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Abstract 

As a kind of stream data mining method, stream clustering 
has great potentiality in areas such as network traffic 
analysis, intrusion detection, etc. This paper proposes a 
novel grid-based clustering algorithm for stream data, 
which has both advantages of grid mapping and DBSCAN 
algorithm. The algorithm adopts the two-phase model and 
in the online phase, it maps stream data into a grid and the 
geometric center of all the data in the grid is used to 
represent the characteristic of entire data in the grid 
approximately. In the offline phase, grid-based DBSCAN 
clustering algorithm is used to cluster all grids in the space 
based on density. Meanwhile, extension of the algorithm to 
an incremental one is also presented in detail in the paper. 
The algorithm proposed in the paper can solve the problem 
that it is difficult to find neighbor grids in DStream 
algorithm and also solve the incompetency of DBSCAN in 
data compression, which makes it capable for DBSCAN to 
be used for stream data. Experimental results on 
KDDCUP99 intrusion detection dataset show that the 
algorithm can achieve a good clustering quality and 
efficiency. The average accuracy is above 92% and the 
highest order of magnitude of SSQ is 104 and the average 
processing time of 10,000 sessions is about 3 seconds. 

Keywords:  Grid-based Clustering, Stream data mining, 
DBSCAN 
 
1   Introduction 

Stream data mining is currently a hot research, which has 
great potential demands on network traffic analysis, 
telecommunication, planetary remote sensing, website 
analysis, etc. Clustering stream data is a very difficult task 
because we have a large volume of stream data and these 
data should be processed in real-time. Also the data can be 
processed only once, and once data flow away they cannot 
be processed any more. In 2003, Barbará summarized 
requirements for clustering stream data and made a 
summary for some algorithms which may be applied to 
clustering stream data [2]. He proposed that clustering 
stream data should satisfy three requirements: (1) data 
compression and expression of the compressed data; (2) 
processing new data point in a fast and incremental way; (3) 

distinguishing outliers quickly and clearly. 

Currently, influential clustering algorithms for stream 
data are: Clustream [1], Dstream [5], DenStream [3], P-
Stream [6] etc. P-Stream is a probability-based clustering 
algorithm for stream data. Denstream is a density-based 
clustering algorithm for stream data. An excellent 
framework for clustering stream data is proposed in 
Clustream [1], which uses a two-phase scheme that consists 
of online phase and offline phase. Many recent clustering 
algorithms in different extent refer to the two-phase 
framework proposed by Clustream. The online phase collect, 
preprocess and compress stream data. The offline phase 
includes clustering stream data that collected in the online 
phase. Assigning clustering job to the offline phase can raise 
real time processing capability of the online phase. At the 
same time, Clustream proposed Characteristic Feature (CF) 
vector which is used to compress data. CF vector consists of 
first-order geometric center and second-order geometric 
center of a cluster. The method is very useful when the 
clustering algorithm is based on k-means algorithm, but the 
method cannot be used in clustering data of arbitrary shapes 
because the geometric center of a cluster with irregular 
shape cannot be determined. 

Dstream algorithm retains the two-phase framework of 
Clustream and proposes a framework for clustering stream 
data using a density-based approach which is directed at the 
deficiencies in the use of k-means algorithm in the 
Clustream. Dstream proposes a clustering algorithm that is 
based on grid mapping and neighbor searching. But during 
the experiment we find that the number of grid is too large 
after grid mapping, which leads to a huge volume of 
calculation. There exists the problem that the distribution of 
grids is too sporadic to find a neighboring grid for a given 
grid, which leads to the failure of clustering. A further 
explanation using the method of probability analysis about 
this problem will be given in the latter paper. 

DBSCAN is an excellent density-based clustering 
algorithm [7, 8]. It can be used to find clusters of arbitrary 
shapes, which solves the problem of using k-means 
algorithm in the Clustream. But the limitation of DBSCAN 
lies in that all the data point should be saved for global 
clustering. It is impossible to save all the data points of the 
stream data due to the memory constraint. Since DBSCAN 
algorithm cannot compress data, it means that DBSCAN 
algorithm cannot be used in clustering stream data. However, 



International Journal of Network Security, Vol.15, No.1, PP.1-8, Jan. 2013 2 

Dstream proposes the method bases on grid mapping that 
can convert stream data to the density of grid, which solves 
the problem of data compression. 

This paper proposes a grid-based DBSCAN clustering 
algorithm for stream data. The algorithm combines the 
advantages of DBSCAN and grid mapping. Using grid 
mapping can solve the problem of data compression of 
DBSCAN; meanwhile using DBSCAN can overcome the 
difficulty in finding neighbor grids in the high dimensional 
space when using Dstream. The method will continue to use 
two-phase model proposed by Clustream, dividing process 
into online phase and offline-phase. During online phase, 
we adopt grid mapping and each grid will store density and 
CF vector. And during the offline phase, we use grid-based 
DBSCAN to cluster all the grids in the space. 

The rest of the paper is organized as follows: Section 
2describes grid mapping and CF vector; Section 3 presents a 
brief introduction of DBSCAN algorithm; Section 4 extends 
DBSCAN to grid-based DBSCAN for clustering stream 
data; the experiment and result analysis is in Section 5; 
Section 6 summarizes the whole paper and presents some 
directions of the future work. 

 
2  Grid Mapping and CF Vector 

The paper adopts grid mapping technology during online 
phase [3]. At first we divide d dimensional space, and each 
dimension of d dimensional space is partitioned into p 
segments and the length of each segment is len. So each 
dimension is composed as follow: 

pSSSS ∪∪∪= ....  21      (1) 

Where 



=
len

p 1 . So we can know that the number of 

total grids is dp . If 04.0=len then each dimension is 
partitioned into 25

04.0
1

= segments and if d=37 then the 

number of total grids will reach 513.52537 += e . So from 
the above calculation we can know that the number of grids 
will rise exponentially with the increase of p and d. In the 
grid space, the probability of two grids being neighbor 

is
NN
d

*
*2 , where d is dimension of space and N is number of 

total grids in the space. When 3725=N , the probability is 
almost zero, which is the main reason why it is hard to find 
neighbor grid for a given grid in the DStream algorithm. 

The method of mapping a d dimensional 
data ),....,,,(x x 321 dxxx=  into a grid is: for each 

ix computing coordinate in the corresponding dimension 
and by calculating coordinate for each ix , a unique grid 

),....,,,(g  g 321 dggg= can be determined. If a d 
dimensional data is mapped into a grid g, we say that the d 
dimension data belongs to the grid g. 

For each grid, it will store density and a CF vector. The 
density of the grid can be calculated by adding up density 

factor of all data in the grid. For a data point x, its density 
factor can be defined as: 

ttcxDF −= λ)(     (2) 

Where λ  is decay factor(less than 1), ct is the current 
time, t is the arriving time of data point x. As decay factor 
commonly is less than 1, we can know from the formula that 
density factor of each data point will be decreased with 
change of time and finally it will be near zero. Density of a 
grid can be calculated by the following equation: 
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Where ct is current time,  it is the arriving time of data 
point x. we can know from the Equation (3) that density of a 
grid is changing constantly with the change of time. 

If a new data point is mapped into a grid, it is not necessary 
to add up density factor of all data points in the grid again. 
The density can be calculated incrementally by the 
following formula (4), and the details of the proof can be 
referred to paper [5]. 

1*1 += ∆+ tii DensityDensity λ           (4) 

In Equation (4), ii ttt −=∆ +1  is the time difference 
between current time and the last updating time, where 1i+t  
is the current time and  it the last updating time. 

According to the size of density of grid, grids can be 
classified into 3 categories: dense grid, transitional grid and 
sparse grid. Detailed classification method can be referred to 
paper [5]. 

To save data points mapped into grids as completely as 
possible, at the same time to compress data as much as 
possible, each grid will store a CF vector [5,12]. A CF 
vector consists of the first-order geometric center CF1x and 
the second-order geometric center CF2x of all the data 
points in the grids, which are two d dimensional vectors. 
CF1x and CF2x can be calculated using Equation (5) and (6): 
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In Equations (5) and (6), ct  is the current time and it  is 
the arriving time of data point x. If length of each segment 
of each dimension in the space is 0.04 and d = 37, the 
volume of a grid is 0.0437=1.9e-52. So we believe that the 
volume of a grid is very small and we can use the first-order 
geometric center of all the data in the grid to approximately 
represent the characteristic of entire data in the grid. The 
paper uses first-order geometric center CF1x to represent a 
grid. The benefit of introducing CF1x is that it can not only 
solve the problem of stream data compression, but also it 
can comparatively completely save information of all the 
data in the gird. First-order geometric center CF1x is used in 
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the grid-based DBSCAN algorithm to calculate distance 
between two grids. Similar to calculation of density, if a 
new data point is mapped into a grid it is not necessary to 
add up all data points in the grid to calculate geometric 
center again, because it can be calculated incrementally 
using the Equations (7) and (8): 

1
**11
+

+
=

∆

n
XnCFCF i

tx
x λ             （7） 

1
**22

2

+
+

=
∆

n
XnCFCF i

tx
x λ              （8） 

Where ii ttt −=∆ +1 is the time difference between current 
time and the last updating time, where 1i+t  is current time 
and it  is last updating time. 

Proof. Suppose last updating time is 1t  and at time 1t  CF1x 
is 
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The proof method of calculation formula of CF2x is similar 
to that of CF1x. Storing second-order geometric center 
CF2x is for calculation of SSQ (sum of square distance) in 
the experiment. 

 
3  DBSCAN Algorithm 

DBSCAN is an excellent and very effective density-based 
clustering algorithm [7,8]. Its core idea is to classify all the 
data points into two categories: core points and border 
points. If the number of points distributed within the radius 
of a point is not less than a threshold (minPts), the point 
can be considered as core point. All other points which are 
not core points are border points. The working principle of 
DBSCAN is firstly to search for a core point P which does 
not belong to any cluster and then construct a new cluster 
where point P is treated as the center. All the points 
distributed within the radius of point P will be added to the 
cluster of point P, and then these points will be checked 
one by one if it is a core point. If it is a core point (we call 
it P’), all the points which is not clustered distributed 
within the radius of point P’ will be added to the cluster of 
P. Expansion operation will be repeated until no new core 
point can be found. 

The idea of DBSCAN clustering algorithm is: if two 
data points are density-reachable then they belong to the 

same cluster. Since DBSCAN algorithm finds clusters 
through expanding core points and there is no need to 
determine geometric center, DBSCAN can be used in 
clustering data of arbitrary shape. 

In this paper we choose DBSCAN as clustering 
algorithm because DBSCAN has advantage that it can 
cluster all the points distributed within the radius of the core 
point and the expansion scope is a smooth circle, while 
clustering using neighbor searching will form a jagged 
graphic. It is because neighbor searching will neglect the 
grids located in the diagonal, which stops clustering. For 
example, it can be known from Figure 1 that grid B and grid 
C are all neighbors of grid A. In DStream two d dimensional 
grids are neighbor only if d-1 dimensions of the two grids 
are same and the remaining one dimension of the two grids 
has a difference of 1 or a difference of -1. If we search for 
neighbors according to the method of Dstream, grid C will 
be missed because there are two dimensions out of d 
dimensions that are different. If we search for neighbors 
using DBSCAN grid B and C will be added to the cluster of 
grid A because DBSCAN will seek all the grids distributed 
within the radius of grid A, whose expansion scope is a 
circle. 

C B C 

B A B 

C B C 

Figure 1: Clustering diagram of 9 grids 

The core idea of grid-based DBSCAN algorithm is to 
consider grid as a data point in the DBSCAN algorithm, 
because the CF vector stored in the grid can represent the 
information of all the data of the grid. If a grid G is a dense 
grid and the number of grids distributed within the radius of 
grid G is not less than a threshold (minPts), G can be 
considered as a core point and be expanded outwards for 
clustering. 

 
4 Grid based DBSCAN Clustering Algorithm for 
Stream Data 

Grid-based DBSCAN clustering algorithm for stream data 
consists of two parts: online processing and offline 
processing [2]. The online part is responsible for data 
collection, data preprocess and grid mapping. The offline 
part does clustering using grid-based DBSCAN algorithm. 
The offline part can be called by user or by program. For 
example, offline operation will be called at regular intervals 
to adjust clustering. The offline part is divided into initial 
phase and incremental clustering phase. The initial phase 
clusters all the data collected initially to build initial cluster 
model. The incremental phase incrementally clusters grids 
whose status is changed. Clustering all the grids is not 
necessary, while only those grids distributed within the 
radius of the grid whose status is changed should be 
adjusted, which can speed up processing. Meanwhile, in the 
offline phase sparse grids could be deleted for reducing the 
number of grids to accelerate neighbor searching. 
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Framework for grid-based DBSCAN algorithm for stream 
data is as follows: 
 
Algorithm 1:  Framework of the grid-based DBSCAN 
1: Begin 
2: tc=0; 
3: While (new stream data flows in) 
4:      Collect a window size d dimensional data; 
5:      Preprocess each record within the time window; 
6:      Mapping each data into grid; 
7:      If grid does not exist then 
8: Create a new grid; 

Else 
9:              Map data into the grid and update density and CF  

vector of the grid; 
10:     end if 
11:     If （tc ＝＝ gap）then //initial clustering  
12:          Call grid-based DBSCAN algorithm in the initial  

phase for initial clustering; 
13:     Else if (tc % gap == 0) //reach predefined time  

//interval 
14:         Call grid-based incremental DBSCAN algorithm  

in the offline phase for incremental clustering; 
15:     Endif 
16:    tc = tc + 1; 
17:    end while 
18: End 

 
4.1 Online Processing Phase 

(1) Data Collection. Divide stream data by time 
window. Each time a block of d dimensional data within a 
time window will be collected. The form of each d 
dimensional data is ),....,,,(x x 321 dxxx= . 

(2) Data Preprocessing. All the attributes of each data 
in the window need to be preprocessed. Preprocessing can 
be divided into two steps: standardization and 
normalization. Standardization is to prevent that the value 
of some dimension is so large that it could affect 
calculation. The method of standardization is: 

A

A
A

Axx
σ
−

='          （9） 

In Equation (9), Ax is the original data, A  is the mean 
value of attribute A, Aσ  is the standard deviation of 
attribute A. The method of normalization is described as 
Equation (10), which max-min normalizes attributes of all 
data sets to [0, 1]. In Equation (10), X is the value of 
attribute after normalized. 
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For discrete attribute computation requirement, encoding 
is adopted. Different value of the discrete attribute will be 
mapped into integer values ranging from 1 to S, where S is 

the number of different values of the discrete attribute. For 
example, there are 3 different values: TCP, UDP and ICMP, 
for network protocol attribute, so after encoding we use 
TCP=1, UDP =2, ICMP =3. 

(3) Grid Mapping. Each attribute of d dimensional 
data ),....,,,(x x 321 dxxx= is normalized to [0,1], and after 
this grid mapping goes. 

If each dimension of d dimensional space is divided into p 
segments, whose length is len, and len*p =1. For each ix , 

we can get 



=
len
xg i

i . For example, when len = 0.04, 

6.0i =x , we get 15
04.0
6.0

i =



=g , which means that ix is 

mapped into the 15th segment of dimension i. Through this 
method, a d-dimensional data can be mapped into a unique 
d-dimensional grid ),....,,,(g  g 321 dggg= . 

After determining the coordinate of grid, we can try to read 
the grid information. If the grid does not exist, then a new 
grid should be created and data will be added into the grid; 
if the grid does exist then data will be added into the grid 
directly. 

(4) Updating Grid Information. Update density and 
CF vector of the grid which has new data mapped into with 
the calculation Equations (4), (7) and (8). 

4.2 Offline Processing Phase 

The offline phase consists of two parts: initial phase and 
incremental adjusting phase. Grid-based DBSCAN 
algorithm is used in the initial phase and grid-based 
incremental DBSCAN algorithm is used in the incremental 
adjusting phase. Incremental algorithm will be introduced 
in the latter paper. A grid in the space is considered as a 
point in the DBSCAN algorithm and distance between two 
grids can be calculated using Equation (11). 

∑ −=
=

d
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i

x
i

x CFCF
1

2
21 )11(Distance  （11） 

The Equation (11) shows that the value of Distance is the 
square root of the sum of difference between the squares of 
each dimension of CF1x. 

4.2.1 Initial Phase 

First of all, update density of all grids. The reason of 
updating density of grids in the offline phase is that there are 
many grids that do not have new data mapped into in the 
online phase, which may cause these grids not being 
updated in the online phase. 

Then, treat all the dense grids which do not belong to 
any cluster as core points in the DBSCAN algorithm and 
begin initial clustering. The clustering method can be 
referred to DBSCAN algorithm; however the following 
adjustment will be made: dense grids are treated as core 
points and all the grids distributed within the radius of the 
dense grid will be found. The processing on these grids 
found is as follows: 
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1) If the grid is a dense grid then treat the grid as a core 
point and continue to expand it outwards. Expansion rule is 
to add all the dense and transitional grids within the radius 
of the expanded grid to the current cluster. 

2) If the grid is a transitional grid, then just add it to the 
current cluster and do not go on expanding outwards. 

3) If the grid is a sparse grid, then do nothing. Sparse 
grids will be deleted in the latter processing. 

4.2.2 Incremental Adjustment Phase 

As stream data is continuously increasing, a fast 
incremental clustering mechanism should be built to satisfy 
the requirement of clustering stream data in real time. Grid-
based incremental DBSCAN algorithm is proposed here. 
Algorithm detail is as follows: 
 
Algorithm 2:  Incremental grid-based DBSCAN 
1:  Begin 
2:  Step1: Delete the sparse grids without new data points 
mapped into in the last phase.  
3: Step2: Update density and CF vector of all the grids 
according to the Equations (4) (7) (8). 
4:  Step3: For each grid G whose status is changed: 
5:      Step3.1: If G is dense grid and G is clustered then: 
6:         Step3.1.1: If there are grids within the radius of G  

then: 
7:           If there exists dense grid G’ within the radius of G 

and G’ is clustered then merge the cluster of G and 
G’. The principle of merging is that the small cluster 
will be merged into the large one. 

8:         If there does not exist dense grid within the radius of 
G but there exists transitional grid G’ and G’ is not 
clustered, then add G’ to the cluster of G. 

9:    Step3.2: If G is a dense grid and G is not clustered  
then: 

10:       If there exists dense grid G’ within the radius of G 
and G’ belongs to the cluster C, and then add G to 
cluster C. 

11:        If the number of grids within the radius of G is less 
than minPts, then treat G as NOISE. 

12:         If the number of grids within the radius of G is not 
less than minPts, then create a new cluster using G 
as a core point. 

13:  Step3.3: If G is a transitional grid and G is not  
clustered then: 

14:        If the number of grids within the radius of G is less 
than minPts, then treat G as NOISE. 

15:        If there exists dense grid G’ within the radius of G 
and G is clustered then add G to the cluster of G’. 

16:   Step 3.4: If G is a transitional grid and G is clustered  
then,  

17:         if there exists dense grid G’ and the cluster of G’ is 
different from the cluster of G, then add G to the 
cluster of G’. 

18:    Step 3.5: If G is a sparse grid, then delete G.  

19: End 
 

In Step1, the sparse grids are not useful during the 
clustering and if there are too many sparse grids they will 
slow down the speed of grid searching, so deleting the 
sparse grid which is not updated in a certain period of time 
can speed up processing and improve the efficiency of the 
algorithm. 

In Step3.5, the impact of deleting G is that if G belongs 
to Cluster C then we should check whether the cluster C will 
be split if G is deleted. The method is, for all the dense grids 
within the radius of G, if there exist a dense grid which is 
not density-connected to all the other dense grids within the 
radius of G, then it means that cluster C is split in the G’ and 
a new cluster should be created from the G’. 

 
5  Experiment Results 

The experiments evaluate the quality and efficiency of the 
Grid-based DBSCAN clustering algorithm for stream data 
proposed in this section. All the experiments are conducted 
on a PC with 2.8GHz CPU and 2GB memory running red 
hat Linux 5. We have implemented the grid-based 
DBSCAN clustering algorithm in C++. In experiment, the 
parameters are: cm = 3.0, cl = 0.8, lemda= 0.998, beta = 
0.3, eps = 1.0 minPts = 3. All the parameters can be 
referred to [5, 7, 8]. 

The testing dataset used in experiments is KDD CUP-99. 
It contains network intrusion detection stream data collected 
by the MIT Lincoln laboratory [10]. KDD CUP-99 10% 
dataset is used in the experiments. The dataset contains 
494021 records which can be classified into 5 categories: 
NORMAL, DOS, R2L, U2R and PROBING. Among them, 
DOS contains smurf, neptune, etc. R2L contains 
warezclient ， guess_passwd, etc. U2R contains 
buffer_overflow ， perl, etc. PROBING contains satan, 
ipsweep, etc. [10]. Each record in the KDD CUP-99 dataset 
contains 41 attributes which have 3 different forms: discrete, 
continuous, and symbolic. All 34 continuous attributes and 
3 symbolic attributes (PROTOCOL, SERVICE, and FLAG) 
will be used in the experiment. All the attributes in the 
experiments below will be normalized into [0, 1]. Each 
dimension is partitioned into several segments, each with 
length len. 

In the experiment through simulating stream data we 
send KDD CUP-99 dataset continuously to the receiving 
end where the program is running and test the algorithm 
proposed in the paper. In the experiments, the speed of 
sending data is 10 thousand records per time unit and the 
speed can be adjusted to simulate different network 
environment. In all the figures shown in the following paper, 
time (unit) in the x axis means the time it takes to send 10 
thousand records. 

In the experiments we test the clustering quality and 
accuracy rate of the algorithm proposed in the paper. At the 
same time, we will compare the clustering quality and 
accuracy in the circumstances that len and gap has different 
values. 
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Quality of clustering can be measured using SSQ and 
purity. SSQ is the sum square of the distance between each 
point in the cluster and the center of the cluster. SSQ is 
used to measure concentration of a cluster and the lower the 
SSQ, the higher the concentration of the cluster. SSQ 
calculation is: 

K

xx
SSQ

K

j

N

i
jji∑∑

= =

−
= 1

2

1
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           （12） 

In equation (12), xji is the ith data point of the jth cluster. 

jx  is the center of the jth cluster. The average SSQ can be 
calculated by sum the SSQ of each cluster and divided by 
the number of clusters. 

Purity is an indicator used to measure the accuracy of a 
cluster. Each record of KDD CUP-99 10% dataset has been 
labeled correctly. We can compare the clustering result with 
the corrected label to calculate the purity of the cluster. The 
purity calculation formula is: 

%100*1
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Where k is the number of clusters, d
ic  denotes the 

number of points with the corrected label in cluster i. ic  
denotes the number of points in cluster i. 

5.1 Clustering Quality Analysis 

We evaluate the quality of the grid-based DBSCAN 
algorithm proposed in the paper. We can know from 
Figures 2, 3, and 4 that the algorithm can reach a 
satisfactory result. Average accuracy is more than 92% and 
average SSQ can be maintained at a relatively low value, 
but the number of clusters is comparatively large, which 
needs to be improved. Meanwhile, we compare our result 
with the results published in the Dstream [5]. Dstream 
algorithm is also tested on the KDD CUP99 dataset and 
from Figures 5 and 6, we can see that the accuracy can 
reach more than 92.5% and SSQ is between 10e+02 and 
10e+10. 

So we know that the algorithm proposed in the paper 
produces similar performance in accuracy and a better 
average SSQ. As a result, the clustering quality produced by 
the algorithm is similar to that of Dstream. 

 

Figure 2：Clustering quality 

 
Figure 3：Clustering purity 

 
Figure 4: Number of clusters 

 
Figure 5：DStream clustering accuracy 

 
Figure 6：Dstream average SSQ 

 
5.2 Clustering Quality and Efficiency of different Len 

We test different len to evaluate clustering quality and 
efficiency. The different len is 0.02, 0.04 and 0.05 
respectively. We can conclude from Figures 7 and 8 that 
when len=0.02 average SSQ and purity are relatively good 
at various times. 
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The less the len is, the more precise the grid partition is. 
Figure 9 is a curve of grid number with different len. When 
len=0.02, grid number is at various times greater than that 
when len=0.04 and len=0.05. So it comes that the number of 
grids depends on the len. 

 
Figure 7: Average purity 

 
Figure 8：Average SSQ 

 
Figure 9：Number of grids with different len 

 
Figure 10：Efficiency with different len 

 
We will further test different len to evaluate clustering 

efficiency. From Figure 10, we know that average 
processing time of 10,000 sessions is 3 seconds when 
len=0.05. The less the len is, the more time the clustering 
consumes. The result is consistent with the one we get on 

the grid number. As the less the len is, the more precise the 
grid partition is, the number of grids will increase, which 
results in more time consumed by the clustering. 

 
5.3 Clustering Quality and Efficiency of different Gap 

We will test different gap to evaluate clustering quality  

 
Figure 11：Purity with different gap 

 
Figure 12：Efficiency with different gap 

and efficiency. From Figure 11 we can know that the purity 
of gap=5000 is similar to that of gap=10000, but from 
Figure 12 it shows that the clustering efficiency has more 
than 20% promotion when reducing gap from 10000 to 
5000. 

We can conclude from the above experiments that the 
grid-based DBSCAN clustering algorithm for stream data 
can produce comparative good performance in clustering 
quality and efficiency. 

 
6    Conclusion and Future Work 

The paper proposes a grid-based DBSCAN clustering 
algorithm for stream data. Stream data can be rapidly 
compressed with grid mapping in the online phase, and the 
geometric center of all the data in the grid is used to 
approximately represent the characteristic of entire data in 
the grid. A grid is treated as a data point in the space and 
we use grid-based DBSCAN clustering algorithm for 
stream data to do clustering. Experiment is tested on the 
KDD CUP-99 dataset and we can conclude that the 
algorithm proposed in the paper can produce a satisfactory 
clustering quality. Average SSQ can be maintained in a 
relatively low value and the highest order of magnitude is 
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104 and average purity of clustering is above 92% and the 
average processing time of 10,000 sessions is 3 seconds. 

As for future work, firstly, we will compare continually 
the advantage and disadvantage of the algorithm proposed 
in the paper with those of other novel stream clustering 
algorithm to get move objective evaluations. Secondly, 
although the algorithm proposed in the paper can achieve a 
very high purity and accuracy with relatively low mean SSQ, 
but the disadvantage is the number of clusters is relatively 
large. So the next work is to solve the problem, for example, 
to optimize the parameters in algorithm. Finally, facing the 
high bandwidth network, we should accelerate the speed of 
clustering further to adapt to the high speed stream data. 
And we will conduct research on multi-grid based parallel 
clustering algorithm and evaluate the performance of the 
algorithm in the real network environment. 
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