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Abstract

Code-based authentication schemes are very fast and ef-
ficient for implementation in small devices. The security
of these schemes and the size of underlying coding matri-
ces are often the main barriers to their use in practice. In
this paper, we remove the security flaw of a classical code-
based authentication scheme and modify it to achieve a
secure code-based authentication scheme. We provide a
formal proof of security for the modified scheme. More-
over, we apply the recent improvement to reduce the size
of the coding matrix and to gain an efficient authentica-
tion scheme suitable for small devices.
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1 Introduction

Code-based cryptography is very efficient and high speed
in implementation when compared with algebraic crypto-
graphic scheme. It is highly recommended to design au-
thentication schemes based on code-based cryptography,
where resources are scarce in hardware [3]. Nevertheless,
the size of encoding matrices that have to be used to en-
sure a minimum level of security is usually very large,
imposing a huge overload on a given device. Recently,
Berger et al. [1] showed that it is possible to use smaller
matrices in code-based cryptography and have a comfort-
able level of security. This reduction allows most of the
code-based authentication schemes [4, 6, 8, 9, 11], which
had been marginalized in the literature due to their com-
putation/storage complexities, to be reconsidered for use
in small devices. In this work, we revisit one of the clas-
sical works by Harari [9] that has inspired many other
code-based authentication schemes [5, 6, 7, 11]. Harari’s
authentication scheme is a special authentication method,
as it is a zero-knowledge system. Informally, in a zero-
knowledge authentication scheme, the verifier can read-
ily verify that the prover has the correct credentials to

pass the authentication, but it does not learn anything
about the prover’s credentials. It will be shown later in
this work that recent improvements in reducing the size
of encoding matrices make Harari’s scheme more efficient
than other authentication schemes, e.g. [4, 10, 11, 13].
However, Harari’s initial design is proved to be insecure
due to a flaw in the scheme, i.e. checking conditions of
the authentication process [12]. In this work, we modify
Harari’s scheme to remove the flaw and provide a formal
proof of security for the proposed authentication scheme
based on the difficulty of a known complexity assumption.

1.1 Complexity Assumption

Linear codes have to possess certain complexity proper-
ties before they can be used in cryptography. The se-
curity of our scheme is based on the complexity of an
NP-Hard problem, referred to as the Syndrome Decoding
(SD) problem.

Definition 1 (Syndrome Decoding Problem). Let H
be a parity-check matriz of a binary code [N, k|. Suppose
d is the syndrome of a vector s. Suppose that p is a given
integer in the space of all possible weights of vector s. The
question is if one can easily find a vector s of length N,
such that Hs” = d and w(s) < p, where w(-) denotes the
weight of a vector.

It has been proven in [2] that decoding an arbitrary
linear code is an NP-Hard problem. The security of many
coding-based cryptographic protocols are based on the
NP-Hardness of the SD problem.

1.2 Harari’s Identification Scheme

Harari’s scheme [9] is given as follows: a trusted center
chooses a random binary code of length N dimension k.
It is recommended that N > 2000 and & > 1000. The
generator of the code is denoted by a k x N-matrix G
(or equivalently by its parity-check (N — k) x N-matrix
H). Let s be a random codeword of weight p, where u



International Journal of Network Security, Vol.14, No.4, PP.206-210, July 2012

is a small, odd quantity chosen at random in the interval
[50,100]. Note that since s is a codeword, then HsT = 0.
User A will use s as her secret key in the authentication
rounds. Notations used in Harari’s scheme [9] and their
application are summarized in Table 1.

The trusted center publicizes the generator matrix G
or the parity-check matrix H, as well as y. Note that s
is kept private. The following protocol would allow A to
authenticate herself to B:

1) A sets I € [100,200] and chooses | random binary
vectors, 1; € Fon for ¢ = 1,--- 1, where the supports
of the vectors are disjoint. We denote the weight of
7; by w;. Then A computes the syndromes ¢; = Hr?,
where 7! is the transpose of vector 7;.

2) B receives the set {(w;,t;)|i = 1,---,1} from A and
chooses an odd weight binary vector e of length I,
where é <w(e) < %l B returns e to A.

3) A randomly computes a permutation 7 of {1,--- 1}
and sends it back to B.

4) A and B both compute ¢t = 7(e).

5) B randomly chooses b € {t,t}, where ¢ is the binary
complement of ¢. Each bit of b is denoted by b; for
i=1,---,1. Then, B sends b to A.

6) A computes r = Zézl b; -r; and returns y = r + s to

B. Note that the notation b; - r; is used to denote the
operation that the vector r; is selected or deselected
if b, = 1 or b; = 0, respectively.

7) B checks three conditions to verify A’s identity:

a. First condition on weights:

¢. Second condition on weights:

! !
—M+Zbi~wi§w(y)§u+2bi-wi.
i=1

=1

Harari’s security analysis only provides a quantita-
tive proof for the security of the proposed authentication
scheme [9]. However, this proof was based on the attacks
known at the time, and also it did not offer any formal
proof of security. Later Véron [12] showed that Harari’s
initial scheme is insecure. We briefly review the attack in
the rest of this section and refer the reader to [12] for full
analysis.
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1.3 Cryptanalysis of Harari’s Identifica-
tion Scheme

Véron [12] breaks Harari’s scheme by finding a flaw
in the design of the authentication scheme. The at-
tack is laid out as follows: Let’s suppose that m(e) =
(1,--+,1,0,0,---,0) and w(e) = é+q is odd and 0 <
q < é It is possible for a dishonest prover to build
three sequences (w; € Z)i<i<i, (ti € Fov-m)1<i<i and
(z; € Fon)i<i<i/3, where x;’s are vectors of length N
such that:

A
w(z;) = Y w
w(z;) = L4 mod?2 (1)
L
HI? = x+ ZZ?’:JE] t;

We have set z in Equation (1) as z = Hz® for a random
vector z of weight p. Note that u, w;’s and ¢;’s are pub-
licly known. Now let’s suppose that the dishonest prover
sends y = x4 + z to B. It can be shown that this vector
satisfies all three conditions of authentication, since:

1) First condition on weights is satisfied because:

l
=1

2) Condition on syndromes is satisfied because:

l
=1

3) Second condition on weights is satisfied because:

tig

t+g

Hy' = HzT—FHx?; =z+ (z+ Z ;)
i=1

—pFw(zg) < wly) < p+wlzg)

L+q l
and w(zg) = X201 wi = Y5 bi - wi.

Knowing w(e), the adversary can easily build such z;
vector that satisfy the above conditions. For more details
on how to find z;’s, the reader is referred to [12]. There-
fore, the dishonest prover could pass the identification
protocol on average every second time that the protocol
is executed. As it can be seen from Equation (1), the
breach in Harari’s identification scheme is the result of
using a codeword as the secret vector s. In Harari’s origi-
nal scheme, since s € C, we have Hs” = 0. This helps the
adversary (the dishonest prover) in Véron’s attack to pick
any random vector z of weight u instead of s, as its syn-
drome (x) will be canceled by the syndrome of x, when
checking the condition on syndromes.

Véron [12] recommended to repeat Harari’s scheme n
times, in order to reduce the probability of success of the
previous attack to 27™. However, this dramatically in-
crease the number of bits exchanged (i.e. transmission
rate) between A and B. The prover and verifier’s com-
putational overheads are also increased linearly with the
number of identification rounds.
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Table 1: Summary of notations used in Harari’s identification scheme

‘ Notation ‘ Description

The prover
The verifier

~—

Weight function

Each bit of b

€t Foewsa0TE~YorToiQzawe

Dimension of the binary codes
Length of the binary codes
Generator matrix of the underlying code

Publicly known parity-check (N — k) x N-matrix
Weight of the secret key of the prover

Secret key of A, as a codeword of weight p
Private, random vector that is kept hidden from B
Number of random vectors r;

Weight of r;, i.e. w; = w(r;)

Syndrome of r;, i.e. t; = Hrl

Random binary selection-vector of length [

A random permutation on e

The permutation of e, i.e. t = 7(e)

The binary complement of ¢

The challenge selection-vector b € {t,t}

The masking, random vector, s.t. r = Z§=1 b; - T
The response vector, s.t. y =7+ s

2 Securing Harari’s Identification
Scheme

We propose an adaptation of Harari’s scheme that is se-
cure against Véron’s attack without increasing the trans-
mission rate or computational overheads. In our scheme,
the trusted center publicizes the random parity check ma-
trix H, as before. The notations used in our adaptation
are the same as in Harar’s original scheme as given in Ta-
ble 1, but there are a few changes; as the private key of A,
we choose a random vector s € Fon of weight p instead
of a codeword. Since, s is a random vector, instead of
codeword, its has a non-zero syndrome that is denoted by
d, where d = Hs™. The trusted center publishes {d, u} as
A’s public parameters. The following identification pro-
tocol would allow A to authenticate herself to B:

e A chooses | random binary vectors, r; € Fon for
i = 1,---,1, where the supports of the vectors are
disjoint. Then A computes the syndromes ¢; = Hr?,
where 77 is the transpose of the vector r;.

e B receives the set {(w;,t;)]i =1,---,1} and chooses
an odd weight binary vector e of length I, where % <
w(e) < %l B sends e to A. Each bit of e is denoted

by e; fori=1,--- L.

e A computes r = Zé:l e;-r; and returns y = r + s to
B. Note that the notation e; -r; is used to denote the
operation that the vector r; is selected/deselected by
the bit €;.

e B checks three conditions to verify A’s identity

1) First condition on weights:

l
w(y) # Zei Cw;.
=1

2) Condition on syndromes:
!
HyT = d+Zei~ti.
i=1

3) Second condition on weights:

1 !
—M+Z€i'wi§w(y)ﬁu+zei'wi-
i=1

i=1

Note that in checking the condition on syndromes, d
is added for verification. An attacker can no longer send
arbitrary vectors to the victim as described in the Véron’s
attack, as adding a random vector x of weight x4 might
satisfy the conditions on weights, but it would fail the con-
dition on the syndromes. It is shown in the next section
that addition of d in the condition on syndromes forces
the adversary to send the correct s. We will prove that if
the adversary’s attack algorithm A can successfully com-
promise the proposed authentication mechanism, then the
same algorithm can be used to solve the SD problem.

2.1 Security Analysis

Let’s suppose that there is an algorithm A that generates
vectors to pass the checking conditions in the proposed
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scheme. There is a simulator algorithm B that tries to
find a vector of syndrome d* and weight less than p, i.e.
an instance of the SD problem.

The algorithm B challenges A for authentication in the
proposed scheme once with d and another time with d’,
such that d+d’ = d*, and it sets the weights respectively
to p and g/, such that u+ 4’ < p/2.

Algorithm A sends {(w;,t;)[i = 1,---,1} in the first
challenge and {(w;,t;)]i = 1,---,I'} in the second chal-
lenge. Algorithm B sets e and €’ such that Zé:l e;-t; =
S et andalso | S erwi— YL ef-wl] < p/2. Note
that since the vectors r; and r; have disjoint supports, we
should have: Zé:l e;-w; < N and also Zil:l e, -w; < N.

K3
Therefore, the two series of w; and w] are bounded by
N, and it is possible to find two close enough series that

satisfy:
! v
\Zei cw; — Ze§~w;| < p/2.
i=1 i=1

The algorithm A, using e and €', sets r = Zé:l € T
and ' = 22:1 e} -r}, and then returns y = r+s and 3/ =
s'+r’, respectively. It can easily be shown by following the

inequality properties that for the weight series we have:
[w(y+y")|=lw(r)—w(r)| < ly—w(r)[+ly'—w(r)| < p+p'.

Since we have p+p’ < p/2 and the algorithm B has set the
weights such that |w(r) — w(r’)| < p/2, we can conclude
that:

lw(y +y')| < p.

On the other hand, the condition on the syndromes re-
turns:

Hy"' + Hy" = H(y" +y7)

l 14
=(d+d)+ (D ei-tit+ Y et
=1 =1

= (d+d)=d".

That is y-+17’ is a binary vector of syndrome d* and weight
less than p. Thus, the vector y + 3’ is a solution to the
SD problem instance.

2.2 Performance Analysis

In this section, we provide an estimation on the resources
that would be required to implement the proposed proto-
col. Using the recommendations on the size of the parity
check matrix in [1], we use a 225 x 450 parity-check ma-
trix. Let’s pick { € [50,100] the same as in [9]. In Table
2, we have compared the performance of the proposed
scheme to results of Véron [12], pages 266-267, and the
newest implementation [4] of Stern’s scheme [11]. Note
that the prover’s computational overhead in Table 2 is
approximated by O(N?), where N is the size of the code-
words.
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As it can be seen in Table 2, the proposed scheme out-
performs other similar schemes with the same security
level. It has a significantly better transmission rate than
the newest implementation [4] of Stern’s scheme [11] with
a comparable matrix size and computational overheads.
In Table 2, we did not consider the prover’s work to com-
pute a cryptographic hash function. Despite the fact that
Stern’s scheme [4, 11] has a lower memory complexity, it
requires implementation of hash functions that will fur-
ther increase the complexity of the scheme.

3 Conclusions

Code-based cryptosystems are very promising for small
devices mostly due to their simplicity of operations and
high speed performance. In this paper, we have re-
moved the security flaw from Hararis scheme and pro-
vided a formal proof of security based on the hardness
of the SD problem. We have also shown that our pro-
posed scheme outperforms other code-based authentica-
tion schemes, while providing the same level of secu-
rity. The proposed protocol is very practical for resource-
constrained devices. It is based on an asymmetric-key
algorithm and simplifies the key management in the sys-
tem. It also provides a superior transmission overhead as
compared to other work reported in the literature.
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