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Abstract

The linear complexity (LC) of a sequence has been used
as a convenient measure of the randomness of a sequence.
Based on the theories of linear complexity, k-error lin-
ear complexity, the minimum error and the k-error lin-
ear complexity profile, the notion of m-tight error linear
complexity is presented. An efficient algorithm for com-
puting m-tight error linear complexity is derived from the
algorithm for computing k-error linear complexity of se-
quences over GF(pm) with period pn, where p is a prime.
The validity of the algorithm is shown. The algorithm
is also realized with C language, and an example is pre-
sented to illustrate the algorithm.
Keywords: k-error linear complexity, period sequence, lin-
ear complexity, tight error linear complexity

1 Introduction

Among the measures commonly used to measure the com-
plexity of a sequence(S) is its linear complexity LC(S),
defined as the length of the shortest linear feedback shift
register that generates sequence(S). According to the
Berlekamp-Massey algorithm [1, 7], if the linear complex-
ity of sequence(S) is LC(S), and 2LC(S) consecutive el-
ements of the sequence are known, then we can find the
homogeneous linear recurrence relation of the sequence
by solving linear equations or B-M algorithm, then the
whole sequence is determined. So the linear complexity
of key sequence must be large enough to oppugn known
plain text attack.

However, a high linear complexity can not necessar-
ily guarantee the sequence is safe. For example, the
first period of a binary sequence with period n is S =︷ ︸︸ ︷
0, 0, · · · , 0, 1, its linear complexity is n, but the linear com-
plexity declines to 0 when change the last element to 0.
The linear complexity of these sequences are unstable, and

these sequences used as key stream are unsafe. Therefore,
the linear complexity stability of period sequence is closely
related to the unpredictability of the sequence. Not only
the linear complexity of period sequence should be large
enough, but also the linear complexity stability should be
high.

Ding, Xiao and Shan [2] first noted this phenomenon
and presented the weight complexity and sphere complex-
ity. Similarly, Stamp and Martin [9] introduced k-error
linear complexity, which is defined to be the smallest lin-
ear complexity that can be obtained when any k or fewer
of the symbols of the sequence are changed within one
period, and presented the concept of k-error linear com-
plexity profile. It is known that the sphere complexity
defined by Ding, Xiao, and Shan in [2] is earlier than the
k-LC and they are essentially the same (but not com-
pletely the same).

The k-error linear complexity of any sequence can be
also calculated by using B-M algorithm repeatedly. But in
order to compute the k-error linear complexity of binary
sequences with period N , this algorithm must be used

k∑
j=0

(
N
j

)
times. For binary sequences with period N ,

although we had some algorithms for determining linear
complexity of particular period sequences, if we do not
have an effective algorithm to compute the k-error linear

complexity, fast algorithm also should be used
k∑

j=0

(
N
j

)

times. Even N and k is not large enough, the computation
is still considerable.

Based on Games-Chan algorithm [3], Stamp and Mar-
tin [9] presented a fast algorithm for determining k-error
linear complexity of binary sequence with period 2n. By
using the modified cost different from that used in the
Stamp-Martin algorithm for sequences over GF(2) with
period 2n, Kaida, Uehara and Imamura [4] presented a
fast algorithm for determining the k-error linear complex-
ity of sequences with period pn over GF(pm), p a prime.
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The reason why people study the stability of linear
complexity is that a small number of changes may lead
to a sharp decline of linear complexity. How many ele-
ments have to be changed to reduce the linear complexity?
Kurosawa et al. [5] introduced the concept of minerror(S)
to deal with the problem, and defined it as the least num-
ber k for which the k-error linear complexity is strictly
less than the linear complexity, which is corresponding to
the k-value of the first jump point of k-error linear com-
plexity profile.

What is the linear complexity after decline? That is,
what is the value of k-error linear complexity when k =
minerror(S)? Aiming at these problems, the relation be-
tween the linear complexity and k-error linear complexity
of binary sequences with period 2n is studied in [5], the
minerror(S) denoted by the Hamming weight of linear
complexity is given, and the upper bound of k-error lin-
ear complexity for k = minerror(S) is also given. Meidl
[8] studied the stability of linear complexity of binary se-
quence with period pn, and proved the upper and lower
bound of minerror(S).

The error linear complexity spectrum of a periodic se-
quence is introduced by Lauder and Paterson [6] to in-
dicate how linear complexity decreases as the number k
of bits allowed to be modified per period increases, the
same as k-error linear complexity profile defined in [9].
Moreover, Lauder and Paterson [6] generalized the algo-
rithm in [9] to compute the entire error linear complexity
spectrum of such sequences.

In this paper, based on linear complexity, k-error lin-
ear complexity, k-error linear complexity profile and min-
error(S), the m-tight error linear complexity is presented
to study the stability of the linear complexity of periodic
sequences. The m-tight error linear complexity is defined
as a two tuple (km, Cm), which is the mth jump point of
the k-error linear complexity profile of a sequence.

A fast algorithm is proposed for determining the m-
tight error linear complexity of sequences over GF(pm)
with period pn, where p is a prime. The algorithm is de-
rived from the algorithm for the k-error linear complex-
ity of sequences over GF(pm) with period pn, where p is
a prime [4]. The proposed algorithm is realized with C
language, and an example is presented to illustrate the
algorithm.

The paper is organized as follows. Section 2 introduces
k-error linear complexity algorithm presented by Kaida,
Uehara and Imamura [4], whereas Section 3 focuses on the
algorithm for determining the m-tight error linear com-
plexity of sequences. Concluding remarks are given in
Section 4.

2 k-error Linear Complexity Al-
gorithm

In this paper we will consider sequences over GF (q) with
period pn, n ≥ 1, where q = pm and p is a prime. In the
following algorithms,

−→
X denotes a vector.

Algorithm 1 is got by generalizing Games-Chan algo-
rithm [2, 4]. Let {ai} = {a0, a1, a2, . . .} be a sequence
with period N = pn over GF (q), where q = pm, p is
a prime number. Let −→a (N) = (a(N)

0 , a
(N)
1 , · · · , a

(N)
N−1) be

the first period of the sequence. It is divided into p parts
and denoted as −→a (N) = (a(0)(N), · · · , a(p− 1)(N)), where
−→a (j)(N) = (a(N)

jM , · · · , a
(N)
(j+1)M−1).

Algorithm 1 Generalized Games-Chan algorithm
1: //Initial values: N = pM, LC = 0, q = pm,
2:
−→a (N) = (a(N)

0 , a
(N)
1 , · · · , a

(N)
N−1)

3: while M > 1 do
4:

−→a (pM) = (a(0)(pM), · · · , a(p− 1)(pM))
5: for u = 0, · · · , p− 1 do
6:

−→
b (u)(M)

= Fu(−→a (0)(pM), · · · ,−→a (p− 1)(pM))

=
p−u−1∑

j=0

cu,j
−→a (j)(pM)

=
p−u−1∑

j=0

(
p− j − 1

u

)
−→a (j)(pM)

7: end for
8: if

−→
b (0)M = · · · = −→

b (p− 1)M =
−→
0 then

9: w = 1
10: end if
11: for w1 = 2, · · · , p− 1 do
12: if

−→
b (0)(M) = · · · = −→

b (p− w1 − 1)(M) =
−→
0

and
−→
b (p− w1)(M) 6= −→

0 then
13: w = w1

14: end if
15: end for
16: if

−→
b (0)(M) 6= −→

0 then
17: w = p
18: end if
19:

−→a (M) = Fp−w(−→a (0)(pM), · · · ,−→a (p− 1)(pM))
20: LC = LC + (w − 1)M
21: M = M/p
22: end while
23:

−→a (1) = (a(1)
0 )

24: if a
(1)
0 6= 0 then

25: LC = LC + 1
26: end if

Using Games-Chan algorithm, Stamp-Martin algo-
rithm [9] computes the k-LC of sequences over GF (2)
with period 2n. Algorithm 2 is got by using generalized
Games-Chan algorithm [4].

The cost of −→a (M) is AC(M), which is a q×M matrix.
Further define the matrix as AC(M) = [A(h, i)M ], where
A(h, i)M is the minimum number of changes required in
the original sequence −→a (N) to change the current element
α

(M)
i to α

(M)
i + ∂h. The cost of

−→
b (u)(M) is BC(M),

which is a (p− 1)×M matrix. Further define the matrix
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as BC(M) = [B(u, i)M ], where B(u, i)M is the minimum
number of changes required in the original sequence −→a (N)

to force b
(M)
0,i = · · · = b

(M)
u,i = 0.

Algorithm 2 Kaida-Uehara-Imamura algorithm
1: //Initial values:
2: N = pM = pn, k-LC = 0,

3:
−→a (N) = (−→a (N)

0 ,−→a (N)
1 , · · · ,−→a (N)

N−1), q = pm

4: for h = 0, 1, · · · , q − 1, i = 0, 1, · · · , N − 1 do

5: AC(N) = [A(h, i)N ] =
{

0, if h = 0,
1, if h 6= 0.

6: end for
7: while M > 1 do
8: for u = 0, 1, · · · , p− 2, i = 0, 1, · · · ,M − 1 do
9: B(u, i)M = min{

p−1∑
j=0

A(ej , i + jM)pM |−→e ∈ D(u, i)M}

10: where −→e = (e0, · · · , ep−1) ∈ [GF (q)]p and
11: D(u, i)M = {−→e |Fj(e0, . . . , ep−1) + b

(M)
j,i = 0(0 ≤ j ≤ u)}

12: TB(u)M =
M−1∑
i=0

B(u, i)M

13: end for
14: if TB(p− 2)M ≤ k then
15: w = 1
16: end if
17: for w1 = 2, · · · , p− 1 do
18: if TB(p− w1 − 1)M ≤ k < TB(p− w1)M then
19: w = w1

20: end if
21: end for
22: if k < TB(0)M then
23: w = p
24: end if
25:

−→a = Fp−w(−→a (0)(pM)
, · · · ,−→a (p− 1)(pM))

26: k-LC = k-LC + (w − 1)M
27: for h = 0, 1, · · · , q − 1, i = 0, 1, · · · ,M − 1 do
28: A(h, i)M = min{

p−1∑
j=0

A(ej , i + jM)pM |−→e ∈ D̂(u, i)w
M}

29: where
30: D̂(h, i)1M =

{
−→e | Fj(e0, · · · , ep−1) + bM

j,i = 0(0 ≤ j ≤ p− 2),
e0 − ∂h = 0,

}
,

31: end for
32: for w = 1 do
33: D̂(h, i)w

M =

{
−→e | Fj(e0, · · · , ep−1) + bM

j,i = 0(0 ≤ j ≤ p− w − 1),
Fp−w(e0, · · · , ep−1)− ∂h = 0,

}
,

34: end for
35: for 2 ≤ w ≤ p− 1 do
36: D̂(h, i)p

M = {−→e |F0(e0, · · · , ep−1)− ∂h = 0},
37: end for
38: for w = p do
39:

40: end for
41: M = M/p
42: end while
43:

−→a (1) = (a(1)
0 ), AC(1) = [A(h, 0)1]

44: if A(−a
(1)
0 , 0)1 > k then

45: k-LC = k-LC + 1
46: end if

3 m-tight Error Linear Complex-
ity Algorithm

The m-tight error linear complexity of sequence S is de-
fined to be a two tuple (km, Cm), which is the mth jump
point of the k-error linear complexity profile of sequence
S. Obviously, 0-tight error linear complexity is (0, C0), C0

is the linear complexity. In the case of 1-tight error linear
complexity (k1, C1), k1 is the least number to force linear
complexity decline, which is the minerror(S) defined by
Kurosawa et al., and C1 is k1-error linear complexity.

Based on Algorithm 2, it is easy to compute m-tight
error linear complexity of sequences over GF(pm) with
period pn. Firstly, algorithm 2 is changed as follows:

Before while loop add
Tmin = N ;
Before k-LC = k-LC + (w − 1)M , add
if TB[p − 2]M > k and TB[p − w]M < Tmin then

Tmin = TB[p− w]M ;
Before k-LC = k-LC + 1, add
if A(−a

(1)
0 , 0)1 < Tmin then Tmin = A(−a

(1)
0 , 0)1.

The modified algorithm is denoted as Algorithm 3.
First call Algorithm 3 with k = 0, we get 0-error linear
complexity c0 of original sequence, so 0-tight error linear
complexity is (0, c0). Meanwhile we get Tmin, denoted
as k1. Call Algorithm 3 with k = k1, we get k1-error
linear complexity (k1, c1) of original sequence, meanwhile
we obtain Tmin, denoted as k2. Call Algorithm 3 with
k = k2, we get k2-error linear complexity of original se-
quence, that is 2-tight error linear complexity is (k2, c2).
Meanwhile we obtain Tmin, denoted as k3. Call Algo-
rithm 3 recursively, we can obtain m-tight error linear
complexity (km, cm) of original sequence.

Algorithm 3 starts the recursive process from 0-error
linear complexity. While compute k -error linear com-
plexity, we also compute the minimum number Tmin of
changes required in the original sequence to force k -error
linear complexity to decline.

In [4], TB(u)M is defined as the minimum number of
changes in a(N) necessary and sufficient for making

b(0)(M) = · · · = b(u)(M) = 0, 0 ≤ u ≤ p− 2.
In the process of computing k -error linear complex-

ity, we must try to force TB(p − w)M ≤ k,w ≥ 2 or
A(−a

(1)
0 , 0)1 ≤ k. Thus, the minimum number Tmin

of changes required in the original sequence to force k -
error linear complexity to decline is the smallest of those
TB(p− w)M , w ≥ 2 or A(−a

(1)
0 , 0)1.

Therefore the validity of our algorithm is shown.
We now compute the tight error linear complexity

of sequence S by Algorithm 3. Let S be a sequence
with period N = pn, the first period of S is S27 =
0, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 2, 0, 2, 1, 1, 0, 1, 0.

Apply Algorithm 3, we get the following results:
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The first step, k = 0:
M = 9 : TB[0] = 1, TB[1] = 3, w = 3, k-LC = 18;
M = 3 : TB[0] = 1, TB[1] = 1, w = 3, k-LC = 24;
M = 1 : TB[0] = 1, TB[1] = 1, w = 3, k-LC = 26;
k-LC = 27, Tmin = 1.
The second step, k = 1:
M = 9 : TB[0] = 1, TB[1] = 3, w = 2, k-LC = 9;
M = 3 : TB[0] = 1, TB[1] = 4, w = 2, k-LC = 12;
M = 1 : TB[0] = 4, TB[1] = 4, w = 3, k-LC = 14;
k-LC = 15, Tmin = 3.
The third step, k = 3:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 3, k-LC = 6;
M = 1 : TB[0] = 3, TB[1] = 3, w = 1, k-LC = 6;
k-LC = 7, Tmin = 9.
The fourth step, k = 9:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 2, k-LC = 3;
M = 1 : TB[0] = 10, TB[1] = 10, w = 3, k-LC = 5;
k-LC = 6, Tmin = 10.
The fifth step, k = 10:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 2, k-LC = 3;
M = 1 : TB[0] = 10, TB[1] = 10, w = 1, k-LC = 3;
k-LC = 4, Tmin = 11.
The sixth step, k = 11:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 1, k-LC = 0;
M = 1 : TB[0] = 12, TB[1] = 16, w = 3, k-LC = 2;
k-LC = 3, Tmin = 12.
The seventh step, k = 12:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 1, k-LC = 0;
M = 1 : TB[0] = 12, TB[1] = 16, w = 2, k-LC = 1;
k-LC = 2, Tmin = 16.
The eighth step, k = 16:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 1, k-LC = 0;
M = 1 : TB[0] = 12, TB[1] = 16, w = 1, k-LC = 0;
k-LC = 1, Tmin = 17.
The ninth step, k = 17:
M = 9 : TB[0] = 1, TB[1] = 3, w = 1, k-LC = 0;
M = 3 : TB[0] = 9, TB[1] = 11, w = 1, k-LC = 0;
M = 1 : TB[0] = 12, TB[1] = 16, w = 1, k-LC = 0;
k-LC = 0.
By calling Algorithm 3, the tight error linear complex-

ity is obtained successively: (0,27), (1,15), (3,7), (9,6),
(10,4), (11,3),(12,2), (16,1),(17,0).

4 Conclusion

Lauder and Paterson [6] presented an algorithm to com-
pute the error linear complexity spectrum of a binary
sequence of period 2n. However, our algorithm is more
suitable to compute minerror(S) or m-tight error linear
complexity for small m.

Based on relevant theoretical basis of k-error linear
complexity, we proposed m-tight error linear complex-
ity to study the stability of stream cipher. Based on
Kaida-Uehara-Imamura algorithm, we presented a fast
algorithm for determining the m-tight error linear com-
plexity of sequences over GF(pm) with period pn, where
p is a prime number. The concept of m-tight error linear
complexity integrates all linear complexity, k-error linear
complexity, k-error linear complexity profile and the con-
cept of minerror(S). So the fast algorithm for determining
m-tight error linear complexity has important theoretical
significance and application value.
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