorities, and we note Lewko et al.’s construction [15] can
realize more flexible relation among authorities.

Now we briefly analysis the computational efficiency
of our scheme. Decryption algorithm is the most con-
suming part of the ABE scheme since it requires large
amount of pairing calculations. However, our scheme en-
joys only constant pairing calculations with the modified
decryption equations and uncorrelated with size of at-
tributes (see Section 3). This is an useful property since
decryption terminal has lower computing power in gen-
eral. On the other hand, almost all MA-ABE schemes
need pairing calculations linearly with size of attributes.
Since pairing is the most expensive computation overhead
than multiplication and modular exponentiation in group,
thus our scheme enjoys more efficient decryption cost. In
Table 2, we give the brief comparison in numbers of pair-
ing calculation among the proposed MA-ABE schemes in
decryption phase. n and ℓ denote number of ciphertext
attributes and the size of access structure respectively the
same as them in Table 1. N denotes the number of au-
thorities which be seen as constant number. t denotes the
threshold value of (t,N) threshold secret-sharing scheme.
Another cost part of our scheme is key generation algo-
rithm which requires secret key issuing protocol. How-
ever, this procedure only needs once for each user unless
key redistribution is required.

6 Conclusion

In this paper, we have proposed an expressive decentral-
izing KP-ABE scheme. In our construction, the cipher-
text size does not rely on the number of attribute used



International Journal of Network Security, Vol.15, No.3, PP.161-170, May 2013 169

Table 2: Pairing calculations in decryption algorithm among MA-ABE schemes
[7] [17] [8] [15] [18] Our Scheme

Pairing Cost N · O(n) t · O(n) N · O(n) N · O(ℓ) N · O(ℓ) 3N + 1

in ciphertext. What’s more, we can reduce it to non-
interactive n-DBDHE assumption in Selective-Set model.
To the best of our knowledge, this is the first multi-
authority realizing such expressive access policy and con-
stant ciphertext size. Further studies can be focused on
how to construct decentralizing CP-ABE with constant
ciphertext size and more efficient decentralizing ABE
schemes.
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