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Abstract 

Modular multiplication is an important operation in 
several public key cryptosystems. This paper brings a 
novel idea based on the idea in the exponentiation 
computation. In this paper a new algorithm for modular 
multiplication for public key cryptosystem is presented. 
This proposed method is based on the following two 
ideas.(i) The remainder in regard to n can be constructed 
from the remainder with modulus (2n+1) and the 
remainder with modulus (2n+2). (ii) It often happens that 
2n+1 and 2n+2 can easily be factorized, even if n is a 
prime number or difficult to be factorized into prime 
factors. The performance of new algorithm using 
estimation of the computational complexity is observed, 
and it is shown that the procedure is much faster than the 
previous algorithms. 

Keywords: El Gamal cryptosystem, modular multi-
plication, pubic key cryptosystem, RSA cryptosystem 
 

1   Introduction 

A public key cryptosystem that is essentially a variant of 
Diffie-Hellman scheme [3] was introduced by El-Gamal 
[4]. The algorithm performs as follows: suppose GF(q) is 
known by public. User “A” selects a generator g  GF(q), 
and an integer ‘a’. It then publishes (g,ga) as the public 
key and keeps ‘a’ secret. User “B,” who requires to send a 
message m GF(q) to “A,” selects an integer 2  k  q-2 
randomly, computes m. (ga)k = m gak, and sends the pair 
(gk, m gak) to “A”. User “A” who knows a, recovers m by 

computing m.gak   akg


= m.gak g-ak. 

Two public key cryptosystems with their security 
based on intractability of integer factorization are RSA 
[13] and Rabin public key encryption [12]. Aggarwal et al. 
[1] have proved that for almost all possible distributions 

of integer n, the problem of factoring integer n can be 
efficiently reduced to solving the strong RSA problem on 
Zn in the generic ring model of computation, where an 
algorithm can perform ring operations, inverse ring 
operations, and test equality. The overview of major 
attacks on the RSA encryption and signatures are 
presented in [7]. 

Another important public key cryptosystem is Eliptic 
curve cryptosystem. The first elliptic curve scheme was 
proposed by Koblitz [8] and Miller [9] independently. 
The elliptic curve systems are based on a group of points 
on an elliptic curve which are defined over a finite field. 
A new approach on multi-core implementation has been 
proposed in the paper [2] using elliptic curve crypto-
system.  

The method proposed in this paper is based on an idea 
that is different from those methods, and can be combined 
with the latter. The proposed method is based on the idea 
that the remainder for modulus n is constructed from the 
remainders with moduli different from n. In the already 
known method [5] the remainder with modulus n is 
constructed from the remainder with modulus n+1 and 
the remainder with modulus n+2. The method proposed 
in this paper differs in the remainder with modulus n is 
constructed from the remainder with modulus 2n+1 and 
the remainder with modulus 2n+2. It may be sensible to 
consider what the advantage is in using different moduli. 
In RSA cryptography, the modulus n is not a prime 
number, but its prime factorization is not known except 
for the decipherer. In El Gamal cryptography, the 
modulus is a prime number. If 2n+1 and 2n+2 can easily 
be prime factorized, the remainder operation can be speed 
up by applying the Chinese remainder theorem. In fact, n 
is set so that it is difficult to be prime factorized in RSA 
cryptography, it is applied to n+1 and n+2 in the paper 
[5]. Hwang et al. [6] have proposed an efficient modulo p 
multiplication algorithm with moderate factors of p+1 
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and p-1 by assuming p-1 and p+1 can be decomposed 
into products of mutually prime factors. But such a 
consideration is not applied to 2n+1 and 2n+2. It may be 
possible to set n so that 2n+1 and 2n+2 can easily be 
prime factorized, although the prime factorization of n is 
difficult.  

Section 2 presents the Chinese remainder theorem, the 
exponential modular computation, RSA and Rabin 
cryptosystems. Section 3 presents the new modular 
multiplication theorem that gives the basis for the new 
remainder computation together with numerical examples. 
Section 4 presents the mulmod computation based on the 
modular computation derived in Section 3. The mulmod 
computation serves as the basis for the exponentiation 
computation. Section 5 gives the performance of new 
algorithm using estimation of the computational 
complexity, and it is shown that the procedure is much 
faster than the algorithm [5]. 

2   Remainder Computations and Cryptosystems 

In this section we present the Chinese remainder theorem, 
RSA cryptosystem and Robin cryptosystem.  

 

2.1   Chinese Remainder Theorem 

Assume m1, m2,…mt are mutually coprime. Denote 
M=m1m2…mt. Given x1, x2,…,xt there exist a unique x, 0 < 
x < M, such that  

x = x1 mod m1 

x = x2 mod m2 

. 

. 

. 

x = xt mod mt 
x can be computed as 

  MtMtutx...2M2u2x1M1u1xx  mod  

where
im

tm...mm
iM 21  and )(mod1

imiMiu  . 

2.2   RSA Cryptosystem 

In RSA, p and q are two relatively prime and large 
random numbers. A positive integer n is defined as a 
product of p and q.  

φ (n) = ( p −1) (q −1). 
Choose e such that 1 < e <φ (n) and gcd (e,φ (n)) = 1. 

Here, d is computed by d = e-1 mod φ (n).  

In RSA, e and n are public keys and d and (p, q) are 
private keys so the plaintext M is encrypted by:1 < M < n 
and C = Me mod n. And the cipher text C is decrypted by            
M = Cd mod n 

2.3   Rabin Cryptosystem 

Key generation: 
  Private keys: random primes p,q 
  Public key: n = p q 

Encryption: 
 Plain text: m  Zn

* where Zn
* = {1,2,…,n-1} 

 Cipher text: c = m2 mod N.  
Decryption:  

  Compute 2
1

c mod n. 

3   A New Modular Multiplication Method 

In this section a new modular multiplication method is 
presented. The basic idea of this method is that the 
remainder modulo n can be transformed into remainder 
with modulus 2n+1 and modulus 2n+2.  

 
Theorem : Assume 
 y= X mod n, where 0  X  (2n-1)2,                               (1) 
 y1=X mod (2n+1)                                                            (2) 
 and  
 y2 = X mod (2n+2).                                                         (3) 
Then y can be expressed as follows: 
 y1≥y2, y ≡ 2y1-y2 (mod n)                                                 (4)                 
 y1<y2, y≡2y1-y2+2 (mod n).                                             (5) 
 
Proof :  
From Equation (2), there exists an integer q1 such that  
X=(2n+1)q1+y1                                                                                                 (6) 
From Equation (3), there exists an integer q2 such that  
X=(2n+2)q2+y2                                                                 (7) 
Multiplying Equation (6) by (2n+2), we obtain 
(2n+2)X =(2n+1) (2n+2)q1 + (2n+2) y1                                      (8)        
Multiplying Equation (7) by (2n+1), we get 

(2n+1)X=(2n+1)(2n+2)q2+(2n+1) y2                                            (9)                          

 From Equation (8) and Equation (9), we obtain  
X=(2n+2)y1- (2n+1) y2 +(2n+1)(2n+2) (q1-q2)            (10) 
 First assume that q1 –q2 < 0.  
Since y1  2n and y2  0, it follows that  
(2n+2) y1 - (2n+1) y2 + (2n+1)(2n+2) (q1-q2)  (2n+2) 
(2n) – (2n+1) (2n+2)  
      = - (2n+2) < 0. 
Since X  0, from Equation (10), q1-q2 cannot be negative.  
Second assume that q1 –q2 > 1. Since y1  0 and y2  2n 
+1, it follows that  
(2n+2) y1 - (2n+1) y2 + (2n+1)(2n+2) (q1-q2) 
 - (2n+1) (2n+1) + 2 (2n+1) (2n+2)  
 = (2n+1) (2n+3)    >  (2n-1)2. 
Since X  (2n-1)2, from Equation (10), q1-q2 cannot be 
greater than unity.  
Thus it is shown that q1 –q2 = 0 or 1.  
i.e., q1= q2 or q1 = q2 +1. 
From q1 =q2 and using Equation (10), we conclude that if 
y1  y2, then  y ≡ 2y1- y2 (mod n). 
From q1 = q2 +1 and using Equation (10), we conclude 
that if y1 < y2, then                  
 y≡ 2y1-y2+2(mod n).                           □ 
 
Example 3.1 :  
Let n = 19 and X = x2  
(i) When x = 11, y1 = X mod (2n+1) = 121mod (39) = 4 
and y2 = X mod (2n+2) =121 mod (40)=1. In this case, y1 

> y2. Applying Equation (4), i.e., y ≡ 2y1-y2 (mod n), 
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 y ≡ 2(4)-1 (mod 19) = 7mod19 is obtained. This agrees 
with the result of direct calculation 121 mod19. 
(ii) When x = 25, y1 = X mod (2n+1) = 625 mod 39 = 1 
and y2 = X mod (2n+2) = 625 mod 40 = 25. In this case, 
y1 < y2 Applying Equation (5), y≡ (2(1)-25+2) (mod19) = 
(- 21) mod 19 = 2 mod 19 is obtained. This agrees with 
the result of direct calculation of 625 mod 19. 
Example 3.2:  
Consider the RSA cryptography example in the paper 
[13]. Let n = 1386 and X = x2.Then 2n+1 = 2773 = 47  
59 and 2n+2 = 2774 = 38  73.  
When x = 920, y1 = X mod (2n+1) =846400 mod 2773 = 
635, and y2 = X mod (2n+2)= 846400 mod 2774 = 330. 
In this case, y1 ≥ y2. Applying Equation (4), 

 y  ≡ 2(635) - 330 + (mod 1386) 
           ≡ 1270 - 330 mod (1386) 
           ≡ 940 (mod 1386) 
           ≡940 is obtained.  

This agrees with the result of direct calculation of 9202 
mod 1386 = 940. 

As is seen from the above Examples 3.1 and 3.2, two 
computations of mod (2n+1) and mod (2n+2) are used. 
Instead of the single computation of mod n. It may seem 
that the computation is made more complex, but the 
method has an advantage. Considering above general 
cases, several ways have to be thought out to simplify the 
algorithm and the value k in order to make the 
computation easy. 
 

4   New Remainder Multiplication Algorithm 

The exponentiation computation can be composed of the 
remainder multiplication computation: 

Y=xu mod n                                              (11) 
It was shown in section 3, that Y = X mod n can be 

derived from y1 = X mod (2n+1) and y2 = X mod (2n+ 2). 
In the following, the calculation method mulmod for y1 
and y2 is shown, which is needed in applying the 
algorithm based on theorem in section 2 to the calculation 
of Eq. (11) in the exponentiation computation. In this 
algorithm, the Chinese remainder algorithm is used to 
derive y1 and y2. This helps to improve the speed, but the 
computational complexity is discussed in the next section. 

As the preliminary computation,(2 n + 1) and(2 n + 2) 
are decomposed into products of mutually prime factors. 
This need not be the prime factorization. 

 ip

m

i
n

1

1
12


                       (12) 

iq

m

i
n

2

1
22


                       (13) 

Assuming that moduli (2n + 1) and       (2 n + 2) are 
decomposed as above, the next algorithm receives x such 
that 0 ≤ x ≤(2n – 1)2, and outputs y = xu mod  

11 mp,...,p
.
 

 
Algorithm mulmod(x, p, y) 
 
Input  : x, u, 0 ≤ x ≤ ( 2n -1)2,           

       0 ≤ u ≤ (2 n -1)2,p =  
11 mp...p  

Output: y = xu mod  
11 mp...p  

Step 1 :Calculate xi = x mod pi, ui = u mod pi, i = 1,..., m1. 
Step 2 : Calculate ai = xi ui,  
        i = 1,..., m1. 
Step 3 : Calculate ai = ai mod pi,               i = 1,..., m1. 
Step 4:  Calculate y by Chinese remainder theorem (a, p, 
y) 
 

The algorithm mulmod is used. y1 = xu mod (2n+ 1) 
and y2 = xu mod (2n+ 2) are obtained by mulmod (x, p, y1) 
and          mulmod (x, q, y2), respectively.  

 
Example 4.1: consider the same RSA cryptography as in 
Example 3.2 
Let n = 1386 as preliminary computations 2n+1 and 
2n+2 are decomposed. 
i.e  2n+1 = 2773 = 47  59 and 2n + 2 = 2774 = 38  73. 
Let p1 = 47,p2 =59,q1 = 38, and q2 = 73. 
As the exponentiation computation assume that x = 920 
and y = x2 mod n is to be calculated. 
The computation procedure for mulmod (920, (4759),y1) 
is shown in the following. 
Step 1: x1 = 920 mod 47 = 27 

    x2 = 920 mod 59 = 35  
Step 2: a1 = 27 2 = 729 
        a2 = 35 2 = 1225 
Step 3: a1 = 729 mod 47 = 24 

 a2 = 1225 mod 59 = 45 
Step 4: Solving the following system of congruence 
equations y1 = 635 (in Example 2) is obtained and y1 ≡ 24 
mod 47 and y1 ≡ 45 mod 59 similarly y2 = 330 is obtained 
and y2 ≡ 26 mod 38 and y2 ≡ 38 mod 73 from mulmod  
(920,(38 73),y2) from y1 = 635 and y2 = 330 hence y1 ≥ 
y2 then apply the equation Y ≡2y1-y2+(mod n) implies  

Y ≡ 2 (635) - 330+ (mod 1386). 
Therefore, Y ≡ 940 mod 1386 = 940 is obtained. It 

was already seen in Example 2. 

5    Performance 

In this section, the computational complexity for new 
algorithm is discussed. The additions and subtractions are 
not counted, and the computational complexity is 
considered only for the multiplications and divisions. It is 
assumed that parallel computation is not used in each 
multiplication or division, and only ordinary 
straightforward computation is applied. The standard bit 
computational complexity is considered. The 
computational complexity for the multiplication is given 
by 
Mul (a,b) = computational complexity for a  b bit 
number = a(b+a). 
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Table 1: Example of a table caption 

Traditional method Hayashi [5] method Hwang et al. [6] Proposed Method 
1. x2 mod n   
2. It involves 
multiplication and 
division.  
3. computational 
complexity : 3 a2 

1. sqmod  
2. It involves 
multiplication and 
division. 
3. computational 
complexity : 3a (a+b)

1. xy mod z 
2. It involves multiplication and 
addition. 
3.computational complexity : 
1.5l(y)[M(l(z)+2Mod(l(z))+1] 
 

1. mulmod 
2.It involves 
multiplication and 
division. 
3. computational 
complexity : 3b (a+b) 

Div(a,b) = computational complexity for a + b bit 
number = b(a-b). 
Here, the individual multiplication and division are 
separated. In this case, partial computations can be 
executed in parallel. The computational complexity in the 
preliminary computation is not included. In the following, 
n is assumed to consist of a bits, and p1,..., ph and q1,..., qs 
of b bits at the maximum. 

 
Computational complexity in ordinary direct method 
In the ordinary calculation of x2 mod n, the multiplication 
of two a-bit numbers and the division of a 2a-bit number 
by a a-bit number are required. The computational 
complexity for this is C0 = Mul(a, a) + Div(2a, a) = 3a2. 
 
Computational complexity in Hayashi [5] method 
 
In solving the system of congruence equations, the 
multiplication of a- bit number and b-bit number, as well 
as the division of (a+b) bit number by b-bit number, are 
required. The computational complexity of the method is 
3a (a+b). 
 
Computational complexity in Hwang et al. [6] method 
 
The computational complexity of modular exponentiation 
(xy mod z) is  
   1.5 l(y) [M(l(z)+2Mod (l(z))+1] 
where l (.), M(.), and Mod(.) are length, computational 
complexity of multiplication, and computational 
complexity of modular exponentiation respectively.  
 
Computational complexity in proposed method 

 
The computational complexity of the mulmod algorithm 
is examined as follows. In order to calculate the right-
hand side of the system of congruence equations, the 
division of       a-bit number by b-bit number is required 
in stage 1, the multiplication of two b-bit numbers is 
required in stage 2, and the division of 2b-bit number by 
b-bit number is required in stage 3. In total, the 
computational complexity is Div(a, b)+ Mul(b, b)+ 
Div(2b, b) = b(a- b)+ 2b2+ b2 =b(a+2b),which is needed 
for each i. The computational complexity of the proposed 
method is C = 3b(a+b). The ratio of the computational 

complexity of the two methods is 
0C

C
. 

6   Conclusion 

In this paper, it is noted that the prime factorization of (2n 

+ 1) and (2n + 2) is not always difficult, and it is shown 
that the remainder for mod n can be determined from the 
remainders y1 and y2 with those as the modulus. It is 
shown that the Chinese remainder theorem can be applied 
to the calculation of y1 and y2, and the remainder 
multiplication can be realized with less computational 
complexity. It is shown that the proposed computation 
method is useful in improving the speed of the 
exponentiation-based cryptosystem, such as RSA 
cryptosystem and El Gamal cryptosystem. 

The effectiveness of the proposed method depends 
strongly on whether or not (2n + 1) and (2n + 2) can be 
decomposed into smaller prime factors. If n is set so that 
it is decomposed into three or more prime factors, the 
computational complexity will further be decreased. 
When n is the public key of RSA cryptosystem, if (2n + 1) 
and (2n + 2) are publicized in the factorized forms, the 
preliminary computation in ciphering is made 
unnecessary. 

The proposed method herein will effectively be used 
to improve the speed of the signal processing,where the 
cryptography accompanying the exponentiation 
computation or similar computations is being used alone 
or combined with other methods. This new method can 
improve the speed in the processes of encryption, 
decryption and signature in public key cryptography, such 
as RSA or ECC. 
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