
International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 280

Query Processing Performance on Encrypted

Databases by Using the REA Algorithm
Ayman Mousa1, Elsayed Nigm2, Sayed El-Rabaie3, Osama Faragallah3

(Corresponding author: Ayman Mousa)

Department of Computer Science, Workers University, 12311, Tanta, Egypt1
Department of Mathematics, Zagazig University, 44519, Zagazig, Egypt2

Department of Computer Science and Engineering, Menoufia University, 32952, Menouf, Egypt3

 (Email: {ayman_mosa2004, s_nigm, srabie1, osam_sal}@yahoo.com)
(Received Nov. 16, 2011; revised and accepted Feb. 1, 2012)

Abstract

Encryption in database systems is an important topic for
research, as secure and efficient algorithms are needed that
provide the ability to query over encrypted database and
allow optimized encryption and decryption of data. Clearly,
there is a compromise between the degree of security
provided by encryption and the efficient querying of the
database, because the operations of encryption and
decryption greatly degrade query performance. In this
paper we propose a new encryption algorithm, which we
call Reverse Encryption Algorithm (REA). Our new
encryption algorithm (REA) is simple and is fast enough
for most applications. REA encryption algorithm provides
maximum security and limits the added time cost for
encryption and decryption to as to not degrade the
performance of a database system. Also, we evaluate the
query processing performance over encrypted database
with our new encryption algorithm (REA) and with the
most common encryption algorithm AES. The performance
measure of query processing will be conducted in terms of
query execution time. Results of a set of experiments
validate the functionality and usability of the proposed
algorithm REA.

Keywords: AES, database security, query processing

1 Introduction
Database security has been provided by physical security
and operating system security. As far as we know, neither
of these methods sufficiently provides a secure support on
storing and processing the sensitive data. Cryptographic
support is another important dimension of database security.
It is complementary to access control and both of them
should be used to guide the storage and access of
confidential data in a database system. In [1, 7, 12, 14]
database encryption mechanism could provide the
following security.

1) Encryption mechanism can prevent users from obtaining
data in an unauthorized manner.

2) Encryption mechanism can verify the authentic origin of
a data item.

3) Encryption mechanism also prevents from leaking
information in a database when storage mediums, such as
disks, CD-ROM, and tapes, are lost.

However, how to query efficiently the encrypted
database becomes a challenge. This usually implies that the
system has to sacrifice the performance to obtain the
security. When data is stored in the form of cipher, we have
to decrypt all the encrypted data before querying them. It is
impractical because the cost of decryption over all the
encrypted data is very expensive [18].

For this purpose, we put forward the innovative
encryption algorithm, known as “Reverse Encryption
Algorithm (REA)”. Our new encryption algorithm (REA) is
efficient and reliable. It has accomplished security
requirements and is fast enough for most widely used
software. REA encryption algorithm limits the added time
cost for encryption and decryption and at the same time
improves the performance of the query over encrypted
database. We also provide a thorough description of the
proposed encryption algorithm and its processes.

This paper observes a method for evaluating query
processing performance over encrypted database with the
proposed encryption algorithm REA and with the most
common encryption algorithm AES. The performance
measure of query processing will be conducted in terms of
query execution time. The experiment results show the
advantages of the proposed encryption algorithm REA over
other encryption algorithm AES with regards to the query
execution time. Our new encryption algorithm (REA) can
reduce the cost time of the encryption/decryption
operations and improve the performance.

The remainder of this paper is organized as follows.
Section 2 discusses related work and overviews of the AES
(Rijndael) encryption algorithm. Section 3 describes the
proposed encryption algorithm REA. Section 4 shows the
simulation results for evaluating query processing
performance over encrypted database with the proposed

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 281

encryption algorithm REA and other encryption algorithm
AES. Finally Section 5 presents conclusions and future
works.

2 Related Work
In [16] proposed a new encryption scheme (Chaotic Order
Preserving Encryption (COPE)). It hides the order of the
encrypted values by changing the order of buckets in the
plaintext domain. It is secure against known plaintext
attack. However, COPE can be used just on trusted server
where the encryption keys are used to perform many
queries such as join and range queries. The overhead of
range queries over encrypted database is much higher than
the overhead of range queries over plaintext database. In
addition, it uses many keys to change the order of buckets
and in some cases that may lead to have duplicated values.
Another drawback in COPE is the encryption and
decryption cost. That is because of the computation
complexity to randomize the buckets and assign the correct
order within each bucket.

The bucketing approach [3, 5, 6, 13, 21] is dividing the
plaintext domain into many partitions (buckets). The
encrypted database in the bucketing approach is augmented
with additional information (the index of attributes),
thereby allowing query processing to some extent at the
server without endangering data privacy. The encrypted
database in the bucketing approach contains etuples and
corresponding bucket-ids (where many plaintext values are
indexed to same bucket-id). In this scheme, executing a
query over the encrypted database is based on the index of
attributes. The result of this query is a superset of records
containing false positive tuples. These false hits must be
removed in a post filtering process after etuples returned by
the query are decrypted. Because only the bucket-id is used
in a join operation, filtering can be complex, especially
when random mapping is used to assign bucket-ids rather
than order preserving mapping. In bucketing, the projection
operation is not implemented over the encrypted database,
because a row level encryption is used.

2.1 AES (Rijndael): OverviewSubsection

The Advanced Encryption Standard (AES) [4] was
published by NIST (National Institute of Standards and
Technology) in 2001. AES is a block symmetric cipher that
is intended to replace DES as the approved standard for a
wide range of applications. The AES cipher and other
candidates forms the latest generation of block ciphers, and
now we see a significant increase in the block size - from
the old standard of 64-bits up to 128-bits; and keys size of
128, 192, and 256-bits. NIST selected Rijndael as the
proposed AES algorithm. The Evaluation Criteria for
selecting AES in the first round are (private key symmetric
block cipher, 128-bit data, 128/192/256-bit keys, stronger
& faster than Triple-DES, active life of 20-30 years (for
long term secrecy).

The final criteria for evaluation were general security,
ease of software & hardware implementation,
implementation attacks, and flexibility (in encrypt/decrypt,

keying, and other factors). After testing and evaluation,
NIST announced for selection Rijndael as AES. Rijndael
algorithm is flexible in supporting any combination of data
and key size of 128,192, and 256 bits. However, AES
simply allow 128 bit data length that can be divided into
four basic operation blocks. These blocks operate on array
of bytes and organized as a 4×4 matrix that is called the
state. For full encryption, the data is passed through
number rounds (10 (key size 128 bits), 12 (key size 192
bits), 14 (key size 256 bits)).

3 The Proposed Encryption Algorithm (REA)
We recommend the new encryption algorithm, “Reverse
Encryption Algorithm (REA)”, because of its simplicity
and efficiency. It can outperform competing algorithms.
REA algorithm is limiting the added time cost for
encryption and decryption to so as to not degrade the
performance of a database system. In this section we
provide a comprehensive yet concise algorithm. We also
give a general analysis of the functioning of these
structures.

Our new algorithm (REA) is a symmetric stream cipher
that can be effectively used for encryption and safeguarding
of data. It takes a variable-length key, making it ideal for
securing data. The REA algorithm encipherment and
decipherment consists of the same operations, only the two
operations are different: 1) added the keys to the text in the
encipherment and removed the keys from the text in the
decipherment. 2) Executed divide operation on the text by 4
in the encipherment and executed multiple operation on the
text by 4 in the decipherment. We execute divide operation
by 4 on the text to narrow the range domain of the ASCII
code table at converting the text. The details and working
of the proposed algorithm REA are given below.

3.1 Encryption Algorithm of the REA

We will be presenting the steps of the encryption algorithm
of the Reverse Encryption Algorithm REA (Algorithm 1).
The following steps are (see Figure 1):

Step1: Input the text and the key.

Step2: Add the key to the text.

Step3: Convert the previous text to ascii code.

Step4: Convert the previous ascii code to binary data.

Step5: Reverse the previous binary data.

Step6: Gather each 8 bits from the previous binary data
and obtain the ascii code from it.

Step7: Divide the previous ascii code by 4.

Step8: Obtain the ascii code of the previous result divide
and put it as one character.

Step9: Obtain the remainder of the previous divide and put
it as a second character.

Step10: Return encrypted text.

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 282

Figure 1: Steps of the REA encryption algorithm

Algorithm 1: REA_Encryption
INPUT: Plaintext (StrValue), Key (StrKey).
OUTPUT: Ciphertext (EncryptedData).
1: Add the key to Text (StrKey + StrValue)---> full string
 (StrFullVlaue).
2: Convert the Previous Text(StrFullVlaue) to ascii code
 (hexdata).
3: Foreach (byte b in hexdata).

a. Convert the Previous ascii code (hexdata) to binary data
(StrChar).

b. Switch (StrChar.Length).
Case 7 ---> StrChar = "0" + StrChar.
Case 6 ---> StrChar = "00" + StrChar.
Case 5 ---> StrChar = "000" + StrChar.
Case 4 ---> StrChar = "0000" + StrChar.
Case 3 ---> StrChar = "00000" + StrChar.
Case 2 ---> StrChar = "000000" + StrChar.
Case 1 ---> StrChar = "0000000" + StrChar.
Case 0 ---> StrChar = "00000000" + StrChar.

c. StrEncrypt += StrChar. (where, StrEncrypt= ””)
4: Reverse the Previous Binary Data(StrEncrypt).
5: For i from 0 to StrValue.Length do the following:

a. if (binarybyte.Length == 8).
i.Convert the binary data (StrEncrypt) to ascii code and,

ii.Divide the ascii by 4 the result(first character) and,
iii.The remainder of the previous second character.

6: Return (EncryptedData).

3.2 Decryption Algorithm of the REA

We will be presenting the steps of the decryption algorithm
of the Reverse Encryption Algorithm REA (Algorithm 2).
The following steps are (see Figure 2):

Step1: Input the encrypted text and the key.
Step2: Loop on the encrypted text to obtain ascii code of

characters and add the next character.
Step3: Multiply ascii code of the first character by 4.
Step4: Add the next digit (remainder) to the result

multiplying operation.
Step5: Convert the previous ascii code to binary data.
Step6: Reverse the previous binary data.
Step7: Gather each 8 bits from the previous binary data and

obtain the ascii code from it.
Step8: Convert the previous ascii code to text.
Step9: Remove the key from the text.
Step10: Return decrypted data.

Figure 2: Steps of the REA decryption algorithm

Algorithm 2: REA_Decryption
INPUT: Ciphertext (EncryptedData), the Key (StrKey).
OUTPUT: Plaintext (DecryptedData),
1: For (i = 0; i < EncryptedData.Length; i += 2)
 a. Get the ascii code of the encrypted text
 b. newascii = (EncryptedData[i] * 4) + the next
 digit(remainder)[i+1].
2: Foreach (byte b in newascii).
 a. Convert the Previous ascii code (newascii) to binary
 data (StrChar).
 b. Switch (StrChar.Length).

Case 7 ---> StrChar = "0" + StrChar.
Case 6 ---> StrChar = "00" + StrChar.
Case 5 ---> StrChar = "000" + StrChar.
Case 4 ---> StrChar = "0000" + StrChar.
Case 3 ---> StrChar = "00000" + StrChar.
Case 2 ---> StrChar = "000000" + StrChar.
Case 1 ---> StrChar = "0000000" + StrChar.
Case 0 ---> StrChar = "00000000" + StrChar.

 c. StrDecrypt += StrChar.
3: Reverse the Previous Binary Data(StrDecrypt).
4: For i from 0 to StrDecrypt.Length do the following:
 a. if (binarybyte.Length == 8).

i. Convert the binary data (StrChar) to ascii code
 (hexdata) and,
ii. Convert the previous ascii code (hexdata) to the
 text (StrFullVlaue).

5: Remove the key from the text (StrFullVlaue - StrKey)
 (StrValue).
6: Return (DecryptedData).

3.3 REA: An Examples Cipher

We have two examples on which we have applied our new
encryption algorithm REA:

1) Text to explain the running methods the proposed
algorithm REA.

2) Database Microsoft SQL Server 2005 is
"Northwind_Plaintext". The programming tasks were
built by Microsoft Visual Studio 2005.net.

3.1.1 Text

The first example on which we applied our new encryption
algorithm REA is on the text, the explanation has been
provided below.

-

Get
1st Character

Reverse

Get
2st Character

Next
Digital

Multiple

by 4
C

onvert

Decrypted
Text

Remove the
key from
the text

Encrypted
Text

Text

Key

Convert

+ ASCII

Binary

ASCII

Binary ASCII
Convert

Binary

C
onvert

Divide by

4

Text
1st Character

Encrypted
Text

ASCII

Text

Key Convert Reverse

2nd Character

Integer

Remainder

Convert Binary

ASCII

ASCII
Convert

+

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 283

The text is : “ Welcome! Mousa1976 ”

The key is: “123” (It takes a variable-length key)

Encrypted text is:
 323130*0&2$3'0$0$2&27273,2$0"2#0'232122021

Encipherment:

1) Add the key to the text: 123Welcome! Mousa1976.
2) Convert the previous text to ascii code.

1 --> 49, 2 --> 50, 3 --> 51, W --> 87, e --> 101, …….
3) Convert the previous ascii code to binary data:

00110001 00110010 00110011 01010111 01100101…..
4) Reverse the previous binary data:

11001110 11001101 11001100 10101000 10011010..…
5) Gather each 8 bits from the previous binary data and

obtain the ascii code of it: 206 205 204 168 154.......
6) Divide the previous ascii code by 4 and obtain the ascii

of the result(put it as one ascii character) and obtain the
remainder (put it as second character).
• 206/4 = 51 ---> 3 and the remainder (next digit) = 2

(put its as 32).
• 205/4 = 51 ---> 3 and the remainder (next digit) = 1

(put its as 31).
• 204/4 = 51 ---> 3 and the remainder (next digit) = 0

(put its as 30).
• 168/4 = 42 ---> * and the remainder (next digit) = 0

(put its as *0).
• 154/4 = 38 ---> & and the remainder (next digit) = 2

(put its as &2).
7) Encrypted text is (see Figure 3):
 “323130*0&2$3'0$0$2&27273,2$0"2#0'232122021”

Decipherment:

1) Loop on the encrypted text to get ascii code of
characters and add next character.

2) Multiply ascii code of the first character by 4 and add
the next digit (remainder):

• The first character = 3 ---> ascii code is: 51 and the
next digit(remainder)= 2 then new ascii code is:

 206 = 51*4+2
• The first character = 3 ---> ascii code is: 51 and the

next digit(remainder)= 1 then new ascii code is:
 205 = 51*4+1
• The first character = 3 ---> ascii code is: 51 and the

next digit(remainder)= 0 then new ascii code is:
 204 = 51*4+0
• The first character = * ---> ascii code is: 42 and the

next digit(remainder)= 0 then new ascii code is:
 168 = 42*4+0
• The first character = & ---> ascii code is: 38 and the

next digit(remainder)= 2 then new ascii code is:
 154 = 38*4+2

3) Convert final ascii code to binary data:
 11001110 11001101 11001100 10101000 10011010..…

4) Reverse the previous binary data:
 00110001 00110010 00110011 01010111 1100101…..

5) Convert binary data to ascii code and text:
 49 50 51 87 101 …..

6) Remove the key from text: 123Welcome! Mousa1976

7) Decrypted text is (see Figure 4):
 “ Welcome! Mousa1976 ”

Figure 3: Running the program of the proposed encryption
algorithm REA

3.3.2 Database

The second example on which we applied our new
encryption algorithm REA is on database Microsoft SQL
Server 2005 is called "Northwind_Plaintext". The
programming tasks were built by Microsoft Visual Studio
2005 .net. In the previous our paper, we
encrypted/decrypted some fields from the database
“Northwind_Plaintext” by the proposed encryption
algorithm REA and compares with the most common
encryption algorithms namely: DES, 3DES, RC2, AES and
Blowfish. A comparison has been presented for those
encryption algorithms at encryption and decryption time.
The experiment results show the superiority of REA
algorithm over other algorithms in terms of the encryption
and decryption time. We also will use these experiments in
this current paper to encrypt some fields of the database
“Northwind_REA” with the proposed encryption algorithm
REA (see Figure 6) in Section 4.

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 284

Figure 4: Running the program of the proposed decryption
algorithm REA

4 Simulation Results
A typical case study is studied in this section, to give the
query processing performance evaluation over encrypted
databases with the proposed algorithm (REA) and with the
most common encryption algorithm AES. The performance
measure of query processing will be conducted in terms of
query execution time.

All our experiments were done on laptop IV 2.0 GHz
Intel processor with 1 MB cache memory, 1 GB of memory,
and one Disk drive 120 GB. The Operating System which
was used is Microsoft Windows 7 professional. The
simulation results were executed based on the database
Microsoft SQL Server 2005 is “Northwind”, which
contains seven tables. The programming tasks were built by
Microsoft Visual Studio 2005 .net.

In the experiments, we use three databases from the
database “Northwind” are:

1) Northwind_Plaintext has not any encrypted fields.

2) Northwind_AES has encrypted fields with AES
encryption algorithm (see example in Figure 5).

3) Northwind_REA has the same encrypted fields in
“Northwind_AES”. But, with using our new
encryption algorithm REA (see example in Figure 6).

Table 1 presented the names of fields are the encrypted
in the database “Northwind_AES” and the database
“Northwind_REA”.

Table 1: The names of encrypted fields

 Tables Fields
1 Products UnitPrice
2 Orders Freight
3 Order Details UnitPrice
4 Order Details Quantity
5 Suppliers ContactName
6 Employees Notes
7 Customers ContactName
8 Customers ContactTitle

Figure 5: Encrypted the field in the database

“Northwind_AES” with encryption algorithm AES

Figure 6: Encrypted the field in the database
“Northwind_REA” with the proposed algorithm REA

When the encryption of the eight fields (shown in the
table 1) in the databases were completed. The keys are used
in the encryption were kept safe in the table encrypted with
the proposed encryption algorithm REA for the database
“Northwind_AES” (see Figure 7) and the database
“Northwind_REA” (see Figure 8). Only the administrator
user will get these keys by entering the password in our
simulation (see Figure 9). After the administrator enters the
password and selects the database, one will be able to see
the table of the keys encrypted in the databases
"Northwind_AES" (see Figure 10) and "Northwind_REA"

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 285

(see Figure 11).

Figure 7: Encrypted fields in the keys table

“Northwind_AES” with the proposed algorithm REA

Figure 8: Encrypted fields in the keys table

“Northwind_REA” with the proposed algorithm REA

Figure 9: Login of the administrator to get the keys

Figure 10: Get the keys of the encrypted fields in the

database “Northwind_AES”

Figure 11: Get the keys of the encrypted fields in the
database “Northwind_REA”

In the experiments, we use ten queries (namely: Q1, Q2,
Q3, Q4, Q5, Q6, Q7, Q8, Q9 and Q10) difference in
number the encrypted fields. These queries are varying

when joining the tables. In our simulation, we use three
databases are “Northwind_Plaintext” has no encrypted
fields, “Northwind_AES” has encrypted fields and
“Northwind_REA” has the same encrypted fields in
“Northwind_AES”.

Now, we start executing the queries on these databases.
Every query from the first to the tenth executes on the
database “Northwind_Plaintext” then calculates the
execution time (see executing query Figure 12) and repeats
executes on the database “Northwind_AES” then calculates
the execution time (see executing query Figure 13) and
repeats the execution again on the database
“Northwind_REA” then calculates the execution time (see
executing query Figure 14).

Figure 12: Executing query on the non-encrypted database

“Northwind_Plaintext”
Table 2 presents the values of the queries execution

times (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 and Q10) on
the three databases (“Northwind_Plaintext”, “Northwind
_AES” and “Northwind_REA”). Figures 15 and 16 show
such comparisons between the values of the queries
execution times (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 and
Q10) on the three databases (“Northwind_Plaintext”,
“Northwind_AES” and “Northwind_REA”).

Figure 13: Executing query on the encrypted database
“Northwind_AES”

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 286

Table 2: The values of the queries execution times on the databases
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Northwind_Plaintext 0.418 0.282 0.531 4.212 3.119 2.167 1.098 0.978 0.378 3.289

Northwind_AES 2.563 1.279 1.647 19.547 21.029 16.864 5.741 3.822 1.716 19.718

Northwind_REA 1.764 0.854 1.092 16.771 16.118 12.827 4.563 3.167 1.372 15.073

Figure 14: Executing query on the database

“Northwind_REA”

0

5

10

15

20

25

E
xe

cu
ti

o
n

 T
im

es

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

Northwind_Plaintext
Northwind_AES
Northwind_REA

Figure15: The values of the queries execution times on the

databases

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

E
xe

cu
tio

n
Ti

m
es

Northwind_Plaintext
Northwind_AES
Northwind_REA

 Figure 16: The values of the queries execution times on the
databases

Our experimental results for these comparisons are
shown on Table 2, Figure 15 and Figure 16 at the query
processing performance (cost time) over encrypted
databases. A first point; the database
“Northwind_Plaintext” takes less time than the other
databases in terms of the query execution time. A second
point; the database “Northwind_AES” is the bigger than
other databases in terms of the query execution time. A
third point; the database “Northwind_REA” is slower than
the database “Northwind_Plaintext” and faster than the
database “Northwind_AES” in terms of the query
execution time.

Finally, the results showed that the effects the proposed
encryption algorithm REA on the database has a very good
performance compared to the algorithm AES. Our new
encryption algorithm REA limits the added time cost for
encryption and decryption so as to not degrade the
performance of the database system, if we compare with
other encryption algorithms such as AES encryption
algorithm. The proposed encryption algorithm REA
represents a significant improvement over the encrypted
databases. Moreover, reducing the overhead of loading on
the system for the complexity of the methods that doing
decryption and re-encryption the data in the databases.

5 Conclusions and Future Work

There is a lot of very important data in the database, which
need to be protected from attack. Cryptographic support is
an important mechanism of securing them. People,
however, must tradeoff performance to ensure the security
because the operation of encryption and decryption greatly
degrades query performance. For the query types that
require extra query processing over encrypted database, the
cost differentials of query processing between non-
encrypted and encrypted database increase linearly in the
size of relations. To solve such a problem, the proposed
encryption algorithm REA can implement SQL query over
the encrypted database.

In this paper, we will introduce a new encryption
algorithm, which we call “Reverse Encryption Algorithm
(REA)”, restating its benefits and functions over other
similar encryption algorithms. REA algorithm limits the
added time cost for encryption and decryption so as to not
degrade the performance of a database system. We also
provide a thorough description of the proposed algorithm
and its processes. This paper examines a method for
evaluating query processing performance over encrypted
database with our new encryption algorithm (REA) and
with the most common encryption algorithm AES. The
performance measure of query processing will be

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 287

conducted in terms of query execution time. The results of
a set of experiments show the superiority of the proposed
encryption algorithm REA over other encryption algorithm
AES with regards to the query execution time. Our new
encryption algorithm REA can reduce the cost time of the
encryption/decryption operations and improve the
performance.

In the future work, we are interested in extending the
proposed encryption algorithm REA in order to apply it to
other kind of databases such as distributed DBMSs and
object oriented DBMSs of the query processing.

References
[1] H. Brown, Considerations in Implementing A

Database Management System Encryption Security
Solution, A Research Report presented to The
Department of Computer Science at the University
of Cape Town, 2003.

[2] S. Castano, M. Fugini, G. Martella, and P. Samarati,
Database Security, Addison-Wesley, 1995.

[3] A. Ceselli, E. Damiani, S. D. C. D. Vimercati, S.
Jajodia, S. Paraboschi, and P. Samarati, “Modeling
and assessing inference exposure in encrypted
databases,” ACM Transactions on Information
System Security, vol. 8, no. 1, pp. 119–152, 2005.

[4] J. Daemen and V. Rijmen, “Rijndael: The advanced
encryption standard (AES),” Dr. Dobb's Journal, vol.
26, no. 3, pp. 137-139, Mar. 2001.

[5] E. Damiani, S. D. C. D. Vimercati, M. Finetti, S.
Paraboschi, P. Samarati, and S. Jajodia,
“Implementation of a storage mechanism for
untrusted dbmss,” IEE Security in Storage Workshop
2003, pp. 38-46, 2003.

[6] E. Damiani, S. D. C. D. Vimercati, S. Foresti, S.
Jajodia, S. Paraboschi, and P. Samarati, “Metadata
management in outsourced encrypted databases,” in
The Second VLDB Workshop on Secure Data
Management, Lecture Notes in Computer Science,
pp. 16–32, Springer, 2005.

[7] G. Davida, D. L. Wells, and J. B. Kam, “A database
encryption system with subkeys,” ACM
Transactions on Database Systems, vol. 6, no. 2, pp.
312–328, 1981.

[8] M. R. Doomun and K. M. S. Soyjaudah, “Analytical
comparison of cryptographic techniques for
resource-constrained wireless security" International
Journal of Network Security, vol. 9, no. 1, pp. 82-94,
2009.

[9] D. S. A. Elminaam, H. M. A. Kader, and M. M.
Hadhoud, “Evaluating the performance of symmetric
encryption algorithms," International Journal of
Network Security, vol. 10, no. 3, pp. 213-219, 2010.

[10] D. S. A. Elminaam, H. M. A. Kader, and M. M.
Hadhoud, “Evaluating the effects of symmetric
cryptography algorithms on power consumption for
different data types” International Journal of

Network Security, vol. 11, no. 2, pp. 78-87, Sep.
2010.

[11] C. Gu and Y. Zhu, “New efficient searchable
encryption schemes from bilinear pairings,”
International Journal of Network Security, vol. 10,
no. 1, pp. 25-31, Jan. 2010.

[12] H. Hacig¨um¨us, B. Iyer, and S. Mehrotra,
“Providing database as a service,” in Proceedings of
ICDE, pp. 29–38, 2002.

[13] H. Hacig¨um¨us, B. R. Iyer, and S. Mehrotra,
“Ensuring the integrity of encrypted databases in the
database-as-a-service model,” DBSec 17th Annual
Working Conference on Data and Application
Security, pp. 61–74, Kluwer, 2003.

[14] J. He and M. Wang, “Cryptography and relational
database management system,” IDEAS, pp. 273–284,
2001.

[15] H. Kadhem, T. Amagasa, and H. Kitagawa, “Mv-
opes: Multivalued-order preserving encryption
scheme: A novel scheme for encrypting integer
value to many different values,” IEICE Transactions,
vol. 93-D, no. 9, pp. 2520–2533, 2010.

[16] S. Lee, T. Park, D. Lee, T. Nam, and S. Kim,
“Chaotic order preserving encryption for efficient
and secure queries on databases,” IEICE
Transactions on Information and Systems, vol. 92,
pp. 207–217, 2009.

[17] H. H. Ngo, X. Wu, P. D. Le, C. Wilson, and B.
Srinivasan, “Dynamic key cryptography and
applications” International Journal of Network
Security, vol. 10, no. 3, pp. 161-174, May 2010.

[18] Oracle, Oracle9i Database Security for eBusiness,
An Oracle White Paper, June 2001.

[19] B. Schneier, Applied Cryptography Second Edition:
Protocols, Algorithms, and Source, Beijing: China
Machine Press, 2000.

[20] W. Stallings, Cryptography and Network Security
Principles and Practice, 4th Ed. Prentice-Hill Inc.,
2005.

[21] Q. Tang and D. Ji “Verifiable attribute based
encryption,” International Journal of Network
Security, vol. 10, no. 2, pp. 114-120, Mar. 2010.

Ayman Mousa was born on May 11, 1976 in Shebin El-
Kom, Menoufia, Egypt. He obtained the B.S. in Math
and Computer Science from Faculty of Science,
Menoufia University, Egypt in 1998. He obtained his
M.Sc. degree in Computer Science also from Faculty of
Science, Menoufia University, Egypt in 2008. He is
currently a Lecturer of Computer Science in Workers
University since 2001. He majors in Database Security
and Cryptography.

Elsayed Nigm, Professor of Mathematics Department of
Mathematics, Faculty of Science, Zagazig University,
Zagazig, Egypt. He obtained the B.Sc. in Mathematics,
Statistics and computer Sciences, Zagazig University,

International Journal of Network Security, Vol.14, No.5, PP.280-288, Sept. 2012 288

Faculty of Science, Egypt (1983). He obtained the M.Sc.
degree in Mathematics (functional analysis), Zagazig
University, Faculty of Science, Egypt (1987). He
obtained his Ph.D. degree Mathematics (Mathematical
Statistics) also from Zagazig University, Faculty of
Science, Egypt (1990). He honors awards prize of the
National committee of Mathematics, by Egyptian
Academy of Sciences and Technologies, Egypt (2000).
Prof E. M. Nigm has published more than 51 papers in
international journals, international conferences, local
journals and local conferences.

Sayed El-Rabaie (Senior Member, IEEE’1992-MIEE-
Chartered Electrical Engineer) Was Born in Sires Elian
(Menoufia), EGYPT in 1953. He Received the BSc with
Honors in radio communications from Tanta University,
Egypt, 1976, MSc in communication systems from
Menoufia University, Egypt, 1981, and a PhD in
microwave device engineering from the Queen’s
University of Belfast in 1986. He was a postdoctoral
fellow in the Queen’s University Department of
Electronic Engineering until 1989. In 1992, he was a
Research Fellow at the North Arizona University,
College of Engineering and Technology, and in 1994 he
served as a visiting professor at Ecole Polytechnique de
Montreal, Quebec, Canada. Prof. El-Rabaie has authored
and coauthored more than 70 papers and technical reports,
and 15 books. In 1993, he was awarded the Egyptian
Academic Scientific Research Award (Salah Amer
Award of Electronics), and in 1995, he received the
Award of Best Researcher on CAD from Menoufia
University. He is now the vice dean of postgraduate
studies and research, Faculty of Electronic Engineering,
Menoufia University.

Osama Faragallah received his BS in 1997, MSc in
2002, and PhD in 2007, all in computer science and
engineering, from Menoufia University, Faculty of
Electronic Engineering, Egypt. He was a demonstrator at
the Department of Computer Science and Engineering, at
Menoufia University, from 1997 to 2002, became an
assistant lecturer in 2002, and was promoted to a lecturer
in 2007. His research interests cover computer networks,
network security, cryptography, Internet security,
multimedia security, image encryption, watermarking,
steganography, data hiding, and chaos theory.

