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Abstract

Hierarchical identity-based signature (HIBS), which plays
an important role in large communities, is a generaliza-
tion of identity-based signature (IBS). In this paper, we
present a new HIBS scheme from lattices without ran-
dom oracles. The new scheme is proven to be strongly
unforgeable against selective identity attacks under the
standard hardness assumption of the short integer so-
lution (SIS) problem. Furthermore, the secret key size
and the signature length of our scheme are both invariant
and much shorter than those of the previous lattice-based
HIBS schemes. To the best of our knowledge, our con-
struction is the first short lattice-based HIBS scheme in
the standard model.
Keywords: Identity-based cryptography, lattice, short sig-
nature, standard model

1 Introduction

In 1984, Shamir [18] introduced the concept of identity-
based (ID-based) cryptography and also presented an ID-
based signature (IBS) scheme. In a IBS scheme, a public
key can be derived from user’s identity, e.g., his email ad-
dress, and a corresponding secret key can be evaluated by
a Private Key Generator (PKG). Since then, many IBS
schemes have been proposed, e.g., [4, 11, 12, 14, 21]. How-
ever, IBS schemes are impractical for large organizations
because there is only a single PKG in each scheme. Hi-
erarchical ID-based signature (HIBS) [8] generalizes IBS.
In a HIBS scheme, there are multiple PKGs that are ar-
ranged in a tree structure. Each PKG in the higher level is
able to generate private keys for its children PKGs, which
in turn generate private keys for the next level of PKGs.
Hence, HIBS scheme reduces the burden of the root PKG
and is very useful for large communities. Most of previous
HIBS schemes are dependent on the hardness of comput-
ing discrete logarithms (e.g., [2, 7, 8, 22, 23]). Unfortu-
nately, Shor [19] pointed out that the discrete logarithm

problem is no longer hard in the post-quantum era.

Lattice-based cryptography is enjoying great interest
these days, due to implementation simplicity and prov-
able security reductions. Moreover, lattice-based cryp-
tography is believed to be hard even for quantum com-
puters (see [17] for a brief overview on lattices). Several
lattice-based signature schemes [5, 6, 9, 10, 15, 16, 20]
have been proposed so far. Among them, Rückert [16]
constructed the first lattice-based HIBS schemes with and
without random oracles in 2010 using Cash et al.’s signa-
ture scheme [6]. The HIBS schemes achieve a higher secu-
rity level, i.e., strong unforgeability. Strong unforgeability
requires that in addition to existential unforgeability, an
adversary cannot produce a new signature on some mes-
sage M even if he has seen a signature on M . Neverthe-
less, both the private keys and the signatures in Rc̈kert’s
schemes become dramatically longer when the identity
depth increases. Therefore, they may not be practical for
large communities.

In 2010, Boyen [5] proposed the first short lattice-based
signature scheme without random oracles. However, his
scheme is not strongly unforgeable. Recently, Agrawal et
al. [3] presented a basis delegation algorithm which keeps
the dimension of the lattices involved constant. Based on
the algorithm, the first lattice-based hierarchical ID-based
encryption scheme with short ciphertexts in the standard
model was proposed in [3]. Still, there is no short lattice-
based HIBS scheme in the standard model.

In this paper, we propose a short lattice-based HIBS
scheme without random oracles, which is obtained from
Agrawal et al.’s basis delegation algorithm [3] and the
modification of Boyen’s signature scheme [5]. The new
scheme is provably secure against strong forgery for selec-
tive identity attacks under the standard short integer solu-
tion (SIS) assumption. The secret key size and the signa-
ture length of our scheme are much shorter than those of
Rückert’s HIBS scheme without random oracles [16]. No-
tice that the secret keys of some existing HIBS schemes in
the standard modal (e.g., [2, 16, 22, 23]) are all dependent
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on the depth of the signer in the hierarchy. Therefore, our
scheme may be of interest since the secret key size and the
signature length of our scheme are both constant and in-
dependent of the level of the signer.

The rest of this paper is organized as follows. Some
definitions and facts are given in Section 2. In Section 3,
we define HIBS and its security model. In section 4, we
present a short HIBS scheme based on lattices. Analysis
will be provided in Section 5. Finally, Section 6 concludes
this paper.

2 Preliminaries

2.1 Notations

The security parameter in this work is n. For a posi-
tive integer k, [k] denotes the set {1, · · · , k}. Let s be
a string, we refer to |s| as its length. For a matrix A =
[a1, · · · , am] ∈ Zn×m, let Ã denote the Gram-Schmidt or-
thogonalization of A and let ||A|| = maxi∈[m] ||ai|| where
|| · || denotes the Euclidean norm. The function negl(n) is
negligible in n if it is smaller than all polynomial fractions
for larger n.

The statistical distance between two distributions
X and Y over some finite set F is defined as
maxG⊆F |X(G) − Y (G)|. We say that two distributions
are statistically close if their statistical distance is negli-
gible in n.

2.2 Lattices

In this work, we focus on integer lattices, which are con-
tained in Zm.

Definition 2.1. Let a basis B = [b1, . . . , bm] ∈ Zm×m

consist of m-linearly independent vectors. The lattice gen-
erated by B is defined as

Λ = L(B) = {Bc : c ∈ Zm}.
Definition 2.2. For a positive integer q, a vector y ∈ Zn

q

and a matrix A ∈ Zn×m, define two m-dimensional spaces

Λ⊥(A) = {e ∈ Zm : Ae = 0 (mod q)},
Λy(A) = {e ∈ Zm : Ae = y (mod q)}.

Gaussians on lattices. Here we briefly review the Gaus-
sian function which is a useful tool in lattice-based cryp-
tography. For any σ > 0, the Gaussian function on Rm

centered at c with parameter σ is defined as

ρσ,c(x) = exp(−π||x− c||2/σ2).

The discrete Gaussian distribution over Λ with center c
and parameter σ is

∀x ∈ Λ, DΛ,σ,c = ρσ,c(x)/ρσ,c(Λ).

Micciancio and Regev [13] showed the following prop-
erty about these distributions.

Lemma 2.1. Let m > n and A ∈ Zn×m. Let B be a basis
of Λ⊥(A) and σ ≥ ‖B̃‖ · ω(

√
log n), then for any y ∈ Zn

q ,
Prx∼DΛy(A),σ,0 [‖x‖ > σ · √m] ≤ negl(n).

2.3 Hardness Assumption

Security of our HIBS scheme rests on the hardness as-
sumption of the short integer solution (SIS) problem [1].

Definition 2.3. Given a positive integer q, a matrix
A ∈ Zn×m

q and a real β, the goal of the short integer
solution problem (q, m, β)-SIS is to find a nonzero vector
e ∈ Λ⊥(A) such that ||e|| ≤ β.

For appropriate m, β and for any prime q ≥ β ·
ω(
√

n log n), solving SIS on the average is as hard
as approximating certain lattice problems in the worst
case [13].

2.4 Basis Delegation

Let A ∈ Zn×m
q be a random matrix, the one-way function

fA, introduced by Gentry et al. [9], is defined as fA(x) =
Ax (mod q), with domain Dn = {e ∈ Zm : ||e|| ≤ σ

√
m}

and range Rn = Zn
q . Namely, sampling from f−1

A (y) for
any y ∈ Rn is hard without a trapdoor. A trapdoor of fA

is a short basis TA of Λ⊥(A). Some relevant facts about
these functions are listed below.

Proposition 2.1. Let q ≥ 2 and m > 5n log q.
There is a probabilistic polynomial-time (PPT) algorithm
TrapGen(1n) that outputs a matrix A ∈ Zn×m

q statisti-
cally close to uniform and a basis TA for Λ⊥(A) such that
||T̃A|| ≤ O(

√
n log q) with overwhelming probability.

Lemma 2.2. Let q ≥ 2, m > 5n log q and A ∈ Zn×m
q .

Let TA be a basis for Λ⊥(A) and σ ≥ ‖T̃A‖ · ω(
√

log m).

1) For any e ∼ DZm,σ,0, the distribution of the syndrome
u = Ae (mod q) is statistically close to uniform over
Zn

q .
2) For any y ∈ Zn

q , there is a PPT algorithm
SamplePre(A, TA, σ, y) that outputs a vector e ∈
Λy(A) satisfying ||e|| ≤ σ

√
m with all but negl(n)

probability. In addition, the set {x ∈ Zm : ||x|| ≤
σ
√

m ∧Ax = y} contains at least 2ω(log n) elements.

At CRYPTO 2010, Agrawal et al. [3] presented a new
short lattice basis delegation algorithm that keeps the lat-
tice dimension unchange. Now, we briefly recall the main
results in [3].

Definition 2.4. Let q be a prime, m ≥ 6n log q and σ ≥√
m · ω(

√
log m), define Dm×m is the distribution on full

rank matrices {Ai = [ai1, · · · , aim] ∈ Zm×m
q }, where aij ∼

DZm,σ,0 for all j ∈ [m].

Proposition 2.2. Let q > 2, A ∈ Zn×m
q and R ∈

Zm×m be a product of d matrices sampled from Dm×m.
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Let TA be a basis of Λ⊥(A), there exists a PPT algo-
rithm BasisDel(A,R, TA, σ) that outputs a random ba-
sis B for Λ⊥(AR−1) such that ||B̃|| ≤ σ

√
m, where

σ ≥ ‖T̃A‖ ·md · ω(logd+1 m).

Proposition 2.3. For q > 2, m > 5n log q and A ∈
Zn×m

q , there is a PPT algorithm SampleRwithBasis(A)
that outputs a random matrix R ∼ Dm×m and a basis B

for Λ⊥(AR−1) such that ‖B̃‖ ≤ √
m.

3 HIBS Scheme and Its Security
Model

3.1 HIBS Scheme

A HIBS scheme consists of four algorithms: Setup, Ex-
tract, Sign and Verify. They are specified as follows:

Setup. On input the security parameter n, the root PKG
generates system parameters PP and a master secret
key MSK.

Extract. On input an identity ID and the master secret
key MSK or parent’s private key, this algorithm out-
puts a secret key SKID for ID.

Sign. Given a private key SKID and a message M , the
algorithm signs the massage M for ID and outputs
the signature v = Sign(M, SKID).

Verify. Given a signature v, a massage M and an identity
ID, it outputs 1 if the signature is valid. Otherwise,
it outputs 0.

These algorithms must satisfy the standard consistency
constraint, namely, for any massage-identity pair (M, ID)
if v = Sign(M, SKID), then V erify(v, M, ID) outputs 1
with overwhelming probability.

3.2 Security Model

There are two security models for HIBS, i.e., the adaptive
identity security model and the selective identity security
model. The adaptive identify security model allows an
adversary to adaptively issue queries on arbitrary iden-
tity. The selective identity security model demands that
an adversary must announce its target identity before see-
ing the public key. Our HIBS scheme is strongly unforge-
able under selective identity attack (SU-sIDA) which is
formally defined in the following SU-sIDA game played
between an adversary A and a challenger C.

Init. On input the maximum depth of the hierarchy l+1,
the adversary A outputs a target identity ID∗ =
(ID0, ID∗

1 , · · · , ID∗
k), where k ≤ l.

Setup. The challenger C runs Setup and sends the sys-
tem parameters PP to the adversary A.

Extract queries. The adversary A adaptively delivers
queries on any identity ID where each ID is not a
prefix of ID∗. The challenger C runs Extract to
obtain a private key SKID and sends the result to
A.

Sign queries. The adversary A adaptively chooses an
identity ID and a message M . The challenger C com-
putes v = Sign(M, SKID) and sends the signature
(v,M, ID) to A.

Forgery. The adversary A outputs a signature
(v∗,M∗, ID∗) such that the Verify algorithm
outputs 1.

The adversary A wins the game if (v∗, M∗, ID∗) does
not appear in the Sign queries phase.

Definition 3.1. A HIBS scheme is (t, qE , qS , ε)-SU-sIDA
secure in the standard model if there is no t-time adver-
sary that succeeds in the above game with probability at
least ε, and makes at most qE extract queries and qS sign
queries.

4 Proposed Lattice-based HIBS
Scheme

Assume that the maximum depth of the hierarchy, in-
cluding the root PKG, is l + 1, where l ≥ 1. Let
q ≥ 2 be a prime and m ≥ 6n log q. Choose two cryp-
tographic hash functions H : ID → H(ID) ∈ {0, 1}λ1

and h : {0, 1}∗ → {0, 1}λ2 . For 0 ≤ d ≤ l, the Gaus-
sian parameter in level d is σd. Define ID0 is the root
PKG’s identity and ID|k = (ID0, · · · , IDk) for k ∈ [l].
Our HIBS scheme works as follows:

Setup: Given the security parameter n and the maxi-
mum depth l + 1, run TrapGen(1n) to generate a
matrix A ∈ Zn×m

q and a corresponding short ba-
sis TA ∈ Zm×m

q . Select a random nonzero vector
y ∈ Zn

q , 2lλ1 random matrices R0
i,j , R

1
i,j ∈ Dm×m

(for 1 ≤ i ≤ l, 1 ≤ j ≤ λ1) and λ2 random ma-
trices Ci ∈ Zn×m

q . Publish the system parameter
PP = {A, 〈R0

i,j , R
1
i,j〉, 〈Ci〉, y} and keep the master

secret key TA secret.

Extract: On input a private key SKID|d for
the identity ID|d and an identity ID =
(ID0, · · · , IDd, · · · , IDk), do the following steps:

1) Set µi = H(ID|i) for all i ∈ [k].
2) Compute Rµi = R

µi[λ1]
i,λ1

· · ·Rµi[1]
i,1 ∈ Zm×m

q and
FID|d = A(Rµd

· · ·Rµ1)
−1. Define SKID|0 =

TA and FID|0 = A. The secrete key SKID|d in
Zm×m

q is a short basis of Λ⊥(FID|d).
3) Let R = Rµk

· · ·Rµd+1 and FID|k = FID|dR−1 ∈
Zn×m

q .
4) Run BasisDel(FID|d, R, SKID|d, σd) to gener-

ate a private key SKID|k for ID, where SKID|k
is a random basis for Λ⊥(FID|k).
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Sign: On input the secret key SKID|k of the user ID|k
and a message M ∈ {0, 1}∗, do as follows:

1) Select a random string r ∈ {0, 1}n and compute
ν = h(M, r, ID|k).

2) Set C = (−1)ν[1]C1+· · ·+(−1)ν[λ2]Cλ2 ∈ Zn×m
q .

3) Pick v1 ∈ DZm,σk,0 uniformly at random. By
Lemma 1, ||v1|| ≤ σk

√
m with 1−negl(n) prob-

ability.
4) Run v2 ← SamplePre(FID|k, SKID|k, σk, y −

Cv1).
5) Output the signature (v, r), where v =

(
v1
v2

)
in

Z2m
q .

Verify: Given a identity ID|k, a signature (v, r) and a
massage M , do:

1) For all i ∈ [k], set µi = H(ID|i).
2) Compute FID|k = A(Rµk

· · ·Rµ1)
−1, where

Rµi
= R

µi[λ1]
i,λ1

· · ·Rµi[1]
i,1 .

3) Set ν = h(M, r, ID|k) and C = (−1)ν[1]C1 +
· · ·+ (−1)ν[λ2]Cλ2 .

4) The verifier accepts the signature if and only if
(C|FID|k)v = y and ||v|| ≤ σk

√
2m.

5 Analysis

5.1 Correctness

According to the above definitions, we have

FID|k = FID|dR−1 = A(Rµk
· · ·Rµ1)

−1 (mod q).

By Lemma 2.2, we know that FID|kv2 = y−Cv1 (mod q)
and the vector v2 satisfies ||v2|| ≤ σk

√
m with all but

negligible probability in n. Therefore, (C|FID|k)v =
Cv1 + FID|kv2 = y (mod q) and ||v|| =

√
v2
1 + v2

2 ≤√
2(σk)2m = σk

√
2m with overwhelming probability.

Now we evaluate the Gaussian parameter σk for each
k ∈ [l]. Let σ0 = O(

√
m), by Proposition 2.2 we can

obtain that the Gaussian parameter σk ≥ σ0m
kλ1+k/2 ·

ω(logkλ1+k m) since ||S̃KID|d−1|| ≤ σd−1
√

m and σd ≥
||S̃KID|d−1|| ·mλ1 · ω(logλ1+1 m) for all d ∈ [l].

5.2 Comparison

The lattice-based HIBS scheme without random oracles
constructed by Rückert is also provably secure in the
above security model. However, the private keys and
the signatures in his scheme are dependent on the iden-
tity length of the signer. In contrast, both the private
key size and the signature size in our scheme are un-
changed and much shorter. Therefore, our scheme is
more practical, though the public key size in this scheme
is larger than that of Rückert’s scheme. For the signer
ID|k = (ID0, · · · , IDd, · · · , IDk) of depth k ∈ [l], Table
1 shows the comparison of the schemes, where m1 = Õ(ln)
and m2 = Õ(λ1ln).

5.3 Strong Unforgeability

Theorem 5.1. The proposed HIBS scheme is
(t, qE , qS , ε)-SU-sIDA secure if there is no PPT al-
gorithm that solves (q,m, 2σl

√
2m(λ2η

√
m + 1))-SIS with

probability ε′ ≥ 5ε/6−negl(n), where η ≥ √
m ·ω(

√
log m).

Proof. Suppose that there is a t-time adversary A that
succeeds in the SU-sIDA game with probability at least
ε, then we can construct a PPT algorithm C that solves
the SIS problem instance with non-negligible probability.

Init: The adversary A first outputs a target identity
ID∗ = (ID0, ID∗

1 , · · · , ID∗
u), where u ≤ l. To sim-

plify the notation, let u = l (the proofs of other cases
are similar and therefore omitted).

Setup: The algorithm C picks a random matrix A0 ∈
Zn×m

q and λ2 random matrices E1, · · · , Eλ2 ∈ Zm×m
q ,

where each column of Ei is selected independently
from DZm,η,0. Let Ci = A0Ei (mod q) for all i ∈
[λ2]. According to Lemma 2.2, we know that Ci is
statistically close to uniform over Zn×m

q . C selects
lλ1 random matrices Ri,j ∼ Dm×m, where i ∈ [l], j ∈
[λ1]. For ∀j ∈ [λ1], the rest of the public parameters
are chosen as follows:

1) For each i ∈ [l], compute µ∗i = H(ID∗|i) and
set R

µ∗i [j]
i,j ← Ri,j .

2) Define Rµ∗i = R
µ∗i [λ1]
i,λ1

· · ·Rµ∗i [1]
i,1 and compute

A = A0(Rµ∗l · · ·Rµ∗1 ).
3) Select x0 ∈ Zm

q uniformly at random from
DZm,η,0 and let y = A0x0 (mod q). If y = 0
(mod q), repeat this step until y is a non-zero
vector.

4) For each i ∈ [l], compute Ai,j = A ·
(Rµ∗i−1

· · ·Rµ∗1 )
−1(Rµ∗i [j−1]

i,j−1 · · ·Rµ∗1 [1]
i,1 )−1, where

A1,1 = A.
5) Invoke SampleRwithBasis(Ai,j) to generate

a matrix R ∼ Dm×m and a short basis TB for
Λ⊥(B = Ai,jR

−1). Return R
1−µ∗i [j]
i,j ← R.

6) Preserve the tuple (i, j, R, B, TB).

Finally, C sends the system parameters PP =
{A, 〈R0

i,j , R
1
i,j〉, 〈Ci〉, y} to A.

Extract queries: A queries the secret key of the identity
ID = (ID0, · · · , IDw). If w > l or ID = ID∗|w, C
answers ⊥. Otherwise, do these steps:

1) For i ∈ [w], define µi = H(ID|i) and Rµi =
R

µi[λ1]
i,λ1

· · ·Rµi[1]
i,1 .

2) Let (k, j) be the first position such that µk[j] 6=
µ∗k[j], where k ∈ [w], j ∈ [λ1].

3) Retrieve the tuple (k, j, R,B, TB). By construc-
tion B = Ak,j · (Rµk[j]

k,j )−1.
4) On input TB , run BasisDel(B, (Rµw · · ·Rµk+1)·

(Rµk[λ1]
k,λ1

· · ·Rµk[j+1]
k,j+1 ), TB , σk) to generate a pri-

vate key for ID and sends the result to A.
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Table 1: Comparison between Rückert’s HIBS scheme and our scheme

Scheme Public key size Secret key size Signature size
[16] no RO (1 + 2lλ1 + 2λ2)nm1 + n (m1 + kλ1m1)2 (1 + kλ1 + λ2)m1 + n
This work (n + 2lλ1m2 + λ2n)m2 + n (m2)2 2m2 + n

Sign queries: On input a message M and an identity
ID:

• If ID = ID∗, then FID∗ = A(Rµ∗l · · ·Rµ∗1 )
−1 =

A0. C does the following steps:
1) Choose a random string r ∈ {0, 1}n and

evaluate ν = h(M, r, ID).
2) Let Eν =

∑
i∈[λ2]

(−1)ν[i]Ei. We then have
C =

∑
i∈[λ2]

(−1)ν[i]Ci = A0Eν .
3) Select a random vector v1 ∈ DZm,η,0 and

compute v2 = x0 − Eνv1 (mod q). If
Eνv1 = 0, repeat this step.

4) It outputs v =
(

v1
v2

)
and r.

Now we show that (v, r) is a valid signature.
By the above process, we have (C|FID∗)v =
A0Eνv1 + A0v2 = A0x0 = y (mod q). On
the other hand, we know, for any ν, ||Eν || ≤
λ2 max ||Ei|| ≤ λ2η

√
m with 1−negl(n) proba-

bility. Thus, for all k ∈ [l], ||v|| ≤ ||v1||+||v2|| ≤
2η
√

m + ||Eν || · ||v1|| ≤ η
√

m(2 + λ2η
√

m) ≤
σk

√
2m with overwhelming probability.

• Otherwise, do:
1) Invoke the Extract queries process to obtain

a secret key SKID for ID.
2) Run the algorithm Sign.
3) It returns the signature (v, r).

Forgery: The adversary A outputs a signature
(v∗, r∗,M∗, ID∗) such that the algorithm Ver-
ify returns 1.

Let ν∗ = h(M∗, r∗, ID∗) and Eν∗ =
∑

i∈[λ2]
(−1)ν[i]Ei.

Then FID∗ = A0 and C = A0Eν∗ . There are two different
cases that need to be considered.

– Case 1. The message (M∗, r∗) has been queried
in the Sign queries phase, namely, this is a strong
forgery. We have (C|FID∗)v∗ = A0(Eν∗v

∗
1 + v∗2) =

y = A0(Eν∗v1 + v2) (mod q) and v 6= v∗ (by
the definition of strong unforgeability). Obviously,
e = Eν∗(v∗1−v1)+v∗2−v2 satisfies A0e = 0 (mod q).
According to the Lemma 26 in [5], Pr[e 6= 0] ≥ 2/3.
Hence, C obtains a solution of the SIS problem.

– Case 2. The message (M∗, r∗) has not been queried
in the Sign queries phase. In this case, we know
that ν∗ = h(M∗, r∗, ID∗) is a new vector and
(C|FID∗)v∗ = A0(Eν∗v

∗
1 +v∗2) = A0x0 (mod q). Let

e = Eν∗v
∗
1 + v∗2 − x0. Notice that Pr[e = 0] ≤negl(n)

(by Lemma 2.2), thus C also solves the SIS problem.

In the first case, we have

||e|| ≤ ||Eν∗ || · ||v∗1 − v1||+ ||v∗2 − v2||
≤ 2σk

√
2m(λ2η

√
m + 1)

≤ 2σl

√
2m(λ2η

√
m + 1),

since ||Eν∗ || ≤ λ2η
√

m and σk ≤ σl.
Similarly, for case 2, we have

||e|| ≤ ||Eν∗v
∗
1 ||+ ||v∗2 ||+ ||x0||

≤
√

2λ2ησkm + σk

√
2m + η

√
m

≤ 2σk

√
2m(λ2η

√
m + 1)

≤ 2σl

√
2m(λ2η

√
m + 1).

Thus, we can set β = 2σl

√
2m(λ2η

√
m + 1).

Here we calculate the advantage of the algorithm C.
Suppose that each case will happen with the same prob-
ability, therefore, the PPT algorithm C has advantage
ε′ ≥ ε/2 · 2/3 + ε/2−negl(n)= 5ε/6−negl(n) in solving
the SIS problem instance.

6 Conclusion

In this paper, we have constructed a new lattice-based
HIBS scheme with short secret keys and signatures. We
have also proven that this scheme is strongly unforgeable
in the standard model. It is more practical than Rückert’s
HIBS scheme without random oracles.
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