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Abstract 

Hyperelliptic Curve Cryptosystem (HECC) is well suited for 
secure communication in wireless sensor network as limited 
resources (storage, time or power) on sensor nodes restrict the 
use of conventional security techniques. We can construct 
genus 2 HECC on 80-bit finite fields in order to achieve the 
same security level as 160-bit ECC or 1024-bit RSA. This 
paper proposes a mutual authentication protocol based on 
Hyperelliptic Curve Digital Signature Algorithm for a secure 
access in constrained devices which allows both the entities to 
verify each other’s authenticity. Our experimental result 
shows that performance of the proposed system is comparable 
with that of ECC. 

 
Keywords: Hyperelliptic Curve Cryptosystem (HECC), 
Hyperelliptic Curve Digital Signature Algorithm (HECDSA), 
mutual authentication protocol 
 

1   Introduction 

With the rapid development of the information technology, 
wireless networks are now extensively used to transmit 
critical information relating to monitoring of real time data. 
The security mechanisms are essential to ensure integrity, 
confidentiality and authenticity of the data. Implementation of 
suitable cryptosystem in this environment is challenging as 
these networks consist of many tiny and smart devices which 
are constrained in terms of memory, computing power and 
energy supply. While considering the different security 
threats involved in wireless sensor network, different 
symmetric /asymmetric algorithms are proposed in [6, 10, 15, 
21]. In general these approaches either need pre-distributed 
keys which mean a higher configuration effort before 
deployment or they produce much traffic which results in 
higher energy consumption [20]. 

In case of symmetric algorithms memory usage is reduced but 
an adversary can easily eavesdrop on communication or a 
stealing of node can be possible. To avoid these types of 
attacks, a mutual authentication protocol based on ECC has 

been proposed [22]. The principal attraction of ECC 
compared to RSA is that it offers equal security for a far 
smaller key size, thereby reducing processing overhead. ECC 
based mutual authenticated key agreement protocol was 
already established for Wireless LAN security [2, 14]. So far, 
several protocols have been proposed to provide robust 
mutual authentication and key establishment for Wireless 
LAN. The significant improved performance of some of the 
protocols in computational and communicational load over 
many other key agreement protocols were compared and 
discussed in [3]. These protocols utilize ECDSA signature 
technique that enhances the security of user authentication 
and key exchange. However, the security level can also be 
increased using hyperelliptic curves because it has some 
advantage over ECC. For HECC over a finite field one needs 
40-bits to 80-bit long operands to compute the group 
operations for these curves. In the case of ECC we have to 
work with operand lengths of approximately 160-bit whereas 
in the case of RSA, the operands will be approximately 1024-
bit in order to achieve the same security. HECC is, therefore, 
more suitable for implementation in the constrained platforms 
in wireless networks. 

Hyperelliptic Curve Cryptosystem (HECC) was proposed by 
Koblitz [13] in 1989 based on the discrete logarithm problem 
on the Jacobian of hyperelliptic curves over finite fields. The 
main difference between ECC and HECC is in group 
operation because these consist of different sequences of 
operations. Unlike elliptic curves, the points on the 
hyperelliptic curve do not form a group. The additive group on 
which the cryptographic primitives are implemented is the 
divisor class group. Each element of this group is a reduced 
divisor. Divisor group operations of HECC are more complex 
compared to point operation of ECC for implementing the 
cryptographic primitives. Hence it is challenging to implement 
HECC in constrained environment. 

Different aspects of Hyperelliptic curve cryptosystem are 
discussed in Avanzi [1], Menezes et al. [16], Pelzl et al. [17, 
18]. We have discussed Evolution of Hyperelliptic Curve 
Cryptosystems in [9]. Current Research on HECC emphasize 
on finding efficient methods to select secure hyperelliptic 
curves, fast operations on the Jacobians and implementation of 
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HECC for use in practical applications to enhance network 
security. 

Our contributions in this paper are as follows: 

(1) We propose a mutual authentication protocol based on 
HECDSA for a secure communication in wireless 
network for constrained devices. The proposed protocol 
is a secure authenticated protocol as it can resist the 
possible attacks from both internal users and external 
hackers as discussed in the Security Analysis. 

(2) We have implemented our proposed authentication 
protocol over the finite field p in affine co-ordinates in 
Netbeans IDE 6.8. Our experimental result shows the 
timings of basic operations of the proposed Hyperelliptic 
curve based scheme which enables us to exchange keys, 
sign & authenticate documents and we have compared 
these timings to study the relative performance of HECC 
with that of ECC. 

The rest of the paper is organized as follows: Section 2 
presents Mathematical Background; Section 3 provides 
Proposed Mutual Authentication Protocol; Section 4 discusses 
Security Analysis; Section 5 presents Implementation Results; 
Finally, we conclude the paper in Section 6. 

 
2   Mathematical Background 

2.1    Arithmetic of Hyperelliptic Curves 

Let  be a finite field, and let  be the algebraic closure of 

 [18]. A hyperelliptic curve C of genus g > 1 over  is the 
set of solutions (u, v)   ×  to the equation C: v2 + h(u)v = 
f(u). The polynomial h(u)  [u] is of degree at most g and 
f(u)  [u] is a monic polynomial of degree 2g +1. For odd 
characteristic it suffices to suppose that h(u) = 0 and f(u) is 
square free. If no point on the curve over the algebraic closure 

of satisfies both partial derivatives 2v + h(u) = 0 and 

h'(u)v – f '(u) = 0, then the curve is said to be non-singular. 

The points of curve C generate a set called Jacobian. The 
Jacobian of the curve C is the quotient group  = 0/ , where 

0 is the set of divisors of degree zero, and  is the set of 
divisors of rational functions. The element of Jacobian over , 
denoted by C( ), can be represented uniquely by a divisor D 

= miPi, mi  , is a finite formal sum of points. Its 

degree is the sum of the coefficients mi. The set of all 
divisors form an Abelian group denoted by (C). The set of 
degree zero divisors 0 forms a subgroup of (C) [16]. 

Cantor shows that each element of the Jacobian can be 
represented in the form D = r

i=1 Pi – r. such that for all i  j, 
Pi and Pj are not symmetric points [7]. Such a divisor is called 
a semi-reduced divisor. Each element of the Jacobian can be 
represented uniquely by such a divisor, subject to r  g. Such 
divisors are referred to as reduced divisors. We use the 
reduced divisor in addition of C. Cantor’s algorithm is used 
for doing arithmetic in general hyperelliptic curve which 
applies to any genus and characteristic. This transfer the group 
laws in a sequence of Composition and Reduction using only 
polynomial arithmetic. Group operations on a Jacobian are 
performed in two steps: addition of generic divisors and 

doubling of generic divisors. Addition of divisor classes 
means multiplication of ideal classes, which consists in a 
composition of the ideals and a first reduction to a basis of two 
polynomials. The output of this algorithm is called semi-
reduced divisor. Then the second algorithm (reduction) is used 
to find the unique representative in the class. 

The equivalence classes of the Jacobian are represented by 
a unique reduced divisor (which is represented using Mumford 
representation) upon which we perform the group law. Each 
unique reduced divisors can be represented via a unique pair 
of polynomials u(x) and v(x), u,v  q[x], where 

(1) u  is monic 

(2) deg v < deg u ≤ g 

(3) u│v2 + vh – f 

 
This is known as Mumford representation. Mumford 

proposed a convenient way to represent each reduced divisors 
as D = (u(x), v(x)), where u(x) is a monic polynomial with 
deg(u(x)) ≤ g and v(x) (which is not monic in general) with 
deg(v(x)) < deg(u(x)). 

When developing formulas for implementing genus g 
arithmetic, we are largely concerned with the frequent case 
that arises where both reduced divisors D1= [u1, v1], D2= [u2, 
v2] are used to find the unique reduced divisor equivalent to D1 
+ D2. To find the unique reduced divisor equivalent to D1 + 
D2, one performs two steps (Cantor’s algorithm): 

(1) Determine a semi-reduced divisor D representing the 
sum of D1 and D2. 

(2) Transform the semi-reduced divisor D into a reduced one, 
i.e compute D such that D is the unique reduced divisor 
equivalent to D. 

2.2    Security of  Hyperelliptic Curves 

In hyperelliptic curve cryptography, finding a suitable 
hyperelliptic curve is an important fundamental problem [16]. 
Security of HEC is based on the difficulty of solving the 
discrete logarithm problem in Jacobian of HEC. The HCDLP 
in J(C; q

n) is: given two divisors D1, D2 defined on J(C, q
n) 

over q
n, to determine integer m such that D2=mD1, provided 

such an integer m exists. 

To establish a secure hyperelliptic curve, its Jacobian 
should satisfy the following conditions:  

((11))  Adleman et al. [4] found a subexponential time algorithm 
to solve the DL in the Jacobian of HEC of a big genus 
over a finite field. Curves of higher genera (preferably g 
≤ 4) are, therefore, not suitable for cryptographic use 
(2g+1 < log qn).  

((22))  If the group order is large but divisible by only small 
primes, the DLP can be broken by Pohlig-Hellman attack. 
It is claimed that this largest prime factor should be at 
least 160 bits in length.  

((33))  To prevent the attack of Frey [11] which uses Tate 
pairing generation of MOV attacks, the large prime 
factor of  J(C; q

n) should not divide (qn)k-1, here k <(log 
qn)2.  
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((44))  To prevent the attack generated by Ruck [19], the 
Jacobian of a hyperelliptic curve over the large prime 
field should not have p-order subgroup.  

(5) To harden a cryptographic primitive against simple side-
channel attacks, we make the observable information 
independent of the secret scalar. This can be achieved by 
applying Montgomery’s ladder for scalar multiplication. 

 

3   Proposed Mutual Authentication Protocol 

A mutual authentication protocol is necessary to resist the 
attacks when a malicious user pretends as an authorized one 
and duplicate, modify, insert or delete the data during 
transmission. We propose a mutual authentication protocol 
based on HECDSA [8] in wireless network which gives 
authentication and non-repudiation. The novelties of the 
protocol are as follows: 

 Our proposed mutual authentication protocol based on 
HECDSA in wireless network is suitable for constrained 
devices as it uses genus 2 HEC on 80-bit finite fields 
which achieve the same security level as 160-bit ECC.  

 Any remote user can obtain service from other users 
without registering each time with the KDC. They can 
transfer data after mutual authentication. 

 New session key is established for each particular session 
to protect data which resists replay attack in wireless 
network. 

 Encryption of transmitted message using asymmetric 
encryption process saves energy and storage, which is 
critical for constrained devices. 

Notations used  
C:   A hyperelliptic curve of genus g defined over p  
p :  A large prime number 
q :  A large prime divisor of  p -1. 
P:   A Base point on the Hyperelliptic Curve 
D:   The semi reduced divisor of the HEC     
D:  The unique reduced divisor of the HEC 
PRA, PUA:  Private and Public key of A respectively 
PRB, PUB:  Private and Public key of B respectively 
IDA:  Identity of A 
IDB:  Identity of B    
M:     Input Message 
(r,s):  Signature pair 
M :   Received message 
(r,s): Received Signature pair 
H(.):  One-way hash function with fixed length output  
K:    Common Secret key 
Ks:   Session key 
Ka:   Premaster key shared between Users and KDC 

Ts:    Session time 
:    Group addition between Jacobian elements 
 

Our proposed protocol is described below: 

During the initialization phase, Key Distribution Center 
(KDC) generates a random hyperelliptic curve C defined over 

p. Then KDC computes semi reduced Divisor D and the 
unique reduced divisor D of the selected curve using Cantor’s 
algorithm. In this protocol we use the unique reduced divisor 
(D) and semi reduced divisor (D) distinctly. 

 KDC also computes a point P = (x1,y1)  C( p) which is a 
base point on the curve, a large prime number p and a prime 
divisor q such that q divides p-1. p contains the representation 
of all field elements of order n. Finally the following system 
parameters ( p, C, D, p, q, D, n) are generated by KDC. 

During the network deployment phase, all Users send 
request message to KDC for getting registered in the network. 
After registration KDC assigns a unique ID to each User and 
send ID with a Premaster key Ka to each User. KDC also 
makes a list of all Users with their ID. 

After the network deployment phase, KDC publish this list 
encrypted by the Premaster key Ka to all Users of the network 
with the system parameters ( p, C, D, p, q, D, n). We also 
assume after deployment of the Users (nodes), they become 
static. 

Now User A wants to communicate with User B. So User 
A sends a request message to  User B containing IDA and a 
nonce N1.Once the message received, if User B wants to 
communicate with A, it first verify the ID from the list. If it 
matches, then B sends an accept message to User A containing 
IDB and nonce N1. 

Now User A and User B will communicate after the 
mutual authentication. 

Our proposed mutual authentication scheme is shown in 
Figure 1. 

In this scheme the session key are generated using 
following three major steps: 

Step 1 

User B chooses a random challenge dB, where 1≤ dB≤ n −1, 
then it calculates 

QB = dB × D= [uB,vB]    using scalar multiplication in genus 2 
HECC described in [8].  

Then User B generates private key PRB R N [choose a 
positive prime at random in N] and public key PUB = [PRB]D. 
Here PUB is represented using Mumford representation which 
is of the form [uB ,vB]. 

Finally User B sends (QB ,,  PUB ) to User A. 
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Figure 1:  Mutual authentication between two users 

 

Step 2 

User A chooses a random challenge dA, where 1≤ dA ≤ n −1, 
then computes 

QA = dA × D = [uA,vA] using scalar multiplication in genus 2 
HECC.     

Then A computes z = QA  QB for mutual authentication (by 
performing Divisor addition in affine coordinate).     

The user A generate private key PRA R N [choose a positive 
prime at random in N] and public key PUA = [PRA] D.  

After that User A compute the secret key K = dA×QB = [ui, vi]. 

In addition, User A calculates  where 

 is an integer with  ≤ g and assuming the finite field 

elements are ordered such that 0 ≤ L( ui) < q  [for mapping 
between Jacobian J( p) and finite field GF(p)]. 

User A also computes s= [r−1(H(M) – [PRA] r)] mod p.   

Finally (r, s) becomes the signatures pair and A transfers 
signature pairs with (QA, PUA) to User B. 

Step 3 

User B computes β = QA  QB  by performing Divisor 
addition in affine coordinate.     

He also computes secret key K = dB× QA = [ui ,vi]. If the 
protocol works correctly, both the Users generate the same 
value of   K.   

This can be proved by the simple mathematical calculation 
shown below: 

K = dB×QA= dB× dA × D= dA× dB × D= dA×QB = [ui ,vi ] 

User B also calculates w=(s)-1mod p where  

(r, s) is the received signature. 

After that User B calculates U1 = (H(M) w) mod p  and U2 = 
(r w) mod p.     

In addition, B calculates V = [U1] D  [U2] PUA = [uf ,vf]. If 
V= [1,0], it implies that the signature is incorrect and User B 
rejects the signature with message. 

Otherwise User B calculates  

 

 [for mapping between Jacobian J( p) and finite field GF(p)]. 

If (V == r), it implies that the signature is correct, so User B 
authenticates User A and User B can be confirmed that User 
A has actually established the same secret key. 

Then User B computes YB = H(β) + ui  and sends encrypted 
YB (encryption done by using secret key K) to User A. User A 
decrypt the packet and find YB. 
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In order to authenticate User B, User A will compute YA = 
H(z)+ ui  and then User A will verify the value of YA by 

checking that (YA == YB). 

 

Table 1: Experimental Results of genus 2 HECC (Prime Field) 

G-2 
Prime Field 
Group order 

Divisor  Generation 
(ms) 

Public Key 
 PUA 
(ms) 

Public Key
 PUB 

(ms) 

User-A  
Secret key K

(ms) 

User-B  
Secret key K 

(ms) 

Signature 
Generation 

(ms) 

Signature 
Verification

(ms) 

 (2^152) 10 16 15 11 15 84 28 

 (2^158) 11 16 15 16 15 72 30 

 (2^162) 10 15 14 10 9 60 31 

(2^166) 11 16 16 15 16 56 32 

 

Table 2: Comparison of our experimental result with existing literature 

Reference Curves Group 
Order 

Signature Generation 
(ms) 

Signature 
Verification (ms) 

N. Jansma et al.  [12] ECC (genus-1)  2^163 150 230 

M. Aydos et al.  [5] ECC (genus-1) 2^160 46 92 

Our results HECC (genus-2) 

 

(2^152) 

(2^158) 

(2^162) 

(2^166) 

84 

72 

60 

56 

28 

30 

31 

32 

 

If they match, then User A authenticates User B and User A 
can be confirmed that User B has actually established the 
same secret key with him. User A then sends an 
acknowledgement with the session time Ts to User B. 

Finally, A and B agree on the common session key Ks where 
Ks = H(IDA|| IDB||K)       

If all the above steps are executed correctly, both sides will 
agree on the session Key Ks. Once the protocol run completes 
successfully, both sides may use Ks to encrypt messages 
(using ElGamal method) with timestamp for subsequent 
session traffic in order to create a confidential communication 
channel. After each valid session a new session key will 
generate. 

 

4   Security Analysis 

In this section, we discuss the security of our proposed mutual 
authentication protocol based on HECDSA. The proposed 
protocol will be considered to be a secure authenticated 
protocol, if it satisfies the following properties:  

Man in the middle attack: It can be considered as an active 
attack. In this protocol, no useful information about the secret 
key K is revealed during a successful run. If an attacker E 
intercepts the message packet containing (QB  , PUB ), E then 
receives PUB and QB from B. However, this means that E 
must calculate K but E cannot compute the value of K 
because E does not know the value of dA or the value of dB. 
This problem is called Computational Diffie-Hellman 
Problem (CDHP). So, E will not be able to compute K. Thus 
this protocol resists the man in-the-middle attack. 

Small subgroup attack: If hyperelliptic curve C has enough 
prime factors, the attacker could determine the secret scalar 

modulo of all these primes and recover a large part of the 
secret by using Chinese remaindering. To avoid this attack, 
we check D has order l where l is prime. For checking this, 
we first check that [l]D=0 and computing [h]D for h=c/pi, for 
all prime divisors pi of c and checking that the result is not 0 
[8]. 

Known-key attack: In our proposed protocol, both users 
generate new PUA and PUB in every new session, and in 
addition the secret key K is generated with every new session 
also. Another important aspect of our protocol is that the 
session key is calculated independently on both sides and 
protected by the secure hash function. Thus our proposed 
protocol is secure against known key attacks assuming that 
the hyperelliptic curve discrete logarithm problem is 
intractable. 

Perfect forward secrecy: In perfect forward secrecy, even if 
the user’s ID is compromised, it never allows the adversary to 
determine the session key for past sessions and decrypt them. 
In our protocol, it is based upon the assumption that the 
discrete logarithm problem is intractable and on the value of 
the secret key K. Even if the attacker knew the correct QB, the 
attacker still cannot compute the previous session keys 
because Ks is derived from the secret key K which is 
generated from the value of dA and dB . Thus the property of 
perfect forward secrecy is satisfied by our proposed protocol. 

Replay attack: Replay attack involves passive capture of 
data and its subsequent retransmission to show unauthorized 
effect. Any unauthorized malicious user can send duplicate 
data repeatedly to the receiver which is already sent. Our 
protocol protects replay attack as it depends upon timestamp 
values. In our protocol, after each valid session time Ts which 
is unknown to malicious user, a new session key will generate 
for encryption, so that replay attack is not possible. 



International Journal of Network Security, Vol.15, No.1, PP.9-15, Jan. 2013 14

 
5   Implementation Results 

We have implemented our proposed protocol of HEC (genus 
2) on different prime fields using jdk1.6.2. The timings of 
basic operations have been measured on a PC with Intel Core 
i3 CPU 540 @3.07 GHz and Windows 7 operating system 
having jdk1.6. For HECC implementation, we have 
considered the genus 2 hyperelliptic curve C: y2 = x5 + x3 + 1 
over the finite field p. Considering D = (u(x), v(x)), D′ = 

(u′(x), v′(x))  J(C), we generate D = (x2 + 6x + 33, 22x + 47) 

and D′ = (x2 + 13x + 12, 46x + 59). Next we have 
implemented our proposed scheme using Hyperelliptic curves 
of different group order and main operations like key 
Generation, Signature Generation / Verification timing of the 
proposed mutual authentication protocol are listed in the 
Table 1. 

The proposed protocol is suitable for constrained devices 
as it requires less key size and has low storage requirement for 
user side. The protocol has also low computational load (4 
point multiplication + 2 secret key encryption / decryption + 1 
signature generation / verification + 3 SHA-1 operation) on 
each side. 

It can be seen that the proposed protocol of HEC (genus 2) 
is efficient as the timings of our signature generation / 
verification compares favorably with the timings of ECC 
available in existing literature as shown in the Table 2. 

As HECC (genus 2) of 80-bit operand lengths provide 
same security level with ECC of 160-bit, it can be stated that 
HECC is more suitable for implementation in the constrained 
platforms in wireless networks. 

 

6   Conclusions 

HECC is well suited for secure communication in wireless 
network for constrained devices as HEC operand size is only a 
fractional amount of the EC operand size and almost all the 
standard discrete logarithm based protocols such as the Diffie-
Hellman and EIGamal can be planted to HEC. We have 
proposed in this paper a mutual authentication protocol based 
on HECDSA for a secure access in constrained devices which 
allows both the entities to verify each other’s authenticity. It is 
seen that the proposed protocol of HECC is efficient as the 
timings of our signature generation / verification compares 
favorably with the timings of ECC available in existing 
literature. As HECC (genus 2) of 80-bit operand lengths 
provide same security level with ECC of 160-bit, in our view, 
HECC is more suitable for implementation in the constrained 
platforms in wireless networks. 

 

REFERENCES 

[1] R. M. Avanzi, “Aspects of hyper-elliptic curves over 
large prime  fields in software implementations," 
Cryptographic Hardware and Embedded Systems, 
LNCS vol. 3156, pp. 148-162, 2004. 

[2] M. A. Azim and A. Jamalipour. “An efficient elliptic 
curve cryptography based authenticated key agreement 
protocol for wireless LAN security”, International 
Workshop on High Performance Switching and Routing 
(HPSR’05), pp. 376-380, 2005.  

[3] P. E. Abi-char, A. Mhamed, and B. E. Hassan, “A 
secure authenticated key agreement protocol based on 
elliptic curve cryptography”, IEEE International 
Symposium on Information Assurance and Security, vol. 
57, pp. 89-94, 2007. 

[4] L. Adleman, J. DeMarrais, and M. Huang, “A 
subexponential algorithm for discrete. logarithms over 
the rational subgroup of the Jacobians of large genus 
hyperelliptic curves over finite fields”, Algorithmic 
Number Theory (ANTS-1), LNCS 877, pp. 28-40, 1994. 

[5] M. Aydos, T. Yanık, and C. K. Koc, “High-speed 
implementation of an ECC-based wireless 
authentication protocol on an ARM microprocessor”, 
IEE Proceedings: Communications, vol.148, no. 5, pp. 
273–279, 2001. 

[6] H. Chan, A. Perrig, and D. Song, “Random key 
predistribution schemes for sensor networks”, 
Proceedings of the IEEE Security and Privacy 
Symposium, pp. 197-213 , 2003. 

[7] D. G. Cantor, “Computing in the Jacobian of a 
hyperelliptic curve”, Mathematics of Computation, vol. 
48, pp. 95-101, 1987. 

[8] H. Cohen and G. Frey, “Handbook of Elliptic and 
Hyperelliptic Curve Cryptography”, Chapman & 
Hall/CRC Press, 2006. 

[9] K. Chatterjee and D. Gupta, “Evolution of Hyperelliptic 
Curve Cryptosystems”,  in  proceedings of ICDCIT 
2010, LNCS 5966, pp.206-211, Springer -Verlag Berlin 
Heidelberg 2010. 

[10] L. Eschenauer and V. Gligor. “A key management 
scheme for distributed sensor networks”, Proceedings of 
the 9th ACM Conference on Computer and 
Communications Security (CCS’02), pp. 41-47, 2002.  

[11] G. Frey and H. Ruck, “A remark concerning m-
divisibility and the discrete logarithm in the divisor class 
group of curves”, Mathematics of Computation, vol. 62, 
pp. 865-874, 1994. 

[12] N. Jansma and B. Arrendondo, “Performance 
Comparison of Elliptic Curve and RSA Digital 
Signatures”, Technical Report, University of Michigan, 
2004. (http://www.nicj.net/files/498termpaper.pdf) 

[13] N. Koblitz, “Hyperelliptic cryptosystems”, Journal of 
Cryptology, vol. 1, no. 3, pp. 139–150, 1989. 

[14] L. Law, A. Menezes, M. Qu, J. Solinas, and S.Vanstane, 
“An efficient protocol for authenticated key agreement”, 
Designs, Codes and Cryptography, vol. 28, pp. 361-377, 
1998. 

[15] T. Landstra, S. Jagannathan, and M. Zawodniok, 
“Energy-efficient hybrid key management protocol for 
wireless sensor networks”, International Journal of   
Network Security, vol. 9, no. 2, pp. 121-134, 2009. 

[16] A. Menezes, Y. Wu, and R. Zuccherato, “An elementary 
introduction to hyperelliptic curves”, Technical Report 



International Journal of Network Security, Vol.15, No.1, PP.9-15, Jan. 2013 15

CORR 96-19, Department of C&O, University of 
Waterloo, Ontario, Canada, November 1996. 
(http://www.cacr.math.uwaterloo.ca/techreports/1997/te
ch-reports97.html) 

[17] J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar, 
“Hyperelliptic curve cryptosystems: Closing the 
performance gap to elliptic curves”, Cryptology ePrint 
Archieve, Report 026, pp. 351-365, 2003. 
(http://eprint.iacr.org/) 

[18] J. Pelzl, T. Wollinger, and C. Paar, “Elliptic & 
hyperelliptic curves on embedded µP”, ACM 
Transactions on Embedded Computing Systems, vol. 3, 
no. 3, pp. 509-533, 2004.  

[19] H. G. Ruck “On the discrete logarithms in the divisor 
class group of curves”, Mathematics Computation, vol. 
68, pp. 805-806, 1999. 

 [20] L. Uhsadel, A. Poschmann, and C. Paar, “An efficient 
general purpose elliptic curve cryptography module for 
ubiquitous sensor networks”, Workshop on Software 
Performance Enhancement for Encryption and 
Decryption (SPEED’07), pp. 95-104, 2007. 

[21] R. Watro, D. Kong, S. F. Cuti, C. Gardiner, C. Lynn, 
and P. Kruus. “TinyPK: Securing sensor networks with 
public key technology”, Proceedings of the 2nd ACM 
Workshop on Security of Ad Hoc and Sensor Networks 
(SASN’04), pp. 59–64, New York, USA, 2004. 

[22] L. Yongliang, W. Gao1, H. Yao, and X. Yu, “Elliptic 
curve cryptography based wireless authentication 
protocol”, International Journal of Network Security, vol. 
5, no. 3, pp. 327–337, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kakali Chatterjee has done M.Tech from Centre for 
Development of Advanced Computing, a R&D and Academic 
Centre of Govt. of India. She is currently pursuing Ph.D. at 
Delhi College of Engineering (Faculty of Technology), 
University of Delhi, India. Her field of interest is Information 
Security and Cryptography. 

Asok De received Ph.D. from IIT Kharagpur (India) and his 
field of interest is Microwave Antennas and Communication 
Systems. He is Professor in Delhi Technological University 
(formerly Delhi College of Engineering). Presently he is 
working as Principal, Ambedkar Institute of Advanced 
Communication Technologies & Research, Delhi. He has 
published many research papers in reputed International 
Journals. 

Daya Gupta is a Professor and Head of Computer 
Engineering Department of Delhi Technological University, 
India. She has done Ph.D. in Computer Engineering from 
Delhi University. Her field of interest is Software 
Engineering, Information Security etc. She has published 
many research papers in reputed International Journals. 


