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Abstract

Coordinated attacks are distributed in nature because
they attempt to compromise a target machine from mul-
tiple sources. It is important for network defenders and
administrators to detect these scans as possible prelimi-
naries to more serious attacks. However, it is very difficult
to detect malicious scans based on port specific behav-
ior alone. In this paper, we present an Adaptive Outlier
based approach for Coordinated scan Detection (AOCD)
at an early stage with high accuracy. It is an outlier score
based adaptive network anomaly detection approach that
considers sets of normal instances during training. We
use both normal and port scan instances for testing pur-
pose. We achieve higher detection accuracy and low false
positive rate on real-life and KDDcup99 probe datasets
in comparison with existing techniques.
Keywords: Coordinated scans, outlier detection, port
scan, principal component analysis

1 Introduction

During the last several decades, network defenders and re-
searchers have developed approaches to detect malicious
scans as well as coordinated port scans to keep enterprise
networks secure. This is because cyber threats are be-
coming more sophisticated and more numerous, leading
to more substantial damages to systems within short pe-
riods of time [7, 19]. Two types of correlations are used
in a coordinated scan attack, Viz., action correlation and
task correlation [5, 15]. Action correlation determines how
actions performed by one user affect another user. For
example, a particular action performed by one user may
facilitate another user who performs the actual attack.
In the other type of correlation, tasks divided among the
multiple users are discovered. Here we focus mainly on
task correlation.

Network administrators or defenders are interested in

detecting coordinated scan attacks for a system in an en-
terprise network due to the following reasons.

• To detect coordinated scan attacks just like the de-
tection of other attacks,

• To foil greater interest by the attacker who wants to
remain undetected.

• To obviate the potential seriousness of the actual at-
tacks.

A coordinated port scan is a part of a coordinated at-
tack. Here, tasks are distributed among multiple hosts for
their individual actions which may be synchronized. Such
a port scan is an information gathering method used by an
opponent to gain information about responding comput-
ers and open ports on a target network host. An opponent
initiates the exploration of multiple hosts to scan a por-
tion of the target network, with multiple sources focused
on the portion of the target network which they want to
compromise after getting relevant information from the
target host. Intrusion Detection Systems (IDSs) are nor-
mally configured to recognize and report single source
port scan activity. So, they cannot usually detect multi-
ple source scans that collaborate with several hosts during
scanning.

The detection of port scans, particularly stealthy or
coordinated port scans, is important for early detection
to enable action against potential intruders. The attack-
ers or intruders are technically sophisticated enough to
remain undetected while gathering information but the
network defenders are usually out in the open. Single
source scan detection is comparatively easy to detect be-
cause detection usually works better when a single source
communicates with a single or multiple destinations. But
the detection of a coordinated port scan is difficult due
to the lack of relevant feature information at both packet
and flow levels. Therefore, we are motivated to develop
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an adaptive outlier based detection mechanism for coor-
dinated port scans known as AOCD. This paper makes
the following key contributions.

• We formalize the problem of coordinated scan detec-
tion as a data mining problem and present an ap-
proach to transform network traffic data into a form
where a classifier can be directly used. Specifically,
we select random samples from the dataset and iden-
tify a set of features relevant for cluster detection for
early detection of coordinated port scans.

• We exercise special care during labeling and use
the labeled dataset for training as well as testing.
The source is real network traffic data in our TU-
IDS (Tezpur University Intrusion Detection System)
testbed [3]. We demonstrate that our approach is
capable of very early detection without significantly
compromising the precision of the detection.

• We present extensive experiments on real-world net-
work traffic data. The results show that the AOCD
has substantially better performance than other
state-of-the-art approaches in terms of accuracy and
false positive rate.

The rest of the paper is organized as follows. Section
2 introduces the problem of coordinated port scan detec-
tion. Port scans and related concepts are introduced in
Section 3. Section 4 provides related research and generic
comparison of existing approaches. Our method for solv-
ing the problem is presented in Section 5. Section 6 de-
scribes empirical evaluation of AOCD. Finally, we present
the concluding remarks and future work in Section 7.

2 Problem Statement

Coordinated or distributed port scans originate at mul-
tiple sources and focus on a single machine or multiple
target machines. It is of special interest to large organi-
zations with high level network situational awareness or
military operations to detect coordinated port scans. The
following are key problems.

• Coordinated scans compromise the victim machine
earlier than single source port scans.

• Coordinated port scans are distributed in nature. So,
intruders or attackers self-propagate the traffic and
consume network bandwidth and resources quickly.

To overcome these problems, we develop an adaptive
outlier based coordinated port scan detection approach.
Let x be the captured, preprocessed current network traf-
fic feature dataset, where x1, x2, · · ·xs are the training
samples, randomly selected from dataset x that contain
only normal instances. We apply the fuzzy c-means algo-
rithm to cluster each sample individually into k number of
clusters. Each cluster uses as a range based profile for de-
tection. Let x1, x2, · · ·xt be the test instances to classify

Figure 1: A framework for AOCD : FCM is the fuzzy
c-means clustering algorithm for sample clustering and
F is the PCA based feature selection technique for each
sample as well as testing instances.

as attack or normal w.r.t. a threshold δ. The profile base
is updated if any new distinct instances identified during
testing. Thus, the AOCD adaptively updates its profile
base for the new distinct instances. The framework for
AOCD is given in Figure 1.

3 Port Scans and Related Con-
cepts

In this section, we present preliminary discussions on port
scans, outliers and network anomaly detection.

3.1 Port scans and types

There are several forms of reconnaissance activity, which
often precedes an attack. When an adversary uses an
effective mechanism to remotely probe a network, it is
known as port scanning. System administrators and other
network defenders also use this mechanism to detect port
scans as precursors to serious attacks [4]. A port scan can
be defined as sending packets to a particular IP or port to
get a response from an active host in the network indicat-
ing services it offers. A port scan is useful to an attacker
who wants to gain substantial information about the tar-
get host. Thus, it is of considerable interest to attackers
to determine whether or not the defenders of a network
scan ports regularly. Attackers hide their identity dur-
ing port scanning whereas the network defender do not.
Vivo et al. [9] describe a port scan as being composed
of hostile Internet searches for open “doors” or “ports”,
through which intruders gain access to computers. Gen-
erally, there are several hosts available on a network and
they run many services that commonly use TCP or UDP
ports for communication with each other. A computer
contains 65536 standardly defined ports [18]. They can
be classified into three large ranges: (a) well known ports
(0 − 1023), (b) registered ports (1024 − 49151) and (c)
dynamic and/or private ports (49152−65535). Normally,
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a port scan helps the attacker in finding those ports that
are available to launch attacks, but it does not directly
harm the system. Essentially, a port scan sends a packet
with a message to the target host one at a time and lis-
tens for an answer. The response indicates whether the
port is being used. This is a probe for weaknesses to
launch future attacks. TCP and UDP ports are usually
used for port scanning but TCP port scanning returns
good feedback to the attacker because it is a connection-
oriented protocol. UDP port scanning may not readily
give relevant information to the attacker because it is a
connectionless protocol. Also, a UDP port may be easily
blocked by network defenders or network administrators.
Following are the various types of port scans [4] which are
used to probe weaknesses from a networked host.

1) Stealth scan: Auditing tools cannot detect this type
of scanning because of their complicated design ar-
chitecture. Such a scan sends TCP packets to the
destination host with stealth flags. Some of the flags
are SYN, FIN and NULL.

2) SOCKS port probe: It allows sharing of Internet con-
nections on multiple hosts. Attackers scan these
ports because a large percentage of users misconfig-
ure SOCKS ports, potentially permitting arbitrar-
ily chosen sources and destinations to communicate.
It also allows the attackers to access other Internet
hosts while hiding their true location.

3) Bounce scan: An FTP bounce scan attack takes ad-
vantage of a vulnerability of the FTP protocol itself.
Email servers and HTTP Proxies are the common
applications that allow bounce scans.

4) TCP scan: This type of scanning is used by a smart
attacker because it never establishes a connection
permanently. The attacker can launch an attack im-
mediately if a remote port is accepting the connection
request. Normally, this type of connection request
cannot be logged by a server’s logging system due
to its smart connection attempt. Some TCP scans
are TCP Connect(), reverse identification, Internet
protocol (IP) header dump scan, SYN, FIN, ACK,
XMAS, NULL and TCP fragment.

5) UDP scan: A UDP scan attempts to discover open
ports related to the UDP protocol. However, UDP
is a connectionless protocol and, thus, it is not often
used by attackers since it can be easily blocked.

The list of port scan types discussed above along with
firewall detection possibilities during the scanning process
is given in Table 1. We can see from the table that most
scans are not detected in firewall level.

The task of distributed information gathering is accom-
plished using either a many-to-one or a many-to-many
model [14, 11]. The attacker utilizes multiple hosts to
execute information-gathering techniques in two ways:
rate-limited, and random or non-linear. In a rate-limited

Table 1: Port scan types and firewall level detection pos-
sibilities

Port
scanning
technique

Protocol TCP
flag

Target
reply
(open
port)

Target
reply
(closed
port)

Firewall
level de-
tection
possibility

TCP
Con-
nect()

TCP SYN ACK RST Yes

Reverse
Ident

TCP No No No No

SYN
Scan

TCP SYN ACK RST Yes

IP
Header
Dump
Scan

TCP No No No No

SYN|ACK
Scan

TCP SYN|ACK RST RST Yes

FIN Scan TCP FIN No RST No
ACK
Scan

TCP ACK No RST No

NULL
Scan

TCP No No RST No

XMAS
Scan

TCP All flags No RST No

TCP
Fragment

TCP No No No No

UDP
Scan

UDP No No Port Un-
reach-
able

No

FTP
Bounce
Scan

FTP Arbitrary
Flag Set

No No No

Ping
Scan

ICMP No Echo
Reply

No Yes

List Scan TCP No No No No
Protocol
Scan

IP No - - No

TCP win-
dow scan

TCP ACK RST RST No

information-gathering technique, the number of packets
sent by a host to scan is limited [10, 28]. This is based
on the FreeBSD (BSD-Berkeley Software Distribution)
implementation of UNIX where separate rate limits are
maintained for open ports as well as closed ports. For
example, TCP RST is rate limited. “ICMP port unreach-
able” is also rate limited. On the other hand, a random or
non-linear gathering technique refers to randomization of
the destination IP-port pairs among the sources, as well
as randomization of the time delay for each probe packet.
A coordinated attack has a more generic form of a dis-
tributed scan than the ones described by Staniford-Chen
et al. [6]. It is defined as multi-step exploitation using
parallel sessions with the objective of obscuring the uni-
fied nature of the attack, allowing the attackers to proceed
more quickly. We present a general architecture (see Fig-
ure 2) for coordinated port scans, which are used during
launching of various scans in the TUIDS testbed [3]. Each
handler accepts the connection request from the attacker
and sends it to the agents. The agents directly interact
with the victim host.
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Figure 2: General architecture for generating coordinated
port scans. It is used during launching of various scans
in the TUIDS testbed for real-world coordinated scan
dataset preparation.

4 Related Research

There are various methods for detecting coordinated at-
tacks. We describe some of them in brief next.

Gates [12] describes a model of potential adversaries
based on the information they wish to obtain, where each
adversary is mapped to a particular scan footprint pat-
tern. The adversary model forms the basis of an approach
to detect forms of coordinated scans, employing an algo-
rithm that is inspired by heuristics for the set covering
problem. The model also provides a framework for com-
paring various types of adversaries that different coordi-
nated scan detection approaches might identify. Both the
detection and false positive rates gathered from the ex-
periments are modeled using regression equations. Whyte
[26] describes the design, implementation and evaluation
of fully functional prototypes to detect internal and ex-
ternal scanning activity in an enterprise network. These
techniques offer the possibility of identifying local scan-
ning systems within an enterprise network after the ob-
servation of only a few scanning attempts with low false
positive and negative rates. To detect external scanning
activity directed at a network, it makes use of the concept
of exposure maps that are identified by passively char-
acterizing the connectivity behavior of internal hosts in
a network as they respond to both legitimate connection
attempts and scanning attempts. The exposure map tech-
nique enables: (a) active response options to be safely fo-
cused exclusively on those systems that directly threaten
the network, (b) the ability to rapidly characterize and
group hosts in a network into different exposure profiles
based on the services they offer, and (c) the ability to
perform a reconnaissance activity assessment that deter-
mines what specific information was returned to an adver-
sary as a result of a directed scanning campaign. Finally,
the author experiments with real-life scan activity as well
as offline datasets. Singh and Chun [25] implement a TCP

based port scanner in the OMNeT++ simulator. The au-
thors describe two modules: simple and compound, and
both modules are implemented using C++. They claim
that their approach can detect TCP connect(), TCP SYN
(half-open), TCP FIN (stealth), Xmas, NULL, ACK,
Window and Reset (RST) scans at the router level.

Robertson et al. [22] define a distributed port scan as
a set of port scans that originate from source IP addresses
that are located close together. In other words, they as-
sume that a scanner is likely to use several IP addresses
on the same subnet. This implies that if a particular IP
address scans a network, IP addresses near this IP ad-
dress, rather than those far away, are more likely to have
also scanned the network. Yegneswaran et al. [27] can de-
tect coordinated port scans where a distributed port scan
is defined as a set of scans from multiple sources (i.e.,
five or more) aimed at a particular port of destinations
within an 1-hour window. On the basis of this definition,
the authors find that a large proportion of daily scans
are coordinated in nature, with coordinated scans being
roughly as common as vertical and horizontal scans. The
system looks to see if different sources start and stop scan-
ning either at the same time, or in very similar temporal
patterns. There is little locality in the IP space for these
coordinated scanning sources. The authors do not discuss
characteristics of the target hosts.

Several approaches have been used for visualizing net-
work traffic to detect whether the flow of network pack-
ets is an attack or normal behavior. One such com-
monly found approach is proposed by Conti and Abdullah
[8]. The approach attempts to detect distributed scans
against a background of normal traffic based on visual-
ization. Due to the lack of details, it is difficult to under-
stand how a distributed scan would use this tool. Also, it
is not clear how much traffic can be viewed at one time
without obscuring features of interest.

Most distributed port scan detection approaches ana-
lyze packet level information. They can detect port scan
attacks based on the IP addresses (source IP, destination
IP), connection information, and port (source ports, des-
tination ports) fields in the IP header. A general compari-
son of the distributed scan detection approaches discussed
in this section is given in Table 2. We see in column 3 of
the table that most of these approaches are non-real time.

Table 2: Comparing distributed port scan detection ap-
proaches.

Detection ap-
proach

Year of
publication

Real-time (R)/
Non-real time(N)

Packet(P)/
Flow(F)

SysD [22] 2003 N P
Pattern Based
[27]

2003 R P

Visual [8] 2004 N P
Set Theoretic [12] 2006 N P
Exposure Map
[26]

2008 R P

PCF [25] 2010 N P
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5 AOCD: The Proposed Ap-
proach

We describe the required concepts first and then the
AOCD algorithm to detect coordinated port scans.

5.1 Outliers and Anomaly Detection

An outlier is an abnormal or infrequent event or object
that varies significantly from the normal event or object
in terms of a distance measure. A network administra-
tor needs to define the abnormal event based on the nor-
mal statistics [30]. Outlier detection discovers exceptional
events from small or large datasets [17]. Example of out-
liers in a two dimensional dataset are illustrated in Fig-
ure 3.

Figure 3: Outliers in two dimensional dataset: N1, N2,
and N3 are the three normal regions. Points that are
sufficiently far away from the normal region (e.g., points
O1, O2, O3 and points in O4 regions) are outliers.

5.1.1 Outlier Score and Its Importance

A large number of outlier detection techniques have been
proposed in the literature but only some of them have
been applied to anomaly detection [21, 29]. An outlier
score is a summarized value based on distance, density
or other statistical measures. A reference based outlier
score is presented by Pei and Zaiane [20] for detecting
outliers in large datasets. The authors estimate outlier
score based on distance and a degree of nearest neighbor
density. The authors define the outlier score as:

ROS(x) = 1− Dp(x, k)
max

1≤i≤nDp(xi, k)
(1)

where Dp(x, k) is min
1≤r≤RD(x, k, pr). Dp(x, k) is the de-

gree of neighborhood density of the candidate data point
x with respect to the set of reference points p, n is the
total number of data points, k is a reference based near-
est neighbor, and R is the number of reference points.

D(x, k, p) is the relative degree of density for x in the one
dimensional data space xp and defined as:

D(x, k, p) =
1

1
k

∑k
j=1 |d(xj , p)− d(x, p)|

(2)

where d(x, p) is the distance of x from the reference point
p. pr is the closest reference point to p. The candidate
data points are ranked according to their relative degrees
of density computed on a set of reference points. Out-
liers are those with high scores. This scheme can discover
multiple outliers in larger datasets. However three main
limitations of this scheme [20] are: (a) The score does not
always vary with the change of candidate data points, (b)
Summarizing the data points in terms of scores may not
be effective for some attacks, and (c) It does not work in
high dimensional datasets.

5.1.2 Anomaly Detection

Anomaly detection refers to the problem of finding non-
conforming patterns in data. These patterns are often
known as anomalies, outliers, exceptions, surprises, or
peculiarities in different application domains. Anoma-
lies and outliers are two terms used most commonly in
the context of anomaly detection, sometimes interchange-
ably. The importance of anomaly detection is due to the
fact that anomalies in data translate to significant, and
often critical, actionable information in a wide variety of
application domains. For example, an anomalous traffic
pattern in a computer network could mean that a hacked
computer is sending out sensitive data to an unauthorized
destination.

5.2 Feature Selection Using PCA

Principal Component Analysis (PCA) is often used to re-
duce the number of dimensions in data for cost-sensitive
analysis [24]. Let x1, x2, x3, · · ·xp and y1, y2, y3, · · · yp be
two p dimensional observations. PCA is concerned with
explaining the variance-covariance structure of a set of
variables through a few new variables which are func-
tions of the original variables. Principal components are
particular linear combinations of the p random variables
x1, x2, x3, · · ·xp with three important properties: (i) The
principal components are uncorrelated, (ii) The first prin-
cipal component has the highest variance, the second prin-
cipal component has the second highest variance, and so
on, and (iii) The total variation in all the principal com-
ponents combined is equal to the total variation in the
original variables x1, x2, x3, · · ·xp. They are easily ob-
tained from an eigen analysis of the covariance matrix or
the correlation matrix of x1, x2, x3, · · ·xp.

Let dataset x be denoted as {x1, x2, x3 · · ·xn} with n
objects, where each xi can be a numeric or categorical
attribute represented by a d-dimensional vector, i.e., x =
{xi,1, xi,2, xi,3 · · ·xi,d}.

Let A be a n × p covariance matrix of n observa-
tions in p dimensional space, i.e., p random variables
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ROS′(x) =
max

1≤i≤k′Si

k′
×




(
1− min

1≤i≤k′ dist(xi,j , Ri,j)
)
×

(∑k′

i=1
min

1≤i≤k′ dist(xi,j , Ri,j)
)

∑k′
i=1

max
1≤i≤k′ dist(xi,j , Ri,j)


 (3)

x1, x2, x3, · · ·xp. If (λ1, e1), (λ2, e2), (λ3, e3), · · · , (λp, ep)
are the p eigenvalue-eigenvector pairs of A, λ1 ≥ λ2 ≥
λ3, · · · , λp ≥ 0, the ith sample principal component of an
observation vector, x = (x1, x2, x3, · · ·xp)′ is

yi = e′iz = [e′i1z1, e
′
i2z2, e

′
i3z3, · · · , e′ipzp] (4)

where ‘′’ represents the transpose of the matrix, ei =
(ei1, ei2, ei3, · · · , eip) is the ith eigen-vector and z =
(z1, z2, z3, · · · , zp)′ is the vector of standardized observa-
tions defined as zk = xk−xk√

sk
where xk and sk are the sam-

ple mean and sample variance of the variable xk. The fea-
tures are selected based on the eigenvectors with highest
eigenvalues from p dimensional space. Therefore, our ap-
proach works on reduced feature spaces given by PCAF,
which is based on PCA.

5.3 The Proposed Approach

AOCD aims to detect anomalous patterns, i.e., coordi-
nated port scans using an adaptive outlier based approach
with reference to profiles. Initially, we select random sam-
ples, x1, x2, · · ·xs using a linear congruential generator
from the dataset x for training purpose. It is a maximum
length pseudo random sequence generator [23] and can be
defined as xn = (axn−1 + b) mod m, where xn is the nth

number of sequence, xn−1 is the previous number of the
sequence. a, b, and m are secrets, a is the multiplier, b is
the increment, and m is the modulus.

We cluster each sample into k classes by using the
Fuzzy C-means [2] clustering technique. We receive the
following clusters from all samples: C11, C12, C13, · · ·C1k,
C21, C22, C23, · · ·C2k, · · · Cs1, Cs2, Cs3, · · ·Csk. It es-
timates the range based profiles for each cluster and
matches each profile with others to remove redundancy.
These profiles are used as reference during score computa-
tion. Finally, it computes score for each candidate object
and reports as normal or outliers (i.e., attack) w.r.t. a
threshold, δ. We present the Fuzzy C-means clustering
technique for cluster formation in Algorithm 1.

Let Si be the number of classes to which each of k′

nearest neighbor data objects belongs, where k′ is fixed
for a particular dataset. Let xi,j be a data object in x and
dist(xi,j , Ri,j) be the distance from the reference point
Ri,j to the data object xi,j , where dist is a proximity
measure and x represents the whole dataset. The pro-
posed approach is independent of the use of any particu-
lar proximity measure. However, in our experiments, we
use Euclidean distance in computing proximity.

The formula for the outlier score ROS′ is given in
Equation (3). In this formula,

max
1≤i≤k′ Si

k′ is the maximum
probability that a data object belongs to a particular

Algorithm 1 FCM (x, k, m, l, ε)

Input: xi is the ith data instance and uij represents
the whole data matrix, k is the number of clusters, m
is a real number greater than 1, l is the number of
iterations, ε is the termination criteria between 0 and
1.
Output: Generate cluster, C1, C2, C3, · · ·Ck.
Initialize U = [uij ], U (0).
Compute the center vectors k(l) = [kj ] with U (l): kj =∑N

i=1 um
ij xi∑N

i=1 um
ij

Update U (l), U (l+1): uij = 1
∑k

l=1

( ‖xi−kj‖
‖xi−kl‖

) 2
m−1

w.r.t.

PCAF module.
if ‖U l+1 − U l‖ < ε then

Stop.
else

Return to Step 2.
end if

class; the remaining part is the summarized value of simi-
larity measure within k′ nearest neighbors. The candidate
data objects are ranked based on the score. Objects with
scores higher than a user defined threshold δ are consid-
ered anomalous or outliers. δ is determined by a heuristic
method. To test effectiveness, we consider seven differ-
ent cases (illustrated in Figure 4 [3]) and the proposed
algorithm is capable of identifying all these seven cases.

Figure 4: Illustration of seven different cases: N1 and N2

are two normal clusters, O1 is the distinct outlier, O2, the
distinct inlier, O3, the equidistance outlier, O4, the border
inlier, O5, a chain of outliers, O6 is another set of outlier
objects with higher compactness among the objects and
O7 is an outlier case of “stay together”.
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A heuristic identification of k′ values for our own flow
level dataset vs. accuracy is given in Figure 5. We now
present a few definitions before we present our algorithm.

Figure 5: k′ values vs accuracy in our own flow level
dataset.

Definition 1. Pattern Similarity : Two data ob-
jects x1 and x2 are defined as similar iff (a) dist(x1, x2) <
δ and (b) dist(x1, x2) = 0, if x1 = x2.

Definition 2. Profile: A profile of a cluster Ci is a
range value, µ(xµ,1, xµ,2 · · ·xµ,d) of dataset x, where each
xµ,j is the range of the jth column of the respective cluster
Ci.

Definition 3. Outliers: Two data objects, Oi

and Oj are defined as outliers w.r.t a cluster Ci iff (a)
ROS′(Oi, µi) ≥ δ where µi is the profile of Ci and, (b)
for any other data object Oj in Ci, dist(Oi, Oj) > δ.

The symbols used to define the score based network
anomaly detection algorithm are given in Table 3.

Table 3: Symbols used

Term Definition

x dataset
n number of data objects in x
C set of clusters

Ri ith reference point

Si occurrences belonging to a class within kth

nearest neighbors
dist similarity based on Euclidean distance
δ threshold value for the outlier score
xc candidate data objects
µ mean based profile value w.r.t a cluster
k′ number of nearest neighbors
m number of large clusters
k number of clusters
F selected feature set
α random subset selection using maximum

length pseudo random sequence generator

Clustering is initiated based on a random selection of
k centroids. We assign each xi,j object to a particular

cluster based on the cluster membership value w.r.t. a
proximity measure, i.e., dist(x, y). We use Euclidean dis-
tance as proximity measure. dist is defined as

dist(x, y) =

{
0 if x = y√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 otherwise.

5.4 AOCD: The Algorithm

The AOCD algorithm is based on the NADO [3] approach.
AOCD differs from NADO technique in the following key
points.

• We use principal component analysis (PCA) [24]
based feature reduction technique to identify the rel-
evant feature set. These feature sets are used during
cluster formation (Algorithm 1).

• AOCD uses a variant of the Fuzzy C-means clustering
algorithm to cluster formation.

• We test AOCD using real life coordinated datasets.

• AOCD adaptively updates the profiles for new test
instances.

AOCD works as follows. C11, C12, C13, · · ·C1k,
C21, C22, C23, · · ·C2k, · · · Cs1, Cs2, Cs3, · · ·Csk are the set
of clusters with cardinality sk. It generates the profiles,
µs1, µs2, µs3, · · ·µsk for the clusters Cs1, Cs2, Cs3, · · ·Csk

obtained from the dataset x. Then it detects coordinated
scans based on the outlier score ROS′ from the testing
datasets. The major steps of AOCD are given in Algo-
rithm 2.

Algorithm 2 AOCD (x, δ)
Input: x is the dataset, δ is the threshold
Output: Oi,j ’s are the anomalous objects
Select random sample, x1, x2, · · · , xs from the dataset
x using α.
Find clusters Cs1, Cs2, Cs3, · · ·Csk for for each sample
xs based on a variant of Fuzzy C-means clustering (Al-
gorithm 1) technique w.r.t. relevant feature set F .
Compute range based profile µsk for each of those sk
number of clusters w.r.t. F .
Calculate outlier score ROS′ for each candidate data
object, Xci,j w.r.t. F and µsk.
Rank the candidate data objects according to their
score values.
Sort the data objects based on score values and report
the anomalies or outliers, Oi,j ’s w.r.t. the threshold δ.
if new test instances found then

Update range based profiles, µsk.
Return to Step 4.

end if
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6 Experimental Results

The main goal of the experiments is to apply AOCD to
coordinated scan detection as well as to evaluate its ca-
pability in detecting outliers or anomalies or scans and
compare it to the current best performing algorithms. To
achieve this goal, we have implemented our algorithm and
tested it with various real world datasets and datasets
prepared by us on our TUIDS testbed in both packet and
flow level. It has been used during attack generation in
our TUIDS testbed for labeled coordinated dataset prepa-
ration. The network laboratory layout where we capture
network traffic for coordinated port scans data is shown in
Figure 6. The network has 32 subnets including a wireless
network, 4 routers, 3 wireless controllers, 8 L3 switches,
15 L2 switches and 300 hosts. The DHCP server is set
up inside the main network for wireless network. During
attack generation, we use 3 subnets as handlers, 15 sub-
nets as agents and one wireless subnet is used to launch
the attack.

Figure 6: Coordinated port scan TUIDS testbed setup
with 15 agents, 3 handler and a /32 subnet.

6.1 Environment Used

AOCD is implemented on an HP xw6600 workstation, In-
tel Xeon Processor (3.00 Ghz) with 4GB RAM. Java 1.6.0
version is used for the implementation in Ubuntu 10.10
(Linux) platform. Java is used to facilitate the visualiza-
tion and reusability of code for further experimentation.

6.2 Datasets Used

To evaluate the performance of AOCD, we use several real
life datasets for experimentation. We use three datasets:
our own datasets that are packet and flow based and KD-
Dcup99 probe [16] dataset. The characteristics of our own

packet and flow level coordinated port scan datasets are
presented in Table 4. The characteristics of the KDD-
cup99 probe datasets used in this experiments are given
in Table 5.

Table 4: Distribution of Normal and Attack connection
instances in TUIDS real-life packet and flow level intru-
sion datasets.

Dataset type
Connection
type

Training dataset Testing dataset

Packet level
Normal 71785 100% 47895 75.78%
Probe 15307 24.22%
Total 71785 - 63202 -
Flow level
Normal 23120 100% 16770 48.56%
Probe 17762 51.44%
Total 23120 - 34532 -

Table 5: Distribution of Normal and Attack connection
instances in KDDcup99 probe datasets.

Dataset type
Connection
type

Training dataset Testing dataset

(10% corrected) (Corrected)

Normal. 97278 100% 60593 87.98%
Probe. 8273 12.01%
Total. 97278 - 68866 -

6.3 Results and Discussion

We use our feature datasets for experimentation in both
packet and flow levels. The datasets are generated in
our network security laboratory as discussed earlier. At
packet level, we extract basic features, content based fea-
tures, time based features and window based features (see
in Table 6). At flow level, we extract basic features, time
based features, and window based features (see in Ta-
ble 7). We convert all categorical attributes into numeric
form and then compute the logz(ai,j) of larger values to
normalize data objects, where z depends on the attribute
values and ai,j represents the larger attribute values.

We have generated sixteen types of attacks (see Ta-
ble 1) for coordinated scans. However, in this experiment
we consider only four types of scans (i.e., TCP SYN,
window, XMAS, and NULL) in coordinated mode dur-
ing testing in both packet and flow level datasets. The
PCAF module selects the relevance feature set in both
packet and flow level datasets (see in Table 8). PCAF
reduces the dataset in dimension based on their feature
relevance. Hence, a continuous feature IDs is seen in Ta-
ble 8. This reduced dataset is used by cluster formation



International Journal of Network Security, Vol.14, No.6, PP.339-351, Nov. 2012 347

Table 6: List of packet level features in our own TUIDS intrusion dataset.
Label/feature name Type* Description

Basic features
1. Duration C Length (number of seconds) of the connection
2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. Service D Network service on the destination e.g., http, telnet etc.
8. num-bytes-src-dst C The number of data bytes flowing from source to destination
9. num-bytes-dst-src C The number of data bytes flowing from destination to source
10. Fr-no. C Frame number
11. Fr-len. C Frame length
12. Cap-len. C Captured frame length
13. Head-len. C Header length of the packet
14. Frag-off D Fragment offset ‘1’ for the second packet overwrite everything ‘0’ otherwise
15. Ttl C Time to live ‘0’ discards the packet
16. Seq-no. C Sequence number of the packet
17. CWR D Congestion window record
18. ECN D Explicit congestion notification
19. URG D Urgent TCP flag
20. ACK D Acknowledgement flag value
21. PSH D Push TCP flag
22. RST D Reset TCP flag
23. SYN D Syn TCP flag
24. FIN D Fin TCP flag
25. Land D 1 If connection is from/to the same host/port; 0 otherwise
Content-based features
26. Mss-src-dest-requested C Maximum segment size from source to destination requested
27. Mss-dest-src-requested C Maximum segment size from destination to source requested
28. Ttt-len-src-dst C Time to live length from source to destination
29. Ttt-len-dst-src C Time to live length from destination to source
30. Conn-status C Status of the connection (e.g., ‘1’ for complete, ‘0’ for reset)
Time-based features
31. count-fr-dest C Number of frames received by unique destination in the last T seconds from the same source
32. count-fr-src C Number of frames received by unique source in the last T seconds to the same destination
33. count-serv-src C Number of frames from the source to the same destination port in the last T seconds
34. count-serv-dest C Number of frames from destination to the same source port in the last T seconds
35. num-pushed-src-dst C Number of pushed packets flowing from source to destination
36. num-pushed-dst-src C Number of pushed packets flowing from destination to source
37. num-SYN-FIN-src-dst C Number of SYN/FIN packets flowing from source to destination
38. num-SYN-FIN-dst-src C Number of SYN/FIN packets flowing from destination to source
39. num-FIN-src-dst C Number of FIN packets flowing from source to destination
40. num-FIN-dst-src C Number of FIN packets flowing from destination to source
Connection-based features
41. count-dest-conn C Number of frames to unique destination in the last N packets from the same source
42. count-src-conn C Number of frames from unique source in the last N packets to the same destination
43. count-serv-srcconn C Number of frames from the source to the same destination port in the last N packets
44. count-serv-destconn C Number of frames from the destination to the same source port in the last N packets
45. num-packets-src-dst C Number of packets flowing from source to destination
46. num-packets-dst-src C Number of packets flowing from destination to source
47. num-acks-src-dst C Number of acknowledgement packets flowing from source to destination
48. num-acks-dst-src C Number of acknowledgement packets flowing from destination to source
49. num-retransmit-src-dst C Number of retransmitted packets flowing from source to destination
50. num-retransmit-dst-src C Number of retransmitted packets flowing from destination to source

Note: *(C-Continuous, D-Discrete)

and coordinated scan detection module. AOCD is evalu-
ated in terms of accuracy and false positive rate (FPR).
The evaluation metrics are described below.

• True Positive (TP) represents the number of sus-
picious activities correctly detected as true attacks.

• False Positive (FP) represents the number legiti-
mate activities misdetected as attacks.

• False Negative (FN) denotes the number of suspi-
cious activities not detected by the model.

• True Negative (TN) represents the number of nor-
mal activities correctly detected as legitimate activi-
ties.

Finally, we summarize the measures in terms of detection
accuracy and false positive rate as follows.

• Accuracy = TP+TN
TP+TN+FP+FN

• False Positive Rate (FPR) = FP
FP+TN

Details of performance of AOCD for the real life TUIDS
packet and flow level coordinated scan datasets are given
in Table 9 and shown in Figure 7. Our results are better
than the results in Singh and Chun [25]. They obtained
greater than 90% accuracy using their method. The per-
formance of the AOCD algorithm is quite satisfactory in
case of probe class for both packet and flow dataset. We
seen in table 9 that the average accuracy for SYN, win-
dow, XMAS and NULL classes in packet level is 99.02%
and in flow level it is 98.50%. Also, we test AOCD on
four coordinated scan datasets but Singh and Chun [25]
method was tested only on TCP SYN scan.
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Table 7: List of flow level features in our own TUIDS intrusion dataset.
Label/feature name Type* Description

Basic features
1. Duration C Length (number of seconds) of the flow
2. Protocol-type D Type of protocol e.g., TCP, UDP, ICMP
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. ToS D Type of service
8. URG D TCP urgent flag
9. ACK D TCP acknowledgement flag
10. PSH D TCP push flag
11. RST D TCP reset flag
12. SYN D TCP SYN flag
13. FIN D TCP FIN flag
14. Src-bytes C Number of data byte transfer from source to destination
15. Dest-bytes C Number of data byte transfer from destination to source
16. Land D 1 If connection is from/to the same host/port; 0 otherwise
Time-based features
17. count-dest C Number of flows to unique destination IP in the last T seconds from the same source
18. count-src C Number of flows from unique source IP in the last T seconds to the same destination
19. count-serv-src C Number of flows from the source to the same destination port in the last T seconds
20. count-serv-dest C Number of flows from the destination to the same source port in the last T seconds
Connection-based features
21. count-dest-conn C Number of flows to unique destination IP in the last N flows from the same source
22. count-src-conn C Number of flows from unique source IP in the last N flows to the same destination
24. count-serv-srcconn C Number of flows from the source IP to the same destination port in the last N flows
25. count-serv-destconn C Number of flows to the destination IP to the same source port in the last N flows

Note: *(C-Continuous, D-Discrete)

Table 8: TUIDS packet and flow level intrusion datasets
- selected feature set.

Method #Features Selected features

Packet level
PCAF 19 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19
Flow level
PCAF 24 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

Table 9: The performance of AOCD on the packet and
flow level TUIDS intrusion datasets.

Type of traffic Correctly
detected

Miss de-
tected

Accuracy
(%)

Packet level
Normal. 47257 638 98.61
Probe. 15158 149 99.02
Overall. 62415 787 98.75
Flow level
Normal. 16358 412 98.16
Probe. 14496 266 98.50
Overall. 30854 678 97.85

In another set of experiments, we use the KDDcup99
probe [16] dataset. Like the TUIDS datasets, we con-
vert all categorical attributes to numeric and normalize
them. We use KDDcup99 10% corrected normal dataset
for training purpose and KDDcup99 corrected and 10%
corrected probe datasets for testing purpose during per-

Figure 7: The performance of AOCD on the packet and
flow level TUIDS intrusion datasets. The performance
of flow level dataset is a bit less than packet level dataset
due to non availability of packet specific information. But
it is faster.

formance analysis. The testing dataset contains six at-
tacks, i.e., portsweep, ipsweep, satan, nmap, mscan and
saint. The feature set selected by PCAF module for nor-
mal and probe classes is given in Table 10. Here, we
see a continuous sequence of feature IDs in Table 10 be-
cause of PCAF reduces the feature dimension. Perfor-
mance details of this datasets are given in Table 11. Fig-
ure 8 reports the comparison of AOCD using the intrusion
dataset with other similar algorithms, where the false pos-
itive rate is multiplied by 100 to highlight the efficiency
of our approach in the graph. In our experiment, better
results are obtained in KDDcup99 probe dataset with δ
values in the range of (0.8 - 1.35) over for normal records
and (0.4 - 1.15) for attack records.
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Figure 8: Comparison of the AOCD with other techniques
over KDDcup99 probe dataset. The AOCD performs bet-
ter than other two recent competing algorithms, HCSVM
[13] and NADO [3] in terms of accuracy and false positive
rate.

Table 10: KDDcup99 dataset - selected features set
Method #Features Selected features

Normal class
PCAF 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18
FFSA [1] 6 5, 3, 1, 4, 34, 6
MMIFS [1] 6 5, 23, 3, 6, 35, 1
LCFS [1] 15 12, 34, 33, 3, 23, 27, 29, 40, 39,

28, 2, 41, 26, 35, 10
Probe class
PCAF 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25

FFSA [1] 24 40, 5, 41, 11, 2, 22, 9, 27, 37,
28, 14, 19, 31, 18, 1, 17, 16, 13,
25, 39, 26, 6, 30, 32

Table 11: The performance of AOCD over the KDDcup99
probe dataset

Type of traffic Correctly
detected

Miss de-
tected

Accuracy
(%)

Normal. 60189 404 99.38
Probe. 8114 159 98.08
Overall. 68303 563 99.18

7 Concluding Remarks

In this paper, we present an adaptive outlier based ap-
proach for coordinated port scan detection [3]. Unlike
previous approaches which have been based on cluster-
ing and manual analysis, AOCD uses random sample se-
lection using a linear congruential generator for distinct
profile generation. It uses an outlier based approach for
scoring each feature traffic data object and reporting as
malicious or anomaly or outlier. AOCD is capable of de-

tecting coordinated scans that have a stealthy and hor-
izontal or strobe footprint across a contiguous network
address space. We have tested this algorithm using dif-
ferent real-life datasets (i.e., TUIDS datasets and KDD-
cup99 probe datasets). Coordinated scans are performed
in an isolated environment, combining the network traffic
traces with those collected from live networks. We ex-
tract various features from network packet as well as flow
traffic data by developing our own modules for feature ex-
traction. This approach achieves high detection accuracy
and low false positive rate on various real life datasets
in comparison to existing coordinated scan detection ap-
proaches.

We are in the process of generating coordinated port
scan feature datasets for the rest of the attacks.
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