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Abstract

Here we present a stamped blind digital signature scheme
which is based on elliptic curve discrete logarithm prob-
lem and collision-resistant cryptographic hash functions.
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1 Introduction

A blind signature scheme is a protocol allowing the re-
cipient to obtain a valid signature for a message, from
the signer without him or her seeing the message. Blind
signature scheme is a digital signature scheme which sat-
isfies non-forgeability and unlinkability properties. Non-
Forgeability property means that only signer should be
able to generate valid signatures. Every digital signature
scheme should satisfy non-forgebility property. Unlinka-
bility property means no one can derive a link between
a protocol view and a valid blind signature except the
requester or the author of the message.

The concept of blind signature was first introduced by
Chaum (1983) [2, 3], which was a breakthrough in achiev-
ing the digitalization of signature services. But his scheme
was vulnerable to chosen-plaintext attack. Many blind
signatures that satisfy anonymity and unlinkability have
been proposed [1, 5, 11]. Blind signatures are publicly
verified by any third party and meet the requirements of
privacy-oriented protocols that have a conflict of interest
between the signer and message’s author. Blind signature
schemes helps in realizing secure electronic payment sys-
tems or voting systems protecting customer’s or voter’s
privacy as well as other cryptographic protocols protect-
ing the participants anonymity. Couple of stamped blind
signatures are also given in [4, 7].

In this paper we propose a stamped blind signature
scheme based on discrete logarithm problem for elliptic
curves and on one-way, collision-resistant cryptographic
hash functions.

2 Preliminary

2.1 Definitions

Definition 1. Elliptic Curve Discrete Logarithm
Problem:
Given an elliptic curve E over a finite field Fq and a point
Q on E other than O, the discrete logarithm problem on
E to the base Q is the following:
Given a point P in E(Fq) \ {O}, find an integer n such
that nQ = P , if such an integer exists.

Definition 2. Cryptographic Hash Function:
A cryptographic hash function is a function that takes in-
puts of arbitrary length, sometimes a message of billions
of bits, and outputs values of fixed length.
A hash function h should have the following properties:

1) Given a message m, the value h(m) can be calculated
very quickly and easily.

2) Given y, it is computationally infeasible to find m
with h(m) = y. (This says that h is pre-image resis-
tant.)

3) It is computationally infeasible to find distinct mes-
sages m1 and m2 with h(m1) = h(m2). (This says
that h is strongly collision-free.)

The second and third property of hash functions pre-
vents an adversary from producing messages with a de-
sired hash value, or two messages with the same hash
value. This helps prevent forgery. There are several pop-
ular hash funtions available, for example MD5, due to
Rivest [8]. A survey on hash functions is given by Preneel
[6].

3 Domain Parameters

In this section, we describe the domain parameters for our
proposed signature scheme.

Let E be an elliptic curve defined over a finite field
Fq. Let P be any point on the elliptic curve E of large
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prime order p. We call P as the base-point. Let G be
the elliptic curve subgroup generated by the point P such
that the elliptic curve discrete log problem for G is hard
to solve. In addition, our domain parameters also include
a cryptographic hash function h : {0, 1}∗ → Z∗p which is
collision-resistant (one-one).

4 Proposed Blind Digital Signa-
ture Scheme

The proposed blind digital signature scheme involves
three parties, the Requester(R), the Signer(S) and the
Verifier(V). It comprises of two protocols, the signing pro-
tocol and the verification protocol. The signing protocol
is executed by the Requester R and the Signer S. The
verification protocol is carried out by the Verifier V.

Before the signing protocol, the signer chooses his se-
cret key x ∈ Z∗p and computes Q = xP ∈ G, where P is
the base point on the elliptic curve E. The signer makes
Q public.

4.1 Signing Protocol

The signing protocol comprises of two algorithms, the
blinding algorithm and the signing algorithm.The blind-
ing algorithm is executed by the Requester (or the author
of the message) and the signing algorithm is carried out
by the Signer.

Blinding Algorithm:
The requester wishes to get signer’s signature on the mes-
sage without disclosing the content of the message. This
involves blinding the message so that the signer cannot
read the message. At the same time the requester wants
to make sure that the signer is the designated recipient
of the blinded message. This can be achieved by double
blinding the message i.e., by putting two locks on it. One
lock is put by the signer and he is the only one who can
unlock it which assures that he is the only person who
is receiving the requester’s blinded message. This step
uses signer’s public key. The blinding algorithm runs as
follows:

1) The requester computes h(M) = m, where M is the
message and h : {0, 1}∗ → Z∗p is the hash function.

2) Then the requester calculates r = mQ = mxP and
sends r to the signer for signing.

Remarks:

1) The requester actually wants to send mP to the
signer for signing. The only person who can com-
pute mP from mQ = mxP is the one who knows the
inverse of x as it involves solving discrete log prob-
lem. This makes sure that signer is the recipient of
the message mP from requester.

2) After receiving r = mxP from the requester, the
signer can compute mP by using the inverse of the
secret key x. But knowing m from mP is hard as it
involves solving a discrete log problem. This makes
sure that the signer cannot view the content of the
message sent by the requester, i.e., the message is
blinded.

Signing Algorithm:

1) The signer receives r = mQ and computes r′ =
x−1r = mP .

2) The signer generates the signature parame-
ter, called the stamp of the signature, z =
<nounce‖date‖place> and computes h(z).

3) The signer computes an elliptic curve point R = r′+
h(z)P and s = x− h(z).

4) The signature (R, s, z) is generated and send to the
verifier for verification.

4.2 Verification Protocol

The verifier V verifies the signature as follows:

sP −Q + R
?= h(M)P

If the above expression holds then the signature is con-
sidered to be valid. The signature is verified as:

sP −Q + R = (x− h(z))P − xP + r′ + h(z)P
= xP − h(z)P − xP + mP + h(z)P
= h(M)P

5 Security Analysis

In this section we first describe the security of blind sig-
natures and hidden signature, the different type of pos-
sible attacks and the meaning of “breaking a signature
scheme”. Later we demonstrate the security aspects of
the proposed scheme.

5.1 Security of blind and hidden signa-
tures

We describe different attacks on a digital signature
scheme and the attacks that lead to “breaking a signa-
ture scheme”:

Attacks on a Digital Signature Scheme:-
There are two kinds of attacks on a digital signature
scheme, Key-Only Attacks and Message Attacks. In
Key-Only Attacks, the adversary knows only the signer’s
public key. In Message Attacks, the adversary is able to
inspect some signatures corresponding to either a known
message or some chosen-message before he attempts to
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break the scheme. Goldwasser, Micali and Rivest [10]
identified four kinds of message attacks grouped accord-
ing to how the messages are chosen, and whose signatures
the adversary sees. The following message-attacks are
listed in ascending order of their severity:
Known Message Attack, Generic Chosen Message Attack,
Directed Chosen Message Attack and Adaptive Chosen
Message Attack.

Attacks that lead to breaking a signature scheme:-
An adversary is able to break signer’s signature scheme,
if his attack allows him to do any of the following with a
non-negligible probability:

A Total Break Compute signer’s secret trap-door infor-
mation.

Universal Forgery Find an efficient signing algorithm
which is equivalent to signer’s signing algorithm.

Selective Forgery Forge a signature for a particular
message chosen a priori by the adversary.

Existential Forgery Forge a signature for at least one
message on which the adversary has no control. So
the message for which signature is obtained may be
random or does not make any sense.
Rompel showed that signatures secured against exis-
tential adaptive chosen-message attacks can be based
on general one-way functions [9].

5.2 Security Aspects of Proposed Scheme

The security aspect of the proposed scheme is two
fold. It first analyses the blindness aspect and then
the non-forgeability aspect of the proposed scheme.
The Blindness Aspect is important as the core goal
of any blind signature scheme is to hide the mes-
sage from the signer and the Non-Forgeability aspect is
the a mandatory property of any digital signature scheme.

Blindness:
“Blindness” means that the signer cannot view the
content of the message he is signing as long as m is
unrevealed by the requester or the author of the message.
In the proposed scheme, the blindness aspect depends on
the elliptic curve discrete log problem which is hard to
solve. We discuss the blindness aspect of the proposed
scheme from signer’s point of view and adversary’s point
of view:

From Signer’s view point:
The signer receives r = mQ = mxP from the requester.
He can compute mP using the inverse of his secret key
x. Calculation m from mP is hard as it is equivalent to
solving an elliptic curve discrete logarithm problem in a
group of large prime order. So the message is blinded for
the signer.

From Adversary’s view point:
An adversary sees only Q and r = mQ. Calculating m
from mQ is equivalent to solving an instance of discrete
log problem in an elliptic curve subgroup of larger prime
order. Again the adversary sees r = mxP . So, even
if adversary performs a total break of the system by
figuring out signer’s secret x then he gets mP . But
computing m from mP is again elliptic curve discrete
log problem. This shows that the message is hidden
from the adversary too even if the signer’s secret key
is compromised, which results in total breakdown of
the signature system. In case of a total break of the
cryptosystem, the signature can be verified by comparing
the signature parameter z with the signer’s database.

Non-Forgeability: As the signer’s public key Q is a
point on the elliptic curve subgroup generated by P of
large prime order p, an adversary can guess the signer’s
secret key x with a probability 1

p which is negligible as
p is a large prime. So it is practically impossible for an
adversary to guess a random signature.
The following are some non-forgeability aspects of the
proposed scheme:

Theorem 1. It is difficult to find any random message
m2, different from a given message m1, that satisfies the
signature (R1, s1) corresponding to m1 for the stamp z2(6=
z1) chosen by an adversary.

Proof. The adversary wants to find a message m2 that
satisfies the signature (R1, s1) for the chosen stamp z2.
This implies m1P + h(z1)P = m2P + h(z2)P and x −
h(z1) = x − h(z2). This gives h(z1) = h(z2) and hence
m2P = m1P . This is not possible because the hash func-
tion h is assumed to be collision-resistant. In addition
m2P = m1P implies that m2 = m1 mod p.

Theorem 2. It is difficult to find any random stamp z2,
different from a given stamp z1 corresponding to a mes-
sage m1, such that z2 satisfies the signature (R1, s1) for
the message m2 chosen by an adversary.

Proof. The adversary wants to find a stamp z2 that satis-
fies the signature (R1, s1) for the chosen message m2. This
implies m1P + h(z1)P −m2P = h(z2)P and x− h(z1) =
x−h(z2). The latter expression gives h(z1) = h(z2). This
is not possible because the hash function h is assumed to
be collision-resistant.

Other Attack Scenarios:
The following are some of the possible attack scenarios.
We show that these attacks too fail for the proposed
scheme.

Attack 1 In this attack an adversary requests the signer
to sign the message m = 1. In this case r = mQ =
Q = xP . The signer calculates r′ = x−1r = P . The
signature generated is (R, s) = (P +h(z)P, x−h(z)).
An adversary can compute h(z)P as he knows P and
R. To find signer’s secret x from s, an adversary has
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to find h(z) from h(z)P . This is hard as it is equiva-
lent to solving an elliptic curve discrete log problem.
Thus, this attack fails as the adversary fails to forge
the signature or unable to know signer’s secret key
x.

Attack 2 The adversary sends r = P to the signer to
obtain the signature. In this case, signer computes
r′ = x−1P and the signature generated is (R, s) =
(x−1P + h(z)P, x − h(z)). Then the signature will
not get verified and it will be considered as invalid.
Also, finding x−1 is equivalent to knowing signer’s
secret key x. Hence, the attack fails.

5.3 Efficiency Performance

Before the protocol run, the signer and the requester per-
form following operations:
The signer chooses his private key x and computes its in-
verse x−1 modulo the order of the base point P . Then
the signer computes his public key Q = xP which in-
volves multiplication. The requester performs only one
hashing operation h(M) = m prior to the protocol run.
In all, there are three operations, namely, inverse opera-
tion, hashing operation and multiplication performed by
signer and requester before the protocol run. All these
operations are offline operations and do not contribute in
the actual computation cost of the signature scheme.

The total computation cost of the proposed blind sig-
nature scheme is 3 multiplications (2 performed by signer
and 1 by requester) and 1 hashing operation performed
by signer. Two out of three multiplications are performed
one each by signer and requester to blind the message.

6 Conclusion

The blind digital signature scheme proposed here is based
on elliptic curve discrete logarithm problem and collision
resistant hash functions. Blind digital signature are more
preferable over the digital signatures because the message
is hidden from the signer. In our blind digital signature
scheme, the requester is sure that the message is blinded
from the signer and that the signer is the designated re-
cipient of the blinded message. Our scheme is efficient
upto 3 multiplications and 1 hash operation.
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