
International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 1

Grid-based Data Stream Clustering for Intrusion
Detection

Qian Quan, Chao-Jie Xiao, and Rui Zhang
(Corresponding author: Qian Quan)

School of Computer Engineering & Science, Shanghai University, Shanghai, 200072 China
State Key Laboratory of Information Security (Institute of Software, Chinese Academy of Sciences)

(Email: qqian@shu.edu.cn)
(Received Mar. 11, 2011; revised and accepted July 13, 2011)

Abstract

As a kind of stream data mining method, stream clustering
has great potentiality in areas such as network traffic
analysis, intrusion detection, etc. This paper proposes a
novel grid-based clustering algorithm for stream data,
which has both advantages of grid mapping and DBSCAN
algorithm. The algorithm adopts the two-phase model and
in the online phase, it maps stream data into a grid and the
geometric center of all the data in the grid is used to
represent the characteristic of entire data in the grid
approximately. In the offline phase, grid-based DBSCAN
clustering algorithm is used to cluster all grids in the space
based on density. Meanwhile, extension of the algorithm to
an incremental one is also presented in detail in the paper.
The algorithm proposed in the paper can solve the problem
that it is difficult to find neighbor grids in DStream
algorithm and also solve the incompetency of DBSCAN in
data compression, which makes it capable for DBSCAN to
be used for stream data. Experimental results on
KDDCUP99 intrusion detection dataset show that the
algorithm can achieve a good clustering quality and
efficiency. The average accuracy is above 92% and the
highest order of magnitude of SSQ is 104 and the average
processing time of 10,000 sessions is about 3 seconds.

Keywords: Grid-based Clustering, Stream data mining,
DBSCAN

1 Introduction

Stream data mining is currently a hot research, which has
great potential demands on network traffic analysis,
telecommunication, planetary remote sensing, website
analysis, etc. Clustering stream data is a very difficult task
because we have a large volume of stream data and these
data should be processed in real-time. Also the data can be
processed only once, and once data flow away they cannot
be processed any more. In 2003, Barbará summarized
requirements for clustering stream data and made a
summary for some algorithms which may be applied to
clustering stream data [2]. He proposed that clustering
stream data should satisfy three requirements: (1) data
compression and expression of the compressed data; (2)
processing new data point in a fast and incremental way; (3)

distinguishing outliers quickly and clearly.

Currently, influential clustering algorithms for stream
data are: Clustream [1], Dstream [5], DenStream [3], P-
Stream [6] etc. P-Stream is a probability-based clustering
algorithm for stream data. Denstream is a density-based
clustering algorithm for stream data. An excellent
framework for clustering stream data is proposed in
Clustream [1], which uses a two-phase scheme that consists
of online phase and offline phase. Many recent clustering
algorithms in different extent refer to the two-phase
framework proposed by Clustream. The online phase collect,
preprocess and compress stream data. The offline phase
includes clustering stream data that collected in the online
phase. Assigning clustering job to the offline phase can raise
real time processing capability of the online phase. At the
same time, Clustream proposed Characteristic Feature (CF)
vector which is used to compress data. CF vector consists of
first-order geometric center and second-order geometric
center of a cluster. The method is very useful when the
clustering algorithm is based on k-means algorithm, but the
method cannot be used in clustering data of arbitrary shapes
because the geometric center of a cluster with irregular
shape cannot be determined.

Dstream algorithm retains the two-phase framework of
Clustream and proposes a framework for clustering stream
data using a density-based approach which is directed at the
deficiencies in the use of k-means algorithm in the
Clustream. Dstream proposes a clustering algorithm that is
based on grid mapping and neighbor searching. But during
the experiment we find that the number of grid is too large
after grid mapping, which leads to a huge volume of
calculation. There exists the problem that the distribution of
grids is too sporadic to find a neighboring grid for a given
grid, which leads to the failure of clustering. A further
explanation using the method of probability analysis about
this problem will be given in the latter paper.

DBSCAN is an excellent density-based clustering
algorithm [7, 8]. It can be used to find clusters of arbitrary
shapes, which solves the problem of using k-means
algorithm in the Clustream. But the limitation of DBSCAN
lies in that all the data point should be saved for global
clustering. It is impossible to save all the data points of the
stream data due to the memory constraint. Since DBSCAN
algorithm cannot compress data, it means that DBSCAN
algorithm cannot be used in clustering stream data. However,

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 2

Dstream proposes the method bases on grid mapping that
can convert stream data to the density of grid, which solves
the problem of data compression.

This paper proposes a grid-based DBSCAN clustering
algorithm for stream data. The algorithm combines the
advantages of DBSCAN and grid mapping. Using grid
mapping can solve the problem of data compression of
DBSCAN; meanwhile using DBSCAN can overcome the
difficulty in finding neighbor grids in the high dimensional
space when using Dstream. The method will continue to use
two-phase model proposed by Clustream, dividing process
into online phase and offline-phase. During online phase,
we adopt grid mapping and each grid will store density and
CF vector. And during the offline phase, we use grid-based
DBSCAN to cluster all the grids in the space.

The rest of the paper is organized as follows: Section
2describes grid mapping and CF vector; Section 3 presents a
brief introduction of DBSCAN algorithm; Section 4 extends
DBSCAN to grid-based DBSCAN for clustering stream
data; the experiment and result analysis is in Section 5;
Section 6 summarizes the whole paper and presents some
directions of the future work.

2 Grid Mapping and CF Vector

The paper adopts grid mapping technology during online
phase [3]. At first we divide d dimensional space, and each
dimension of d dimensional space is partitioned into p
segments and the length of each segment is len. So each
dimension is composed as follow:

pSSSS ∪∪∪= 21 (1)

Where 



=
len

p 1 . So we can know that the number of

total grids is dp . If 04.0=len then each dimension is
partitioned into 25

04.0
1

= segments and if d=37 then the

number of total grids will reach 513.52537 += e . So from
the above calculation we can know that the number of grids
will rise exponentially with the increase of p and d. In the
grid space, the probability of two grids being neighbor

is
NN
d

*
*2 , where d is dimension of space and N is number of

total grids in the space. When 3725=N , the probability is
almost zero, which is the main reason why it is hard to find
neighbor grid for a given grid in the DStream algorithm.

The method of mapping a d dimensional
data),....,,,(x x 321 dxxx= into a grid is: for each

ix computing coordinate in the corresponding dimension
and by calculating coordinate for each ix , a unique grid

),....,,,(g g 321 dggg= can be determined. If a d
dimensional data is mapped into a grid g, we say that the d
dimension data belongs to the grid g.

For each grid, it will store density and a CF vector. The
density of the grid can be calculated by adding up density

factor of all data in the grid. For a data point x, its density
factor can be defined as:

ttcxDF −= λ)((2)

Where λ is decay factor(less than 1), ct is the current
time, t is the arriving time of data point x. As decay factor
commonly is less than 1, we can know from the formula that
density factor of each data point will be decreased with
change of time and finally it will be near zero. Density of a
grid can be calculated by the following equation:

∑∑
=

−==
m

i

tt
m

icxDF
1

)(Density(g) λ (3)

Where ct is current time, it is the arriving time of data
point x. we can know from the Equation (3) that density of a
grid is changing constantly with the change of time.

If a new data point is mapped into a grid, it is not necessary
to add up density factor of all data points in the grid again.
The density can be calculated incrementally by the
following formula (4), and the details of the proof can be
referred to paper [5].

1*1 += ∆+ tii DensityDensity λ (4)

In Equation (4), ii ttt −=∆ +1 is the time difference
between current time and the last updating time, where 1i+t
is the current time and it the last updating time.

According to the size of density of grid, grids can be
classified into 3 categories: dense grid, transitional grid and
sparse grid. Detailed classification method can be referred to
paper [5].

To save data points mapped into grids as completely as
possible, at the same time to compress data as much as
possible, each grid will store a CF vector [5,12]. A CF
vector consists of the first-order geometric center CF1x and
the second-order geometric center CF2x of all the data
points in the grids, which are two d dimensional vectors.
CF1x and CF2x can be calculated using Equation (5) and (6):

n

x
CF

n

i

tt
i

x
ic∑

= =

−

1

)(

1
λ

 (5)

n

x
CF

n

i

tt
i

x

ic∑
=

−

= 1

)(2

2
λ

 (6)

In Equations (5) and (6), ct is the current time and it is
the arriving time of data point x. If length of each segment
of each dimension in the space is 0.04 and d = 37, the
volume of a grid is 0.0437=1.9e-52. So we believe that the
volume of a grid is very small and we can use the first-order
geometric center of all the data in the grid to approximately
represent the characteristic of entire data in the grid. The
paper uses first-order geometric center CF1x to represent a
grid. The benefit of introducing CF1x is that it can not only
solve the problem of stream data compression, but also it
can comparatively completely save information of all the
data in the gird. First-order geometric center CF1x is used in

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 3

the grid-based DBSCAN algorithm to calculate distance
between two grids. Similar to calculation of density, if a
new data point is mapped into a grid it is not necessary to
add up all data points in the grid to calculate geometric
center again, because it can be calculated incrementally
using the Equations (7) and (8):

1
**11
+

+
=

∆

n
XnCFCF i

tx
x λ （7）

1
**22

2

+
+

=
∆

n
XnCFCF i

tx
x λ （8）

Where ii ttt −=∆ +1 is the time difference between current
time and the last updating time, where 1i+t is current time
and it is last updating time.

Proof. Suppose last updating time is 1t and at time 1t CF1x
is

n

n

j
jtlt

jx∑
=

−

=
1

)(

lt
x

CF1

λ

）（

At time ct CF1x is CF1x(ct) and,

1

*

1
)(1 1

)()(

1

)(

+

+
=

+

+
=

∑∑
=

−−

=

−

n

Xx

n

Xx
tCF

i

n

j

tttt
ji

n

j

tt
j

c
x

lcjljc λλλ

1
**)(1

1

)(**)(1
+

+∆
=+

+
−

= n
iXtnlt

xCF
n

iXltctnlt
xCF λλ

The proof method of calculation formula of CF2x is similar
to that of CF1x. Storing second-order geometric center
CF2x is for calculation of SSQ (sum of square distance) in
the experiment.

3 DBSCAN Algorithm

DBSCAN is an excellent and very effective density-based
clustering algorithm [7,8]. Its core idea is to classify all the
data points into two categories: core points and border
points. If the number of points distributed within the radius
of a point is not less than a threshold (minPts), the point
can be considered as core point. All other points which are
not core points are border points. The working principle of
DBSCAN is firstly to search for a core point P which does
not belong to any cluster and then construct a new cluster
where point P is treated as the center. All the points
distributed within the radius of point P will be added to the
cluster of point P, and then these points will be checked
one by one if it is a core point. If it is a core point (we call
it P’), all the points which is not clustered distributed
within the radius of point P’ will be added to the cluster of
P. Expansion operation will be repeated until no new core
point can be found.

The idea of DBSCAN clustering algorithm is: if two
data points are density-reachable then they belong to the

same cluster. Since DBSCAN algorithm finds clusters
through expanding core points and there is no need to
determine geometric center, DBSCAN can be used in
clustering data of arbitrary shape.

In this paper we choose DBSCAN as clustering
algorithm because DBSCAN has advantage that it can
cluster all the points distributed within the radius of the core
point and the expansion scope is a smooth circle, while
clustering using neighbor searching will form a jagged
graphic. It is because neighbor searching will neglect the
grids located in the diagonal, which stops clustering. For
example, it can be known from Figure 1 that grid B and grid
C are all neighbors of grid A. In DStream two d dimensional
grids are neighbor only if d-1 dimensions of the two grids
are same and the remaining one dimension of the two grids
has a difference of 1 or a difference of -1. If we search for
neighbors according to the method of Dstream, grid C will
be missed because there are two dimensions out of d
dimensions that are different. If we search for neighbors
using DBSCAN grid B and C will be added to the cluster of
grid A because DBSCAN will seek all the grids distributed
within the radius of grid A, whose expansion scope is a
circle.

C B C

B A B

C B C

Figure 1: Clustering diagram of 9 grids

The core idea of grid-based DBSCAN algorithm is to
consider grid as a data point in the DBSCAN algorithm,
because the CF vector stored in the grid can represent the
information of all the data of the grid. If a grid G is a dense
grid and the number of grids distributed within the radius of
grid G is not less than a threshold (minPts), G can be
considered as a core point and be expanded outwards for
clustering.

4 Grid based DBSCAN Clustering Algorithm for
Stream Data

Grid-based DBSCAN clustering algorithm for stream data
consists of two parts: online processing and offline
processing [2]. The online part is responsible for data
collection, data preprocess and grid mapping. The offline
part does clustering using grid-based DBSCAN algorithm.
The offline part can be called by user or by program. For
example, offline operation will be called at regular intervals
to adjust clustering. The offline part is divided into initial
phase and incremental clustering phase. The initial phase
clusters all the data collected initially to build initial cluster
model. The incremental phase incrementally clusters grids
whose status is changed. Clustering all the grids is not
necessary, while only those grids distributed within the
radius of the grid whose status is changed should be
adjusted, which can speed up processing. Meanwhile, in the
offline phase sparse grids could be deleted for reducing the
number of grids to accelerate neighbor searching.

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 4

Framework for grid-based DBSCAN algorithm for stream
data is as follows:

Algorithm 1: Framework of the grid-based DBSCAN
1: Begin
2: tc=0;
3: While (new stream data flows in)
4: Collect a window size d dimensional data;
5: Preprocess each record within the time window;
6: Mapping each data into grid;
7: If grid does not exist then
8: Create a new grid;

Else
9: Map data into the grid and update density and CF

vector of the grid;
10: end if
11: If （tc ＝＝ gap）then //initial clustering
12: Call grid-based DBSCAN algorithm in the initial

phase for initial clustering;
13: Else if (tc % gap == 0) //reach predefined time

//interval
14: Call grid-based incremental DBSCAN algorithm

in the offline phase for incremental clustering;
15: Endif
16: tc = tc + 1;
17: end while
18: End

4.1 Online Processing Phase

(1) Data Collection. Divide stream data by time
window. Each time a block of d dimensional data within a
time window will be collected. The form of each d
dimensional data is),....,,,(x x 321 dxxx= .

(2) Data Preprocessing. All the attributes of each data
in the window need to be preprocessed. Preprocessing can
be divided into two steps: standardization and
normalization. Standardization is to prevent that the value
of some dimension is so large that it could affect
calculation. The method of standardization is:

A

A
A

Axx
σ
−

=' （9）

In Equation (9), Ax is the original data, A is the mean
value of attribute A, Aσ is the standard deviation of
attribute A. The method of normalization is described as
Equation (10), which max-min normalizes attributes of all
data sets to [0, 1]. In Equation (10), X is the value of
attribute after normalized.

)min()max(
)min('

AA
AxX A

−
−

= （10）

For discrete attribute computation requirement, encoding
is adopted. Different value of the discrete attribute will be
mapped into integer values ranging from 1 to S, where S is

the number of different values of the discrete attribute. For
example, there are 3 different values: TCP, UDP and ICMP,
for network protocol attribute, so after encoding we use
TCP=1, UDP =2, ICMP =3.

(3) Grid Mapping. Each attribute of d dimensional
data),....,,,(x x 321 dxxx= is normalized to [0,1], and after
this grid mapping goes.

If each dimension of d dimensional space is divided into p
segments, whose length is len, and len*p =1. For each ix ,

we can get 



=
len
xg i

i . For example, when len = 0.04,

6.0i =x , we get 15
04.0
6.0

i =



=g , which means that ix is

mapped into the 15th segment of dimension i. Through this
method, a d-dimensional data can be mapped into a unique
d-dimensional grid),....,,,(g g 321 dggg= .

After determining the coordinate of grid, we can try to read
the grid information. If the grid does not exist, then a new
grid should be created and data will be added into the grid;
if the grid does exist then data will be added into the grid
directly.

(4) Updating Grid Information. Update density and
CF vector of the grid which has new data mapped into with
the calculation Equations (4), (7) and (8).

4.2 Offline Processing Phase

The offline phase consists of two parts: initial phase and
incremental adjusting phase. Grid-based DBSCAN
algorithm is used in the initial phase and grid-based
incremental DBSCAN algorithm is used in the incremental
adjusting phase. Incremental algorithm will be introduced
in the latter paper. A grid in the space is considered as a
point in the DBSCAN algorithm and distance between two
grids can be calculated using Equation (11).

∑ −=
=

d

i
i

x
i

x CFCF
1

2
21)11(Distance （11）

The Equation (11) shows that the value of Distance is the
square root of the sum of difference between the squares of
each dimension of CF1x.

4.2.1 Initial Phase

First of all, update density of all grids. The reason of
updating density of grids in the offline phase is that there are
many grids that do not have new data mapped into in the
online phase, which may cause these grids not being
updated in the online phase.

Then, treat all the dense grids which do not belong to
any cluster as core points in the DBSCAN algorithm and
begin initial clustering. The clustering method can be
referred to DBSCAN algorithm; however the following
adjustment will be made: dense grids are treated as core
points and all the grids distributed within the radius of the
dense grid will be found. The processing on these grids
found is as follows:

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 5

1) If the grid is a dense grid then treat the grid as a core
point and continue to expand it outwards. Expansion rule is
to add all the dense and transitional grids within the radius
of the expanded grid to the current cluster.

2) If the grid is a transitional grid, then just add it to the
current cluster and do not go on expanding outwards.

3) If the grid is a sparse grid, then do nothing. Sparse
grids will be deleted in the latter processing.

4.2.2 Incremental Adjustment Phase

As stream data is continuously increasing, a fast
incremental clustering mechanism should be built to satisfy
the requirement of clustering stream data in real time. Grid-
based incremental DBSCAN algorithm is proposed here.
Algorithm detail is as follows:

Algorithm 2: Incremental grid-based DBSCAN
1: Begin
2: Step1: Delete the sparse grids without new data points
mapped into in the last phase.
3: Step2: Update density and CF vector of all the grids
according to the Equations (4) (7) (8).
4: Step3: For each grid G whose status is changed:
5: Step3.1: If G is dense grid and G is clustered then:
6: Step3.1.1: If there are grids within the radius of G

then:
7: If there exists dense grid G’ within the radius of G

and G’ is clustered then merge the cluster of G and
G’. The principle of merging is that the small cluster
will be merged into the large one.

8: If there does not exist dense grid within the radius of
G but there exists transitional grid G’ and G’ is not
clustered, then add G’ to the cluster of G.

9: Step3.2: If G is a dense grid and G is not clustered
then:

10: If there exists dense grid G’ within the radius of G
and G’ belongs to the cluster C, and then add G to
cluster C.

11: If the number of grids within the radius of G is less
than minPts, then treat G as NOISE.

12: If the number of grids within the radius of G is not
less than minPts, then create a new cluster using G
as a core point.

13: Step3.3: If G is a transitional grid and G is not
clustered then:

14: If the number of grids within the radius of G is less
than minPts, then treat G as NOISE.

15: If there exists dense grid G’ within the radius of G
and G is clustered then add G to the cluster of G’.

16: Step 3.4: If G is a transitional grid and G is clustered
then,

17: if there exists dense grid G’ and the cluster of G’ is
different from the cluster of G, then add G to the
cluster of G’.

18: Step 3.5: If G is a sparse grid, then delete G.

19: End

In Step1, the sparse grids are not useful during the
clustering and if there are too many sparse grids they will
slow down the speed of grid searching, so deleting the
sparse grid which is not updated in a certain period of time
can speed up processing and improve the efficiency of the
algorithm.

In Step3.5, the impact of deleting G is that if G belongs
to Cluster C then we should check whether the cluster C will
be split if G is deleted. The method is, for all the dense grids
within the radius of G, if there exist a dense grid which is
not density-connected to all the other dense grids within the
radius of G, then it means that cluster C is split in the G’ and
a new cluster should be created from the G’.

5 Experiment Results

The experiments evaluate the quality and efficiency of the
Grid-based DBSCAN clustering algorithm for stream data
proposed in this section. All the experiments are conducted
on a PC with 2.8GHz CPU and 2GB memory running red
hat Linux 5. We have implemented the grid-based
DBSCAN clustering algorithm in C++. In experiment, the
parameters are: cm = 3.0, cl = 0.8, lemda= 0.998, beta =
0.3, eps = 1.0 minPts = 3. All the parameters can be
referred to [5, 7, 8].

The testing dataset used in experiments is KDD CUP-99.
It contains network intrusion detection stream data collected
by the MIT Lincoln laboratory [10]. KDD CUP-99 10%
dataset is used in the experiments. The dataset contains
494021 records which can be classified into 5 categories:
NORMAL, DOS, R2L, U2R and PROBING. Among them,
DOS contains smurf, neptune, etc. R2L contains
warezclient ， guess_passwd, etc. U2R contains
buffer_overflow ， perl, etc. PROBING contains satan,
ipsweep, etc. [10]. Each record in the KDD CUP-99 dataset
contains 41 attributes which have 3 different forms: discrete,
continuous, and symbolic. All 34 continuous attributes and
3 symbolic attributes (PROTOCOL, SERVICE, and FLAG)
will be used in the experiment. All the attributes in the
experiments below will be normalized into [0, 1]. Each
dimension is partitioned into several segments, each with
length len.

In the experiment through simulating stream data we
send KDD CUP-99 dataset continuously to the receiving
end where the program is running and test the algorithm
proposed in the paper. In the experiments, the speed of
sending data is 10 thousand records per time unit and the
speed can be adjusted to simulate different network
environment. In all the figures shown in the following paper,
time (unit) in the x axis means the time it takes to send 10
thousand records.

In the experiments we test the clustering quality and
accuracy rate of the algorithm proposed in the paper. At the
same time, we will compare the clustering quality and
accuracy in the circumstances that len and gap has different
values.

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 6

Quality of clustering can be measured using SSQ and
purity. SSQ is the sum square of the distance between each
point in the cluster and the center of the cluster. SSQ is
used to measure concentration of a cluster and the lower the
SSQ, the higher the concentration of the cluster. SSQ
calculation is:

K

xx
SSQ

K

j

N

i
jji∑∑

= =

−
= 1

2

1
)(

 （12）

In equation (12), xji is the ith data point of the jth cluster.

jx is the center of the jth cluster. The average SSQ can be
calculated by sum the SSQ of each cluster and divided by
the number of clusters.

Purity is an indicator used to measure the accuracy of a
cluster. Each record of KDD CUP-99 10% dataset has been
labeled correctly. We can compare the clustering result with
the corrected label to calculate the purity of the cluster. The
purity calculation formula is:

%100*1

K
c
c

purity

K

i i

d
i∑

== （13）

Where k is the number of clusters, d
ic denotes the

number of points with the corrected label in cluster i. ic
denotes the number of points in cluster i.

5.1 Clustering Quality Analysis

We evaluate the quality of the grid-based DBSCAN
algorithm proposed in the paper. We can know from
Figures 2, 3, and 4 that the algorithm can reach a
satisfactory result. Average accuracy is more than 92% and
average SSQ can be maintained at a relatively low value,
but the number of clusters is comparatively large, which
needs to be improved. Meanwhile, we compare our result
with the results published in the Dstream [5]. Dstream
algorithm is also tested on the KDD CUP99 dataset and
from Figures 5 and 6, we can see that the accuracy can
reach more than 92.5% and SSQ is between 10e+02 and
10e+10.

So we know that the algorithm proposed in the paper
produces similar performance in accuracy and a better
average SSQ. As a result, the clustering quality produced by
the algorithm is similar to that of Dstream.

Figure 2：Clustering quality

Figure 3：Clustering purity

Figure 4: Number of clusters

Figure 5：DStream clustering accuracy

Figure 6：Dstream average SSQ

5.2 Clustering Quality and Efficiency of different Len

We test different len to evaluate clustering quality and
efficiency. The different len is 0.02, 0.04 and 0.05
respectively. We can conclude from Figures 7 and 8 that
when len=0.02 average SSQ and purity are relatively good
at various times.

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 7

The less the len is, the more precise the grid partition is.
Figure 9 is a curve of grid number with different len. When
len=0.02, grid number is at various times greater than that
when len=0.04 and len=0.05. So it comes that the number of
grids depends on the len.

Figure 7: Average purity

Figure 8：Average SSQ

Figure 9：Number of grids with different len

Figure 10：Efficiency with different len

We will further test different len to evaluate clustering

efficiency. From Figure 10, we know that average
processing time of 10,000 sessions is 3 seconds when
len=0.05. The less the len is, the more time the clustering
consumes. The result is consistent with the one we get on

the grid number. As the less the len is, the more precise the
grid partition is, the number of grids will increase, which
results in more time consumed by the clustering.

5.3 Clustering Quality and Efficiency of different Gap

We will test different gap to evaluate clustering quality

Figure 11：Purity with different gap

Figure 12：Efficiency with different gap

and efficiency. From Figure 11 we can know that the purity
of gap=5000 is similar to that of gap=10000, but from
Figure 12 it shows that the clustering efficiency has more
than 20% promotion when reducing gap from 10000 to
5000.

We can conclude from the above experiments that the
grid-based DBSCAN clustering algorithm for stream data
can produce comparative good performance in clustering
quality and efficiency.

6 Conclusion and Future Work

The paper proposes a grid-based DBSCAN clustering
algorithm for stream data. Stream data can be rapidly
compressed with grid mapping in the online phase, and the
geometric center of all the data in the grid is used to
approximately represent the characteristic of entire data in
the grid. A grid is treated as a data point in the space and
we use grid-based DBSCAN clustering algorithm for
stream data to do clustering. Experiment is tested on the
KDD CUP-99 dataset and we can conclude that the
algorithm proposed in the paper can produce a satisfactory
clustering quality. Average SSQ can be maintained in a
relatively low value and the highest order of magnitude is

International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 8

104 and average purity of clustering is above 92% and the
average processing time of 10,000 sessions is 3 seconds.

As for future work, firstly, we will compare continually
the advantage and disadvantage of the algorithm proposed
in the paper with those of other novel stream clustering
algorithm to get move objective evaluations. Secondly,
although the algorithm proposed in the paper can achieve a
very high purity and accuracy with relatively low mean SSQ,
but the disadvantage is the number of clusters is relatively
large. So the next work is to solve the problem, for example,
to optimize the parameters in algorithm. Finally, facing the
high bandwidth network, we should accelerate the speed of
clustering further to adapt to the high speed stream data.
And we will conduct research on multi-grid based parallel
clustering algorithm and evaluate the performance of the
algorithm in the real network environment.

Acknowledgments
This work is supported by Shanghai Leading Academic Discipline
Project(J50103), the Innovation Project of Shanghai Municipal
Education Committee (09YZ05), Doctoral Fund of Ministry of
Education of China for Youth Teachers (20093108120016),
National Natural Science Foundation of China(61003248).

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. “A
framework for clustering evolving data streams,
VLDB Conference Proceedings, vol.29, pp. 81-92,
2003.

[2] D. Barbará. “Requirements for clustering data
streams,” ACM SIGKDD Explorations Newsletter,
vol. 3, no. 2, pp. 23-27, 2003.

[3] F. Cao, M. Ester, W. Qian, and A. Zhou. “Density-
based clustering over an evolving data stream with
noise,” Proceedings of the 6th SIAM Conference on
Data Mining, Bethesda, MD, USA, pp. 328-339,
2006.

[4] F. Cao and A. Y. Zhou. “Fast clustering of data
streams using graphics processors,” Journal of
Software, vol.18, no.2, pp.291-302, 2007.

[5] Y. X. Chen and L. Tu. “Density-based clustering for
real-time stream data,” Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp.133-142, California,
USA, 2007.

[6] D. B. Dai, G. Zhao, and S. L. Sun. “Effective
clustering algorithm for probabilistic data stream,”
Journal of Software, vol. 20, no. 5, pp. 1313-1328,
2009.

[7] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. “A
density-based algorithm for discovering clusters in

large spatial databases with noise,” Proceedings of the
2nd International Conference on Knowledge
Discovery and Data Mining, pp. 226-231, Portland,
Oregon, AAAI Press,1996.

[8] M. Ester, H.P. Kriegel, J. Sander and X. Xu.
“Incremental clustering for mining in a data
warehousing environment,” Proceedings of the 24th
Internatioal Conference on Very Large Databases, pp.
323-333, ACM Press, 1998.

[9] M. Sheikhan and Z. Jadidi. “Misuse detection using
hybrid of association rule Mining and connectionist
modeling,” World Applied Sciences Journal, vol.7, pp.
31-37, 2009.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani.
“A detailed analysis of the KDD CUP 99 data set,”
Proceedings of 2009 IEEE Symposium on
Computational Intelligence in Security and Defense
Applications, IEEE Press, pp. 53-58, 2009.

[11] T. Zhang, R. Ramakrishnan and M. Livny. “BIRCH:
An efficient data clustering method for very large
databases,” ACM SIGMOD, vol. 25, no. 2, pp. 103-
114, 1996.

[12] W. H. Zhu, J. Yin and Y. H. Xie. “Arbitrary shape
cluster algorithm for clustering data stream,” Journal
of Software, vol.17, no.3, pp.379-387, 2006.

Qian Quan is an associate professor in Shanghai
University, China. His main research interests concerns
computer network and network security, especially in cloud
computing, IoT and wide scale distributed network
environments. He received his computer science Ph.D.
degree from University of Science and Technology of
China (USTC) in 2003 and conducted postdoc research in
USTC from 2003 to 2005. After that, he joined Shanghai
University and now he is the lab director of network and
multimedia.

Chao-Jie Xiao received BS degree in computer science
from Shanghai University in 2009. He is currently working
toward a master degree in the school of computer science,
Shanghai University. His research interests include
computer and network security, data mining.

Rui Zhang received her B.E. and Ph.D. degree from
Department of Electronic Engineering & Information
Science, University of Science and Technology of China, in
2003 and 2008, respectively. After graduation, she works in
School of Computer Engineering and Science, Shanghai
University. Her main research interests include computer
networks, network coding for wireless networks and
wireless communication, etc.

http://portal.acm.org/citation.cfm?id=1281210&dl=GUIDE&coll=GUIDE&CFID=77131218&CFTOKEN=98422055
http://portal.acm.org/citation.cfm?id=1281210&dl=GUIDE&coll=GUIDE&CFID=77131218&CFTOKEN=98422055
http://portal.acm.org/citation.cfm?id=1281210&dl=GUIDE&coll=GUIDE&CFID=77131218&CFTOKEN=98422055
http://portal.acm.org/citation.cfm?id=1281210&dl=GUIDE&coll=GUIDE&CFID=77131218&CFTOKEN=98422055
http://portal.acm.org/citation.cfm?id=1281210&dl=GUIDE&coll=GUIDE&CFID=77131218&CFTOKEN=98422055

	References

