
International Journal of Network Security, Vol.14, No.4, PP. 187–205, July 2012 187

Trustworthy TCB for DNS Servers

Arun Velagapalli and Mahalingam Ramkumar
(Corresponding author: Arun Velagapalli)

Department of Computer Science and Engineering, Mississippi State University
Box 9637, Mississippi State University, MS 39762, USA

(Email: av82@msstate.edu)

(Received June 7, 2010; revised and accepted Oct. 4, 2010)

Abstract

A simple atomic relay function is proposed as a minimal
trusted computing base (TCB) for a domain name system
(DNS) server. This TCB, composed of a fixed sequence of
logical and cryptographic hash operations, can be ampli-
fied to ensure that a DNS server cannot violate rules. The
paper also outlines elements of a TCB-DNS protocol that
amplifies the simple TCB to secure the domain name sys-
tem. The paper includes an extensive comparison of the
proposed approach with DNSSEC, the current standard
for securing DNS. The proposed approach is shown to
overcome many issues associated with DNSSEC. Specif-
ically, TCB-DNS demands substantially lower overhead
for DNS servers and resolvers, eliminates the issue of zone
enumeration, and is less susceptible to replay attacks.
Keywords: Domain name system, DNSSEC, trusted com-
puting base

1 Introduction

The domain name system (DNS) simultaneously refers
to i) a hierarchical naming scheme for Internet-based ser-
vices, and ii) a distributed database of DNS records which
can be queried by specifying name and type of record.
DNS records pertaining to a DNS zone are created by the
authority for the zone, and are intended for clients who
utilize the services of the zone.

For example, a client who wishes to connect to a web-
service named www.yahoo.com requires the IP address of
the host running the web-server. This information is con-
tained in an A-type (address-type) DNS record created
by the authority of the zone yahoo.com. To obtain the
required A-type record, the client invokes a DNS query
(www.yahoo.com, A). Similarly, a client desiring to send an
email to an address alice@xyz.com invokes a DNS query
(xyz.com, MX) for an MX-type (mail-exchange) record
to obtain the name of the mail-server for the domain
xyz.com. Once the name of the mail-server is determined
(say, mail.abc.net), the client can then query the DNS for

mail.abc.net,A to determine the IP address of the mail-
server.

The important services offered by DNS are performed
by DNS servers and resolvers. More specifically, DNS
records are created by zone authorities, and are ultimately
intended for clients. DNS servers and resolvers are the
“middle-men” involved in storing and relaying the records
to clients.

Ultimately, any solution to secure the DNS should not
require the middle-men to be trusted. Some of the de-
sired security assurances in the context of operation of
the entire domain name system are as follows:

1) A1 - Authentication and integrity: DNS records
cannot be modified in transit between their cre-
ator (zone authorities) and their ultimate destination
(clients).

2) A2 - Authenticated denial: If a DNS server is
queried for a nonexistent record (the queried name
and type does not exist), the querier should receive a
believable response that the queried record does not
exist.

Currently, DNSSEC [1] is the standard security proto-
col for DNS. DNSSEC does not require the middle-men
(DNS servers) to be trusted; only the zone authority is
trusted to provide information regarding the zone. Un-
fortunately, due to substantial overhead imposed on DNS
servers, resolvers, and clients, DNSSEC has seen low lev-
els of adoption [7, 8, 15]. Furthermore, in its attempt to
provide assurance A2 DNSSEC enabled servers are forced
to reveal names of unsolicited records to the querier, and
is consequently susceptible to the zone enumeration or
DNS-walk problem [27]. To provide authenticated denial
without being susceptible to DNS-walk, we desire yet an-
other assurance:

1) A3 - Only explicitly solicited records should
be revealed: For providing assurance A2, DNS
servers should not be required to reveal names of
DNS records that are not explicitly queried by name
and type.
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Thus far, attempts to provide assurance A3 in
DNSSEC have not been successful. For example, the
hashed authenticated denial of existence scheme (also re-
ferred to as NSEC3 [14]) does not reveal unsolicited
names - it reveals only cryptographic hashes of unsolicited
names. Unfortunately, simple dictionary attacks can re-
veal the names behind the hashes.

Some of the alternate approaches in the literature
for securing DNS include symmetric key DNSSEC [22]
and DNSCurve [10]. Such approaches only protect the
links over which DNS records traverse (on the way from
the zone authority to their ultimate destinations). The
advantage of approaches that only secure links is that
they demand substantially lower overhead compared to
DNSSEC, and are thus more likely to be adopted. Un-
fortunately, unlike DNSSEC, link-security approaches re-
quire the middle-men (DNS servers and resolvers) to be
trusted.

Trusting DNS servers and resolvers implies trusting all
hardware and software that constitutes the server or re-
solver. Due to the large number variables involved in
the realization of hardware and software, this is far from
practical. In this paper we propose a novel approach for
securing the domain name system. In the proposed TCB-
DNS approach we identify a minimal trusted computing
base (TCB) for a DNS server, and leverage this TCB to
realize the desired assurances.

1.1 Trusted Computing Base

For any computing system with a desired set of security
requirements R the trusted computing base (TCB) is “a
small amount of software and hardware we rely on” (to
realize the requirementsR) and “that we distinguish from
a much larger amount that can misbehave without affect-
ing security” [13]. In other words, as long as the TCB is
worthy of trust the TCB can be amplified to realize the
desired assurances R regarding the operation of the entire
system.

In this paper we argue that the TCB for a DNS server
is a simple atomic relay function. In practice, the atomic
relay function can be realized as a fixed sequence of log-
ical and cryptographic hash operations performed inside
low-complexity trustworthy modules (TM) that can be
realized at low-cost. Such TMs housed in DNS servers
can be leveraged by the TCB-DNS protocol to realize as-
surances A1 - A3. In doing so, TCB-DNS

1) will not require DNS servers (and operators with un-
fettered access to the DNS servers) to be trusted;
only the TMs are trusted to provide assurances A1
and A2;

2) is immune to DNS-walk; TCB-DNS provides assur-
ance A2 without the need to reveal names of unso-
licited records, or even hashes of unsolicited names
to the queries (thereby providing assurance A3);

3) will place very little additional demands (over plain-
old DNS) on DNS servers, resolvers and hosts; and

4) will not mandate any changes to the structure of DNS
queries and responses.

1.2 Organization

The rest of this paper is organized as follows. Section 2
provides an overview of “plain-old” DNS, security issues
in DNS, and DNSSEC.

Section 3 outlines the atomic relay function, and the
TCB-DNS protocol for securing DNS. An essential com-
ponent for the atomic relay function is a mechanism for
computing pairwise link-secrets, which is discussed in Sec-
tion 3.3.

Section 4 provides a more in-depth description of the
TCB-DNS protocol. Section 4.1 provides a formal list-
ing of the atomic relay algorithm. Sections 4.2 and 4.3
describe how the atomic relay function is leveraged to re-
alize the desired assurances A1 - A3 regarding the oper-
ation of the DNS. Section 4.2 enumerates the steps to be
taken by zone authorities to prepare TCB-DNS zone files.
Section 4.3 enumerates a typical sequence of events in re-
laying and verification of DNS RRs that are accompanied
by some TCB-DNS specific values.

Section 5 addresses some practical considerations in the
deployment of TCB-DNS, including the need for an infras-
tructure for verifying the integrity of DNS TMs. Section 6
discusses some of the similarities and differences between
DNSSEC and TCB-DNS. The protocols are compared in
terms of overhead, and susceptibility to replay attacks.
Some modifications to DNSSEC have been proposed re-
cently to reduce the overhead, with the intent of rendering
DNSSEC more suitable for adoption. Some of the unin-
tended side-effects of such modifications are discussed in
Sections 6.4 and 6.5.

Conclusions are offered in Section 7. The notations
and abbreviations used in this paper are summarized in
Table 1.

2 Domain Name System

The domain name system is a tree-hierarchical naming
system for services that can be accessed over the Internet.
At the top of the inverted DNS tree (see Figure 1) is the
root. Below the root are generic top level domains (gTLD)
like com, org, net, edu, etc., and country-code top level
domains (ccTLD) like ca (Canada), in (India), etc. A leaf
named b.cs.univ.edu in the DNS tree is a server-host in
a branch cs.univ.edu, which stems from a thicker branch
univ.edu, which stems from an even thicker branch .edu,
stemming from the root of the DNS tree.

A branch of the tree (including its sub-branches and
leaves) under the administrative control of an authority,
is a DNS zone.

The authority for a zone is responsible for i) assigning
names for branches and leaves under the zone; ii) creat-
ing DNS resource records corresponding to such names,



International Journal of Network Security, Vol.14, No.4, PP. 187–205, July 2012 189

Table 1: Typical states of SEIR model

DNS Domain name system/server
ANS Authoritative name server
PNS Preferred name server
h() A cryptographic hash function (like SHA-1)

X ‖ Y Concatenation of values X and Y
A,B, . . . Upper case letters represent identities of entities

KXY A pair-wise secret privy only to entities X and Y
MAC Message authentication code

MXY,V MXY,V = h(V ‖ KXY ) – A MAC for a value V

root

.com .org .edu · · · .ca .in · · ·

univ.edu col.eduibib.org

cs.univ.edu cas.univ.edua.ibib.org

b.cs.univ.edu

Figure 1: The domain name system (DNS) tree. A leaf of
the tree is typically a DNS name of a server (for example,
web-server, mail-server, DNS servers etc.). Some internal
nodes correspond to starting points of DNS zones. Asso-
ciated with each zone is i) an authority, and ii) a set of
authoritative name servers (ANS) for the zone.

and/or iii) delegating an entity as the authority for a
branch within the zone.

The authority for the root zone has delegated a gTLD
zone like .edu to a .edu-gTLD authority, who has in turn
delegated the zone univ.edu to another authority, who
may have delegated a zone cs.univ.edu to yet another au-
thority (say Z). All DNS records for the zone cs.univ.edu

(or all DNS records with names ending with cs.univ.edu)
are created by Z. The zone authority also specifies the
names of authoritative name servers (ANS) for the zone.
A “zone master file” which includes the set of all DNS
RRs pertaining to the zone is then provided every ANS
of the zone. ANSs of the root zone are also referred to as
root name-servers.

A client desiring to access a HTTP service
www.cs.univ.edu requires the IP address of the web-server
with a domain name www.cs.univ.edu. This information
is in an A-type record in the master file for a zone un-
der which the name www.cs.univ.edu falls, and can be
obtained by querying any ANS for the zone. To ob-
tain this information, the querier only needs to know the
IP address of a root name-server. While the root name
server cannot directly provide the answer to the query
“www.cs.univ.edu, A,” it can provide the names and IP
address of the ANSs for gTLD and ccTLD zones. In this
case, the root server will respond with the names and IP

addresses of all .edu ANSs.
The querier can now send the same query to any of

the .edu ANS, which will respond with the name and
the IP address of the ANSs for the zone univ.edu. When
the same query “www.cs.univ.edu, A” is the directed to
an ANS for the zone univ.edu, the response includes the
names and IP addresses of ANSs for the zone cs.univ.edu.

Finally, any of the ANSs for the zone cs.univ.edu is
queried to obtain the desired the A-type record. If the
zone cs.univ.edu had not been sub-delegated, then the
ANS for the zone univ.edu would have directly provided
the response. Thus, knowing only the IP address of one
root name server, any one can obtain any DNS record by
specifying the name and type, and performing a series of
queries.

2.1 DNS Records

Every DNS resource record (RR) is a five-tuple consist-
ing of i) name, ii) class, iii) time-to-live (TTL), iv) type,
and v) value; for example, name=www.cs.univ.edu, IN,

TTL=2345, type=A, value=159.43.7.82. The class is al-
ways IN (for Internet RRs); the field TTL is specified
in seconds, and indicates how long a RR can be cached.
In the rest of this paper, to keep notations simple, we
shall ignore the fields “class” and “TTL.”

A-type RRs indicate an IP address in the value
field. An NS-type record name=cs.univ.edu, type=NS,

value=ns1.dserv.net indicates that a name-server with
a domain name ns1.dserv.net is an ANS for the zone
cs.univ.edu.

A set of records with the same name and type, but
with different value fields, is collectively referred to as an
RRSet. For example the NS-type RRSet for the name
cs.univ.edu may include two NS records - one indicating
the ANS ns1.dserv.net, and the other indicating another
ANS named ns1.cs.univ.edu.

The NS type records are used for delegation. An RRSet
of NS records for a delegated zone (say) cs.univ.edu can
be found in the master file of the parent zone univ.edu.
Similarly the NS RRSet for univ.edu can be found in the
master file of the zone .edu, and so on. Along with NS
records which specify ANSs, the A-type records for the
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ANSs are also included in the master file as glue records1.
The creator of RRs for a zone, viz., the zone authority,

is always off-line. Once the master file for zone has been
provided to the ANSs, and the names of ANSs conveyed to
authority of the parent zone (and included as NS records
in the master file of the parent), the zone authority simply
expects the ANSs to faithfully accept and respond to DNS
queries regarding the zone.

2.1.1 Query-Response Process

DNS queries and responses are typically payloads of UDP
packets and have the same packet format. They in-
clude a header, and four sections: QUESTION, ANSWER,

AUTHORITY and ADDITIONAL. In a query packet QUESTION

section indicates the queried name and type (all other
sections are empty). The response has an identical
QUESTION section. The ANSWER section contains the desired
RRSet. The AUTHORITY section includes NS records indi-
cating the authoritative zone and the ANS for the zone.
The ADDITIONAL section contains A-type glues for the NS
records.

In practice, clients initiate queries using stub-resolvers
running on their own host machine. Stub-resolvers do not
directly query ANSs. Instead, they use preferred name-
servers (PNS) as intermediaries. PNSs are also referred
to as local DNS servers or local recursive resolvers or
caching-only name-servers, and are typically operated by
Internet service providers (ISP).

An application requiring the IP address of (say)
www.cs.univ.edu queries a stub-resolver running on the
same host. The stub-resolver redirects the query
((www.cs.univ.edu,A)) to a PNS. To do so, the host (or
the stub-resolver) should know the IP address2 of at least
one PNS.

All PNS needs to be aware of the IP address of at
least one root server. The PNS queries a root-server for
(www.cs.univ.edu,A), and receives NS records (with glued
A-type records) for ANSs of .edu. The PNS then queries
a .edu ANS to receive NS records of univ.edu, and so on.
Finally, an ANS of the zone cs.univ.edu responds to the
query with the desired A-type RRSet, which is relayed
back to the stub-resolver.

PNSs may cache RRs for a duration specified by the
TTL field in the RR, and may respond to queries from
stub-resolvers using cached RRs. Similarly stub-resolvers
may also cache RRs and respond to queries from applica-
tions running on the same host using the cached RRs.

1Note that zone univ.edu (or even edu) cannot be authorita-
tive for the zone dserv.net. Thus, while univ.edu can provide
an authoritative response regarding the name of the ANS for the
child zone cs.univ.edu, it cannot provide an authoritative A-type
record for the server ns1.dserv.net. To avoid possible circular de-
pendency problems, the necessary non authoritative A-type records
are included as glue records.

2Typically, IP addresses of PNSs are provided to a host by a
DHCP server. In UNIX-like machines the IP addresses of PNS are
stored in a file /etc/resolv.conf.

2.2 Securing DNS

The main goal of attacks on DNS is to simply divert traf-
fic away from genuine services, or more often, to divert
such traffic to impersonators phishing for personal infor-
mation from unsuspecting clients. A common strategy for
attackers is to impersonate ANSs to provide fake DNS re-
sponses to PNSs, thereby “poisoning the cache” of the
PNS, and consequently the caches of many stub-resolvers
which employ the poisoned PNS.

The header of a DNS query includes a 16-bit transac-
tion ID tid; the UDP packet carrying the query indicates a
16-bit source port p chosen by the querier. A DNS packet
carrying the query will be accepted only if it is addressed
to port p. The DNS response in the UDP packet will be
accepted only if it indicates an expected transaction ID
tid.

To create a fake response that will be accepted by an
PNS, an out-of-path (or external) attacker, who does not
have plain-sight view of the query packet, will need to
guess the values tid and p. A typical strategy for an out-
of-path attacker is to register a domain, run her own ANS
for the domain, and query the targeted PNS for a name
under her domain. When the query from the PNS is ulti-
mately directed to the attacker’s ANS, the attacker learns
enough information to narrow down the two values tid and
p within small range.

Recently, Kaminsky [11] pointed out that DNS cache
poisoning attacks can have even more severe conse-
quences. Instead of attempting to poison RRs corre-
sponding to a specific zone, the attacker can impersonate
a root server and send fake glue records for “IP addresses
of gTLD name servers.” Thus, queries to every .com zone,
for example, will then be directed to a computer under the
control of the attacker, which could redirect such queries
to other “ANSs” under her control.

2.3 Link-Security Approaches

While properly randomizing the two 16-bit values (tid and
p) is a good first step, they offer no defense against in-path
attackers. In-path attackers who may be in the same LAN
as the server or the resolver, or lie in-between the resolver
and the server, have plain-sight access to the values tid
and p in the UDP DNS packets, and can thus easily fake
responses. Securing links between DNS servers (for exam-
ple, by using a secret shared between a resolver and the
server queried by the resolver) can prevent such attacks.

Specifically, two entities A and B who share a secret
KAB can prevent even in-path attackers from imperson-
ating them by i) encrypting the message sent over the
link using the shared secret KAB , or ii) appending a mes-
sage authentication code (MAC) h(V ‖ KAB) where h() is
cryptographic hash function, and V may be the message,
or a cryptographic hash of a message M (or V = h(M));
as long as h() is pre-image resistant, only an entity with
access to the secret KAB can compute a valid MAC for a
message.
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Strategies like SK-DNSSEC [22] and DNSCurve [10]
adopt such an approach. In symmetric key DNSSEC
[22] all PNSs have the ability to establish secure channel
with the root servers. ANSs higher in the hierarchy act
as trusted servers and facilitate establishment of secrets
with ANSs lower in the hierarchy, using the Needham-
Schroeder protocol [16] (which is the basis for the Ker-
beros [17] authentication protocol). When a PNS queries
the root server for “cs.coll.edu, A”, the root server’s re-
sponse includes a Kerberos-like ticket which permits the
PNS to establish a secure channel with a .edu DNS server.
The .edu DNS server then issues a ticket for securely com-
municating with an ANS for the zone coll.edu.

DNSCurve [10] employs a Diffie-Hellman scheme over
a special elliptic curve C for setting up a private channel
between DNSCurve enabled DNS servers. A DNSCurve
enabled server A chooses a secret a. The secret between
two DNSCurve enabled servers/resolvers A and B (where
B’s secret is b) is KAB = C(b, α) = C(a, β), where α =
C(a, S), β = C(b, S), and S is a public parameter.

Link-security approaches assume that the DNS servers
themselves are trustworthy. Note that while link-security
approaches protect DNS RRs from out-of-path attackers
(who do not have access to values tid and p) and in-path
attackers (those with access to tid and p), there is nothing
that prevents an entity controlling the DNS server from
modifying an RR. In practice, such an attacker can be
the operator of a DNS server, or some other entity who
has somehow gained control of the DNS server. Such an
attacker can receive RRs over protected links, illegally
modify RRs, and relay fake RRs over “protected” links.

2.4 DNSSEC

Ideally, the “middle-men” should not be trusted: only the
authority of a zone should be trusted for providing infor-
mation regarding the zone. This is the approach taken by
DNSSEC [1], where every RRSet in the zone master file
is individually signed by the zone authority.

Every DNSSEC-enabled zone authority has an asym-
metric key pair. The public portion of the key pair is
certified by the authority of the parent zone. For exam-
ple, the public key of the zone cs.univ.edu is signed by
the authority of zone univ.edu. The public key of the zone
cs.univ.edu can be obtained by querying for a DNSKEY-
type RR for the name cs.univ.edu. To authenticate the
public key in the DNSKEY RR, the parent zone univ.edu

introduces two RRs in its zone file: a delegation signed
(DS) RR which indicates a key-tag (a hash) for the public
key of its child, and an RRSIG(DS) record which is the
signature for the DS record.

For verifying the RRSIG(DS) record the public key
of the parent zone univ.edu is required - which is the
DNSKEY RR for the name univ.edu. To authenticate the
public key of the parent, it is necessary to obtain the DS
and RRSIG(DS) record from its parent zone - .edu, along
with the DNSKEY RR for .edu. Finally, the public key
of .edu can be verified by obtaining DS and RRSIG(DS)

records from the root zone (by querying any root server).
The public key of the root zone is assumed to be well
publicized.

To summarize, corresponding to every RRSet for the
zone cs.univ.edu is a RRSIG(RRSet) record which con-
tains the digital signature for the RRSet. In response to
a query for an RRSet, the corresponding RRSIG record is
also included in the response. To verify the RRSIG, the
required DNS RRs are

1) DNSKEY RR of cs.univ.edu

2) DS, RRSIG(DS) corresponding to DNSKEY RR of
cs.univ.edu, and DNSKEY RR of the parent zone
univ.edu (fetched from the parent zone univ.edu);

3) DS, RRSIG(DS) corresponding to DNSKEY RR of
univ.edu, DNSKEY RR of .edu;

4) DS, RRSIG(DS) corresponding to DNSKEY RR of
.edu, from the root zone.

2.5 Authenticated Denial

Consider a scenario where the zone authority for the
domain wesellstuff.com outsources its DNS operations
to dnsnet.net. It is indeed conceivable that a com-
petitor wealsosellstuff.com could bribe some personnel
in dnsnet.net (or any entity who has acquired control
over the ANS) to remove the record for wesellstuff.com

(thereby driving the competitor out of business).
To ensure that DNS servers and/or their operators

need not be trusted, DNSSEC demands a pertinent re-
sponse from an ANS for every query that falls under the
zone. If the queried name exists, the ANS should pro-
vide a signed RRSet. If the queried name does not exist,
the ANS is expected to provide authenticated denial by
providing some information signed by the zone author-
ity3 which demonstrates that the queried record does not
exist. If the ANS ignores the query, or provides a non
pertinent response, the resolver will send the query again,
or will query another ANS for the zone, till it receives a
pertinent response.

For example, in response to a query for name
abc.xyz.fgh the querier expects a signed RRSet by the
authority for the zone under which the name abc.xyz.fgh

falls, or alternately, expects

1) a signed response from the authority of the root zone
that no record for a name .fgh exists; or

2) a signed response from the authority of the zone .fgh

that no record for the name xyz.fgh exists; or

3) a signed response from the authority of the zone
xyz.fgh that no record for the name abc.xyz.fgh ex-
ists.

3Only the zone authority is trusted to provide information re-
garding the zone - even information indicating that a record does
not exist.
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As the zone authority is off-line, a response denying
every possible (as yet unknown) query, regarding the al-
most infinitely many possible names and types that can
fall under the zone, should somehow be signed by the
zone authority and included in the master file provided
to ANSs. This is accomplished cleverly through NSEC
records [27]. A signed NSEC record abc.example.com,

NSEC, cat.example.com indicating two enclosers is in-
terpreted as an authenticated denial of all enclosed
names: viz., names that fall between abc.example.com and
cat.example.com in the dictionary order. For example, if
queried for a record named cab.example.com, this NSEC
RR signed by the authority of the zone example.com (the
signature included in a RRSIG(NSEC) RR) is proof that
no such record exists.

2.5.1 DNS-Walk

Even while DNS RRs are not meant to be private
they should only be provided when explicitly queried
by name and type. NSEC permits one to query ran-
dom names and learn about unsolicited names of en-
closers that do exist in the zone master file. For
example, a querier may send a query for a random
name like axx.example.com and get to know the two
enclosers abc.example.com, cat.example.com that actu-
ally exist. The attacker can then query for a random
name like cate.example.com and obtain its enclosers, say
cat.example.com, data.example.com, and so on.

The ability to easily enumerate all services under a zone
is obviously a useful starting point for any attacker. An
attacker wishing to obtain all DNS records for a zone can
easily “walk-through” all records in the zone master by
simply making a sequence of random queries. Such super-
cilious queries also have the ill-effect of further burdening
the DNS infrastructure.

It is this unintended side effect of providing assurance
A2 that created the need for assurance A3. NSEC3 [14],
a recent modification to NSEC, employs hashes of names
as enclosers instead of using the names themselves as en-
closers. For example, an NSEC3 RR indicating a hash
encloser (vl, vh) indicates that no record with a name y
exists, if vl < h(y) < vh. The enclosers vl and vh are
hashes of real names corresponding to records that do
exist in the master file.

Unfortunately, simple dictionary attacks can be used
to reveal the names behind hashes like vl and vh. Thus,
NSEC3 fails in its attempt to provide assurance A3.

3 Overview of TCB-DNS

DNSSEC has seen poor levels of adoption as upgrading
a “plain-old” DNS server to support DNSSEC will often
necessitate a hardware upgrade due to an order of mag-
nitude increase in the size of DNSSEC records (compared
to plain DNS records), and substantial increase in the
size of DNS responses [7, 8, 15]. In many cases DNSSEC
may require more expensive TCP instead of UDP as the

transport protocol for carrying large DNS responses. DNS
resolvers and clients will also need to endure substan-
tial computational burden due to the need to verify mul-
tiple digital signatures. Furthermore, the feasibility of
zone enumeration also encourages attackers to perform
supercilious queries, thus exacerbating the issue of high
DNSSEC overhead.

3.1 Extending Link-Security Approaches

Cryptographic mechanisms for individually securing each
link traversed by DNS records, viz., the links i) between
the off-line zone authority and ANSs of the zone (for
securely conveying master files); ii) between PNSs and
ANSs; and iii) between clients and their PNSs, demand
substantially lower overhead compared to the hierarchi-
cal PKI-like approach employed by DNSSEC. Unfortu-
nately, link-security approaches implicitly assume that
the middle-men are trustworthy: while RRs are protected
in transit, there is no protection for RRs while they reside
in the DNS servers.

Specifically, symmetric key DNSSEC [22] and
DNSCurve [10] simply assume that

1) the keys employed by DNS servers (which are used
to compute the link secrets) are well protected from
untrustworthy entities (else, any entity with access
to the secrets of a DNS server can impersonate the
DNS server to send fake RRs); and that

2) the intermediary DNS servers i) will not modify RRs,
and ii) will not deny RRs that do exist.

The proposed TCB-DNS, where every DNS server
houses a low complexity trustworthy module (TM), is also
a link-security approach. However, TCB-DNS does not
make such unjustifiable assumptions regarding the trust-
worthiness of DNS servers. Instead, TCB-DNS assumes
that

1) secrets protected by the TM (which are used to com-
pute link-secrets) cannot be exposed; and

2) the trivial functionality of the TM cannot be modi-
fied.

To warrant trust, an obvious requirement is that the
TM functionality is as simple as possible. To motivation
for TCB-DNS stems from the intuition that TMs that per-
form trivial functions are sufficient to provide the desired
assurances A1, A2 and A3.

3.2 Principle of Operation

In TCB-DNS every DNS server is equipped with a low-
complexity TM. From the perspective of DNS servers, the
TMs are black boxes that accept a formatted stream of
bits as input, and output a message authentication code
(MAC). Such MACs accompany plain DNS responses sent
by DNS servers. The operations performed inside the TM
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(to map the input bits to a MAC) are a fixed sequence
of logical and cryptographic hash operations. This simple
TM functionality is the TCB of a DNS server, which is
leveraged to realize all three assurances A1 - A3 with
negligible overhead.

3.2.1 Atomic Relay

In the path of a RRSet originating from zone authority Z
to the client (a stub-resolver C), are an ANS for the zone
Z and the PNS used by the host C. An atomic relay,
as the name suggests, relays a value from one entity to
another, in one atomic step. A TM A in the ANS performs
an atomic relay of a value V from the zone authority Z
to a PNS TM P , thus eliminating the need to trust the
ANS in which the TM A is housed. Similarly the TM P
in the PNS performs an atomic relay of the value V from
the ANS TM A to a stub-resolver C, eliminating the need
to trust the PNS.

From the perspective of the TM A, it receives some in-
put bits which specify the identity of the source Z, a value
V to be relayed, a message authentication code (MAC)
MV,ZA, and the identity of the entity P to which the
value V needs to be relayed. The TM A uses its secrets
to compute pair-wise secrets KZA and KAP (the precise
mechanism for doing this is explained later in this paper).
Using the pair-wise secret KZA, TM A verifies the MAC
MV,ZA = h(V, KZA) appended by Z. Following this, the
TM A computes a MAC MV,AP = h(V,KAP ) using the
secret KAP .

The values relayed by TMs are hashes of RRSets. The
hashes of RRSets are computed by zone authorities and
individually authenticated to each ANS TM using MACs.
ANS TMs can atomically relay the hashes to any PNS TM
which can then atomically relay the hash to any stub-
resolver. The TMs thus provide a parallel channel for
securely conveying hashes of RRSets by leveraging link-
secrets (which are computed using secrets protected by
the TM).

Note that in both DNSSEC and TCB-DNS end-to-end
integrity of an RRSet is realized by securely conveying a
pre-image resistant hash of the RRSet. In DNSSEC this is
achieved by signing the hash. In TCB-DNS the integrity
of the hash is assured to the extent we can trust the TMs
involved in relaying the hashes.

DNSSEC provides assurance A1 by signing hashes of
regular DNS RRs, and provides assurance A2 by signing
hashes of NSEC/NSEC3 RRs. Obviously, by atomically
relaying the hashes of regular RRSets and NSEC/NSEC3
records, TCB-DNS can also provide both assurances pro-
vided by DNSSEC. However, a simple addition to the
capability of the TMs can provide TCB-DNS with yet
another useful feature - the ability to provide assurance
A3, and thereby eliminate the possibility of DNS-walk.

3.2.2 “Intelligent” Atomic Relay

If we merely relay hashes of NSEC/NSEC3 records, then
TCB-DNS will also be susceptible to DNS-walk. Fortu-
nately, to realize assurance A3, the only additional intel-
ligent feature required of TMs is the ability to recognize
that “a value V falls inside an enclosure (Vl, Vh).”

The atomic relay function performed by a TM with
identity X, takes the form

MXD = ARX(S, D, V, Vl, Vh,MSX).

In executing this TCB function the TM X accepts
some fixed-length inputs like i) S and D: the identities
of a source and destination; ii) cryptographic hashes V ,
Vl, and Vh; and iii) a MAC MSX provided by the source
S. The TM outputs a MAC for the value V under two
conditions:

1) the MAC MSX is consistent with V ; or

2) the MAC MSX is consistent with values Vl ‖ Vh, and
V is enclosed by (Vl, Vh).

In the latter case, the TM interprets a pair of values
(Vl, Vh) authenticated by the zone authority as proof that
no value enclosed by (Vl, Vh) exists in the master file. If
V is enclosed, the TM outputs a MAC for V to inform D
that an “enclosure for V was found.”

In DNSSEC that a value V is enclosed by (Vl, Vh) is
checked by the querier. The need to reveal the enclosures
to the querier is the reason that assurance A3 cannot
be provided. In TCB-DNS the enclosure is checked by
the ANS TM (not provided to the querier). To the ex-
tent that the TM can be trusted, the querier trusts that
an enclosure exists for the value V (and consequently, is
convinced that an RR with the name corresponding to V
does not exist).

More specifically, in TCB-DNS,

1) if the queried name and type exists the response in-
cludes the desired RRSet in the ANSWER section; a
MAC for a value V (where V is hash of the RRSet)
is also included in the response.

2) To deny a name and type ni ‖ ti the ANSWER section
indicates the name and type ni ‖ ti; the MAC for
the value V = h(ni ‖ ti) is included in the response
to imply that the indicated name and type does not
exist.

Typically, to provide authenticated denial for a queried
name-and-type, a plurality name-and-types will have to
be explicitly denied (as will be explained later in Sec-
tion 6.1).

3.3 Computing Link Secrets

For performing the atomic relay, a TM needs to compute
two pairwise secrets - one shared with the sender (the
previous hop), which is used to verify the hash V (or the
encloser (Vl, Vh) for authenticated denial), and one shared
with the destination (the next hop). Specifically,
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1) ANS TMs require the ability to establish a pairwise
secret with i) the zone authority for receiving hashes
of RRSets, and ii) all PNS TMs for securely convey-
ing hashes of RRSets.

2) PNS TMs require the ability to establish a pairwise
secret with i) all ANS TMs for receiving hashes, and
with ii) all clients who employ the PNS for conveying
the hashes.

For reducing TM complexity it is essential to identify
a low complexity mechanism for computing pairwise se-
crets. While many efficient strategies exist, the modified
Leighton-Micali scheme (MLS) proposed in [19] is particu-
larly well suited for establishing pairwise secrets between
TMs in DNS servers (between a large number of ANS
TMs and a large number of PNS TMs). In this paper we
also extend MLS to facilitate link-secrets between i) zone
authorities and ANS TMs and ii) between PNS TMs and
clients.

3.3.1 MLS

Let KX represent a secret privy only to an entity with
identity X and a key distribution center (KDC). Similarly,
let KY represent a secret known only to an entity Y and
the KDC. In MLS, the secret shared between two entities
X and Y is KXY = h(KX , Y ) or KY X = h(KY , X).

If the pairwise secret is KXY = h(KX , Y ), then en-
tity X computes the pairwise secret by directly hashing
its secret KX ; entity Y employs a public (non-secret)
value PY X = h(KX , Y ) ⊕ h(KY , X) to compute KXY =
h(KXY ) as

KXY = h(KY , X)⊕ PY X

= h(KY , X)⊕ h(KX , Y )⊕ h(KY , X)
= h(KX , Y ).

On the other hand, if the pairwise secret is KY X =
h(KY , X), entity Y computes the pairwise secret directly,
and entity X employs the public value PY X = h(KX , Y )⊕
h(KY , X).

MLS is an identity-based scheme, where the identity
assigned to an entity can be chosen to reflect the creden-
tials of the entity. For example, the identity of a zone
authority can simply be the hash of the name of the zone.
In MLS some bits of the identities (say of two entities
X and Y ) are also used to determine which of the two
entities should employ the pair-wise public value.

3.3.2 Key Distribution for TCB-DNS

In TCB-DNS the KDC can be entity under the control of
a regulatory authority (for example, ICANN). The core
TCB-DNS entities are TMs associated with DNS servers.
The fringe TCB-DNS entities include zone authorities
(who need to securely convey RRs to ANSs) and clients
(stub-resolvers) who query DNSs. Pair-wise secrets for
TCB-DNS can be i) between two core entities (between
two TMs), or ii) between a core entity and a fringe entity.

For the former case, a sequence number included in the
TM identity specifies which of the two core entities should
use the public value to compute the pairwise secret. For
the latter (pairwise secret between a core entity and a
fringe entity) the fringe entity employs the public value -
the core entity does not.

The identity X of a TM (associated with an ANS or a
PNS) is of the form X = Xt ‖ qx where Xt is a succinct
code describing the nature of X and duration of validity;
the value qx is a unique number assigned sequentially to
every DNS server TM. To establish a secret between TMs
X = Xt ‖ qx and Y = Yt ‖ qy where (say) qx < qy, Y
is required to use the value PXY to compute the pairwise
secret KXY ; X can compute KXY directly using its secret
KX .

The TCB-DNS identity Z of a zone authority is of
the form Z = Zt ‖ Zname where Zname is a one-way
function of the domain name of the zone. To enable Z to
compute a pairwise secret KZA with an ANS TM A the
zone authority is issued

1) a secret KAZ = h(KA, Z) by the KDC, or

2) a secret KZ , along with a public value PZA; or

3) a TM with identity Z (with secret KZ stored inside
the TM), along with a public value PZA.

In the TCB-DNS identity of a client C = Ct ‖ C ′, C ′

can be a unique random value. If P is the identity of a
TM in a PNS used by the client C the client C is issued i)
a secret KPC = h(KP , C) or ii) a secret KC and a public
value PCP .

Thus, once keys have been distributed to TCB-DNS
entities, computing any link-secret will require the TM to
only perform a single hash computation (or a hash com-
putation and an XOR operation). Periodically, the KDC
disseminates signed revocation lists indicating identities
of entities revoked.

Note that unlike the “basic” key distribution scheme
for a static network of size N (where each node is issued
N − 1 secrets) MLS can cater for a dynamic network - as
new core entities (DNS server TMs) can be added at any
time. In the basic scheme, to add a new node every old
node should be provided a new secret, which is imprac-
tical. In MLS the new node is provided with one public
value corresponding to every “old” node - old nodes do
not need a public value to establish a secret with newly
added nodes.

3.3.3 Multiple KDCs

At the top of the hierarchy of DNSSEC is a single root CA
- which is the authority for the root zone. Though the root
zone is expected to sign only public keys for gTLD and
ccTLD zones, the all powerful root zone authority has the
ability to misrepresent public keys for any zone. While
ideally we would desire that this power be distributed
amongst multiple independent entities, such an approach
can further increase the overhead for DNSSEC.
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However, MLS can be easily extended to support mul-
tiple KDCs with minimal overhead. If we use m (for ex-
ample, m = 4) independent KDCs, an entity X receives m
secrets (one from each KDC), KXi , 1 ≤ i ≤ m. Two enti-
ties X and Y can compute m independent pairwise secrets
of the form Ki

XY , 1 ≤ i ≤ m (one in each of the m parallel
systems). All these secrets are simply XORed together to
compute KXY as KXY = K1

XY ⊕K2
XY · · · ⊕Km

XY .
The secret Ki

XY can be computed only by X, Y , and
the ithKDC. The secret KXY = K1

XY ⊕K2
XY · · · ⊕Km

XY

can be computed only by TMs X and Y (and together, by
all m KDCs). While there are m public values associated
with each secret, the m values can be XORed together and
stored as one value; for example, PXY = P 1

XY ⊕· · ·⊕Pm
XY ,

where P i
XY = h(KXi

‖ Y )⊕ h(KYi
‖ X).

Thus, a TM with identity X stores m secrets KXi
, 1 ≤

i ≤ m inside its protected boundary. To enable the TM
to compute KXY , the entity (DNS server) using the TM
X provides two inputs: (Y, PXY ). The TM performs m
hash operations and m XOR operations to compute

KXY = h(KX1 , Y )⊕ · · · ⊕ h(KXm
, Y )⊕ PXY

= K1
XY ⊕ · · · ⊕Km

XY .

In the rest of this paper we shall use the notation
KXY = F (Y, PXY ) to represent the process of computing
the pairwise secret KXY by entity (or TM) X.

3.3.4 Renewal

For renewal of secrets of a TM X = Xt ‖ qx the regula-
tory authority simply issues a new TM with TCB-DNS
identity X ′ = X ′

t ‖ q′x, with secrets KX′
1
· · ·KX′

m
. If at

the time of renewal, the last issued sequence number was
q, the new TM is issued a sequence number q′x = q + 1.
The owner of the TM is issued q public values (where each
public value is the XOR of m public values). If the secrets
of an ANS TM A is renewed, only the zone authorities us-
ing the ANS need to be issued new public values for A. If
the TM P of a PNS is renewed, only the clients who use
the PNS are issued with new public values corresponding
to P .

More specifically, a node with sequence number q is the
qthnode to join the network, and is issued one secret and
q−1 public values (or m secrets and q−1 public values if
we use multiple KDCs). For renewal we simply add a new
node. The public values are the same size as the pair-wise
keys (say 160-bits). A DNS server with a TM sequence
number 10 million will need access to at most 200 MB of
storage for public values (which can easily be stored in
the hard-disk of the DNS server). There is no practical
limit on the number of fringe entities (zone authorities
and clients). Each fringe entity requires access only to a
small number of public values (as they need to establish a
pairwise secret only with a small number of core entities
- zone authorities with TMs of all ANSs for the zone, and
clients with all its PNSs).

4 The TCB-DNS Protocol

In this section we begin with a detailed specification of
the atomic relay algorithm. We then we outline the op-
eration of TCB-DNS by outlining the steps for creating
TCB-DNS master files (in Section 4.2) and illustrating
the sequence of events in typical a query-response process
(in Section 4.3).

4.1 The Atomic Relay Algorithm

A TM with identity X stores a secret KX inside its pro-
tected boundary - which is known only to TM X and the
KDC. To relay a value from S to D the TM requires to
compute secrets KXS and KXD. For this purpose the
TM needs two additional inputs - public values PXS and
PXD. Thus, the atomic relay function of a TM X takes
the form

MXD = ARX((S, PXS), (D, PXD), V, Vl, Vh, MSX).

In a scenario where X does not require to use a public
value to compute KXS , the input PXS = 0 is provided
to the TM (as XOR-ing by 0 leaves a value unchanged).
It is the responsibility of the (untrusted) DNS server to
store and provide appropriate public-values to its TM; if
a DNS server provides incorrect public values to its TM
the MAC will be rejected by the next-hop4 which verifies
the MAC.

The TM X accepts a formatted stream of bits bi =
(S ‖ PXS) ‖ (D ‖ PXD) ‖ V ‖ Vl ‖ Vh ‖ MSX as in-
put from the DNS server which houses the TM; the TM
performs a simple sequence of logical and cryptographic
hash operations, and outputs a MAC MXD or a fixed con-
stant ERROR.. An algorithmic description of the sequence
of operations is depicted in Figure 2.

ARX(S, PXS , D, PXD, V, Vl, Vh, MSX) {
KXD = F (PXD, D);
IF (S == X);

RETURN h(V ‖ KXD);
KXS = F (PXS , S);
IF (Vl == 0)

Vi = V ;
ELSE IF (((Vl < V ) ∧ (V < Vh)) ∨ ((V > Vl) ∧ (Vl > Vh)))

Vi = h(Vl ‖ Vh);
ELSE RETURN ERROR;
IF (MSX ! = h(Vi ‖ KSX));

RETURN ERROR;
RETURN MXD = h(h(S ‖ V ) ‖ KXD); }

Figure 2: The Atomic Relay Algorithm ARX(). KXS and
KXD are pair-wise secrets that X shares with TCB-DNS
entities S and D respectively.

4If the next-hop is a PNS, when an invalid response is received,
the PNS will send the query again or query another ANS. Similarly
if the next-hop is a stub-resolver C, then C will resend the query or
query another PNS.
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As shown in the algorithm in Figure 2, the TM com-
putes the pairwise secret KXD for authenticating TM out-
put to destination D. If S = X (source is indicated as the
TM itself), the TM construes this as a request to output
a MAC h(V ‖ KXD) verifiable by D. This feature, as
we shall see soon, permits zone authorities to use DNS
TMs for protecting zone secrets. In general (for S 6= X)
the TM proceeds to compute the pairwise secret KXS

required for validating the inputs (V , Vl and Vh authen-
ticated by source S using a MAC MSX :

1) if Vl is zero the TM verifies that the MAC MSX is
consistent with V and KXS ;

2) if the value Vl is non-zero, the TM verifies that i) the
input MAC MSX is consistent with the two values
(Vl ‖ Vh), and ii) that V is enclosed by (Vl, Vh). A
value V is enclosed by (Vl, Vh) if Vl < V < Vh. If
Vl > Vh then V is enclosed by the “wrapped around”
pair if V > Vl > Vh or V < Vh < Vl.

On successful verification the TM outputs a MAC for
the value (S ‖ V ) computed using the pairwise secret
KXD between X and D.

For ease of following the discussion in the rest of this
section, note that

MZA,V = ARZ(Z, 0, A, PZA, V, 0, 0, 0)
= h(V ‖ KZA),

is a MAC for a value V computed by a TM Z (for verifica-
tion by a TM A). We shall see soon that zone authorities
can employ TMs in this fashion to authenticate hashes of
RRSets for verification by ANS TMs. Also note that

MAP,VZ
= ARA(Z, 0, P, PAP , V, 0, 0,MZA,V )
= h(h(Z ‖ V ) ‖ KAP ),

is a MAC computed by TM A which can be verified by
an entity P . The MAC represents A’s claim that “a value
V was received from Z.” If the MAC is verifiable, to the
extent P trusts A, P can accept the claim that the value
V was provided by Z. Finally,

MAP,V ′Z = ARA(Z, 0, P, PAP , V ′, Vl, Vh,MZA,V ′)
= h(h(Z ‖ V ) ‖ KAP ),

is also a MAC verifiable by an entity P ; on successful
verification, P concludes that “a value V was received
from Z.” P does not need to differentiate between the
two cases. In the former case, V was explicitly conveyed
to A by Z through a MAC MV,A. In the latter case, V
is any value, not explicitly conveyed by Z, but happens
to fall within an enclosure (Vl, Vh) (and the enclosure is
authenticated by Z using MAC MV ′,A).

4.2 Preparation of TCB-DNS Master
File

Consider a zone example.com, which employs ANSs with
TMs A and B for the zone. The sequence of steps per-
formed by the zone authority to prepare a master file are

as follows. Let the TCB-DNS identity of the zone be Z
where Z = Zt ‖ Zname, where Zname is the hash of the
name of the zone (example.com). Recall that Zt includes a
succinct representation of the time of expiry of the secrets
assigned to Z.

Step 1. Prepare a regular plain DNS master file. Some
of the required additions to plain DNS RRs are as
follows:

1) Each RR will indicate an absolute value of time
as the time of expiry. This value can be a 32-bit
value like UNIX time, and can be different for
each RR. In general the time of expiry of any
RR should not be later than Zt.

2) NS-type RRs (which indicate the name of an
ANS) includes two additional values

a. the TCB-DNS identity of the ANS-TM, and
b. the value Zt (note that from the name of

the zone in the NS RR, one can compute
the value Zname; along with the value Zt

the TCB-DNS identity of the zone can be
computed as Z = Zt ‖ Zname).

In general, a RRSet R has multiple RRs with the
same name and type, and each RR indicates its own
a time of expiry.

Step 2. Let r be the total number of RRSets. For an
RRset R with name nj and type tj compute i) the
hash of the RRSet vj = h(RRSet); and ii) u′j =
h(nj ‖ tj ‖ τ), where τ is the time at which the
authentication for all enclosures expire. Repeat for
all r RRSets.

Step 3. Sort the hashes u′1 · · ·u′r in an ascending order;
Let the sorted hashes be u1 · · ·ur. Now, compute
values d1 · · · dr as

dj =
{

h(uj ‖ uj+1) j < r
h(ur ‖ u1) j = r

Note that for the last “wrapped around” enclosure
(ur, u1) the first value ur is greater than the second
(u1).

Step 4. For each of the 2r + 1 values in
{v1 · · · vr, d1 · · · dr, τ} compute MACs MZA,i =
h(vi ‖ KZA), 1 ≤ i ≤ r, M ′

ZA,j = h(dj ‖ KZA), 1 ≤
j ≤ r, and MZA,τ = h(τ ‖ KZA). If the zone
authority Z employs a TM Z then a MAC like
MZA,i = h(vi ‖ KZA) is computed by using the
atomic relay function of the TM as

MZA,V = ARZ(Z, 0, A, PZA, vi, 0, 0, 0)
= h(vi ‖ KZA).

Prepare a supplementary master file with

1) the values (τ,MZA,τ );
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2) r rows of the form (i,MZA,i), 1 ≤ i ≤ r, and

3) r rows of the form ((uj , uj+1),M ′
ZA,j), 1 ≤ j ≤

r.

Step 5. Provide the supplementary master file to ANS
with TM A along with the regular master file. The
zone authority repeats Step 4 for ANS B to create a
supplementary master file with values (τ, MZB,τ ); r
rows (i,MZB,i), and r rows ((uj , uj+1),M ′

ZB,j).

4.3 Verification of RRSets

We shall consider a scenario where an ANS with TM A is
queried for an RRSet cad.example.com,A by a PNS with
TM P . Let us further assume that the query was initiated
by a stub-resolver C.

4.3.1 Events at ANS with TM A

Let the identities A and P of the TMs be A = At ‖ qa

and P = Pt ‖ qp. If qp < qa (sequence number of P is less
than that of A) the ANS fetches PAP from storage (else
PAP = 0). If the queried name and type (ni, ti) exists, or
if a suitable delegation exists, the ANS

1) extracts the RRSet from the plain DNS master file,
and computes the hash of the RRSet, vi;

2) extracts the MAC MZA,i for vi from the supplemen-
tary master file;

3) requests TM A to compute

MAP,i1 = ARA((Z, 0), (P, PAP ), vi, 0, 0, MZA,i)
= h(h(Z ‖ vi),KAP ).

In the response sent to the PNS, the ANS includes
the RRSet in the ANSWER section along with the value
MAP,i1 . If the response is a delegation, the NS RRSet
can be included in the AUTHORITY section along with the
value MAP,i1 . The TM A does not know, or care, if the
response is an answer or a delegation. To deny a name-
and-type (ni, ti),

1) ANS extracts the values (τ, Mτ,ZA) from the supple-
mentary master file for zone Z.

2) ANS computes vi = h(ni ‖ ti ‖ τ);

3) ANS finds encloser for vi (say (uj , uj+1)), and corre-
sponding MAC MZA,j from the supplementary mas-
ter file;

4) ANS requests TM A to compute MAP,τ1 and MAP,i1

as

MAP,τ1 = ARA((Z, 0), (P, PAP ), τ, 0, 0, MZA,τ )
= h(h(Z ‖ τ), KAP )

MAP,i1 = ARA((Z, 0), (P, PAP ), vi, uj , uj+1, MZA,j)
= h(h(Z ‖ vi), KAP ).

For reasons that will be explained later in Section 6.1,
typically the ANS will need to deny multiple name-and-
type values in a response. Let us assume that q name-
and-type values need to be denied. For each such name-
and-type (nl, tl) the ANS computes vl = h(nl ‖ tl ‖ τ),
finds an encloser for vl and the corresponding MAC in
the supplementary master file, and requests the TM to
compute MACs of the form MAP,l1 (each of the q requests
are made independently - each request results in the use
of the atomic relay function ARA() by the TM A).

In the response sent to the PNS the ANS includes (in
the ANSWER section)

1) values τ and MAP,τ1 ,

2) q denied name-and-type values ni ‖ ti,

3) q MACs of the form MAP,i1 .

4.3.2 Events at the PNS with TM P

Before the PNS had sent a query to the ANS for a
name and type belonging to zone Z, the PNS would
have queried an ANS for the parent zone of Z - say
W = Wt ‖ Wname, and obtained an NS-type RRSet for
the name Zname (where Z = Zt ‖ Zname).

Let us further assume that the NS-type RRSet was
authenticated by a TM G = Gt ‖ qg (housed in an ANS
for the zone W ). In other words, the PNS would have re-
ceived a value MGP,j1 to authenticate the NS-type RRSet,
where

MGP,j1 = h(h(W ‖ vj),KGP ),

and, vj is the hash of the NS-type RRSet.
In TCB-DNS, the PNS is expected to verify the NS

RRSet before sending a query to the delegated server. In
this case, where the PNS had chosen to approach the ANS
A for the zone Z (based on the information included in the
NS-type RRSet authenticated by G) the PNS computes
vj1 = h(W ‖ vj), and requests its TM P to compute

x = ARP ((G, PGP ), (A,PPA), vj1 , 0, 0, MGP,j1).

As long as x 6= ERROR, the PNS considers the NS
records to be valid.

Similarly, prior to querying G (ANS for W , the parent
of Z) the TM would have received a response from an ANS
for the parent of W (unless W is the root zone which has
no parent - in our case W is the gTLD zone .com). Such
a response from an ANS of W ’s parent zone would have
also been verified as above before a query was sent to
G. Thus, after the response from the parent zone W was
verified, the PNS P had sent a request to A for a name
and type under zone Z.

TCB-DNS does not require queries to be authenti-
cated. Queries merely indicate the TCB-DNS identity
of the querier.

Now, after the response is received from A, the PNS
P has all the necessary information to send the answer to
the stub-resolver C which initiated the query.
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Typically, the PNS will need to include an RRSet in
the ANSWER section (along with a MAC computed by its
TM P ). For responses containing authenticated denial for
q name-and-types the response will include q + 1 values
authenticated individually using q + 1 MACs. For both
cases, an NS-type RRSet will be included in the AUTHORITY

section indicating ANS for the zone, along with a MAC
computed by the TM P .

More specifically, the hash of the RRSet in the ANSWER

section is relayed atomically from A to C, by P . Similarly,
for authenticated denial, the q hashes corresponding to
multiple non-existing names, and the value τ , are relayed
atomically from A to C by P . The hash of the NS-type
RRSet is however relayed atomically by P from G to C.

For example, to relay the RRSet with hash vi received
from A the PNS first hashes the RRSet to obtain vi and
requests its TM to compute

MPC,i2 = ARP ((A,PPA), (C, 0), vi1 , 0, 0,MAP,i1)
= h(h(A ‖ vi1) ‖ KPC)
= h(h(A ‖ h(Z ‖ vi)) ‖ KPC).

If the hash of RRSet vi computed by the PNS is not
the same as the one authenticated by the zone authority
Z, the MAC MAP,i1 will be found inconsistent by the TM
P , which will return ERROR.

Similarly, to relay the NS-type RRSet received from G
along with a value MGP,j1 , the PNS hashes the RRSet to
obtain vj , and uses its TM P to compute5

MPC,j2 = ARP ((G,PPG), (C, 0), vj1 , 0, 0, MGP,j1)
= h(h(G ‖ vj1) ‖ KPC)
= h(h(G ‖ h(W ‖ vj)) ‖ KPC).

The response from the PNS to C thus includes

1) NS-type RRSet (with hash vj) for Z along with the
values W , G and MPC,j2 in the AUTHORITY section;

2) The queried RRSet with hash vi, along with a MAC
MPC,i2 , and the identity A of the ANS;

3) Authenticated denial of q name-and-type values (by
including q + 1 values and q + 1 MACs), and the
identity A of the ANS.

If the parent zone W does not support TCB-DNS (the
ANS for W is not equipped with a TM) then the NS
RRSet is relayed without any TCB-DNS authentication.

4.3.3 At the Stub-Resolver C

The stub resolver performs the following steps:

Step 1. Extracts name of zone from the AUTHORITY sec-
tion; hashes name to compute Zname and hence
Z = Zt ‖ Zname;

5The value W is obtained from the NS type RRSet for the parent
zone W , which was obtained by querying W ’s parent - the root.

Step 2. If the NS RRSet in the AUTHORITY section has
TCB-DNS authentication

1) Client C computes the hash vj of the NS-type
RRSet in the AUTHORITY section and verifies that
MPC,j2 = h(h(G ‖ h(W ‖ vj)) ‖ KPC).

2) Parses W as W = Wt ‖ Wname and verifies that
Wname is a legitimate parent of Zname.

Step 3. C verifies that Zname is a legitimate parent of
the queried name.

Step 4. C verifies that name of the zone is a parent of
the queried name6 in the ANSWER section.

Step 5. If the ANSWER is the desired response, hash the
RRSet to compute vi; compute vi1 = h(Z ‖ vi), vi2 =
h(A ‖ vi1), and using key KCP verify that MPC,i2 =
h(vi2 ‖ KPC).

Step 6. If the ANSWER is an authenticated denial indicat-
ing q values of the form ni ‖ ti, for each of the q
values compute vi = h(ni ‖ ti ‖ τ), vi1 = h(Z ‖ vi),
vi2 = h(A ‖ vi1), and verify that MPC,i2 = h(vi2 ‖
KPC).

RRs which have expired (as indicated by time-of-expiry
field added to each RR in an RRSet) will be ignored. If
the ANSWER section indicate authenticated denial and the
value τ smaller than the current time, the response is
ignored. If any of the TMs A and P and G involved in
relaying the RRSets has been revoked by the KDC, the
RRSet is ignored.

4.4 Proof of Correctness

Consider a scenario where the verifier C determines that
the set of values {Z,A, vi,MPC,i2} satisfy

MPC,i2 = h(h(A ‖ h(Z ‖ vi)) ‖ KPC).

In concluding that the RRSet (with hash vi) in the
ANSWER section was indeed created by the zone authority
Z (as indicated in the AUTHORITY section), TCB-DNS as-
sumes

1) The integrity of TMs A and P : more specifically, i)
secrets assigned to TMs are not privy to other en-
tities, and ii) the atomic relay function cannot be
modified;

2) The keys of the zone authority Z (possibly protected
by a TM Z) are not privy to anyone else; and

3) The hash function h() is pre-image resistant.

With these assumptions, it is easy to see that:
6Just as there is nothing that stops an authority of example.com

from signing an RRSet for www.yahoo.com in DNSSEC, in TCB-
DNS a zone authority can authenticate any value. However, re-
solvers will not accept RRSet as valid as Zname = h(example.com)
is not a parent of www.yahoo.com.
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1) As the hash function h() is pre-image resistant, the
value MPC,i2 was computed by an entity with access
to the secret KPC (thus the verifier can conclude that
the value MPC,i2 was computed by TM P ).

2) The TM P can compute MPC,i2 only if it was pro-
vided values vi1 = h(Z ‖ vi) and MAP,i1 , satisfying
MAP,i1 = h(vi1 ‖ KAP ).

3) Only TM A could have computed the value MAP,i1

provided to P .

4) TM A can compute MAP,i1 only if it was pro-
vided values {vi,MZA,vi} satisfying MZA,vi = h(vi ‖
KZA).

5) As only Z has access to secret KZA, the value vi was
created by Z.

Note that to conclude that “value vi was indeed created
by Z,” it is not necessary that the parent zone W supports
TCB-DNS. However, it is indeed desirable that all zones
adopt TCB-DNS. If the parent zone also supports TCB-
DNS, then the client can also verify the integrity of the NS
RRSet for zone Z, and thereby confirm that A is indeed
a TM associated with an ANS for the delegated zone Z.

5 Practical Considerations

TCB-DNS can be implemented with minimal modifica-
tions to current DNS servers. The specific modifications
required to support TCB-DNS are as follows:

1) Every RRSet will indicate an absolute time of ex-
piry (say, 32-bit UNIX time) specified by the zone
authority; this value is unrelated to the TTL value7

specified in each RR.

2) Each NS record will indicate the TCB-DNS identity
of the ANS TM (this is similar to the requirement in
DNSCurve where the elliptic-curve public key of the
ANS is indicated in the NS record).

3) DNS queries will indicate an additional field - the
TCB-DNS identity of the querier.

If an NS record for a zone W provided by a parent zone
does not indicate the identity of a TM, the implication is
that the indicated ANS for the zone W does not support
TCB-DNS. It is also possible for a zone to employ as
its ANSs, some TCB-DNS aware servers and some plain
DNS servers. The NS records corresponding to TCB-DNS
compliant ANSs will indicate the TCB-DNS identity of
the ANS. NS records corresponding to plain DNS servers
will not. Thus, a PNS which supports TCB-DNS may
prefer to query a TCB-DNS compliant ANS for the zone
W . Similarly, a plain DNS PNS may choose to direct its
query to a plain DNS ANS for zone Z.

7The TTL value specifies how long an RR can be cached by
resolvers.

DNS Server BITW To Router

DNS Server To Router

Figure 3: Top: Original Configuration. Bottom: Bump-
in-the-Wire (BITW) Implementation.

If a TCB-DNS server receives a query which does not
indicate the TCB-DNS identity of the querier, the querier
is assumed to be unaware of TCB-DNS. In this case a
plain DNS record is sent as a response. If a TCB-DNS
unaware server is queried by a TCB-DNS compliant re-
solver the DNS server will simply ignore the additional
field.

TCB-DNS can easily support bump-in-the-wire imple-
mentations (see Figure 3). Converting a plain DNS server
to TCB-DNS server can be as simple as adding an addi-
tional BITW unit equipped with a DNS-TM. Only the
BITW unit will need to have access to the TCB-DNS
supplemental master file. The BITW unit will

1) Verify TCB-DNS authentication appended to incom-
ing DNS packets, strip authentication, and relay
plain DNS packets to the DNS server;

2) Append TCB-DNS authentication to outgoing DNS
packets.

5.1 Ideal TMs

Deployment of TCB-DNS requires an infrastructure in
place for some regulatory authority (for example, ICANN
or IANA) to oversee the production and verification of
trustworthy DNS TMs. Mandating rigid and simple func-
tionality can go a long way in reducing the cost for de-
ploying such an infrastructure, reducing the cost of the
TMs, and rendering them more worthy of trust.

Just as guaranteed TCB functionality can leveraged to
provide some assurances regarding the security of the sys-
tem, for realizing guaranteed TCB functionality two fun-
damental assurances provided by trustworthy computing
modules are leveraged - read-proofing and write-proofing
(see Figure 4).

Read-proofing of secrets protected by the TMs is neces-
sary to ensure that the modules cannot be impersonated.
Write-proofing of software executed by the TMs is neces-
sary to ensure that the TCB functions (usually dictated
by the software) cannot be modified. The two require-
ments are however not independent. With the ability to
modify software at will, an attacker can force the TM to
reveal its secrets (for example, by inserting a set of com-
mands to write the secret bytes out to the serial port). On
the other hand, secrets that are protected can be used to
authenticate software. Without the knowledge of the se-
cret the attacker cannot modify the software (more specif-
ically, such modifications will be detected due to failure
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solver the DNS server will simply ignore the additional
Readproofing Writeproofing

TCB Functionality

System Security

Figure 4: Leveraging Read-proofing and Write-proofing
to Realize System Security.

of authentication).
In practice read-proofing is easier to realize [20], and is

often a stepping stone to the more elusive goal of write-
proofing [9]. Attacks aimed at modifying software to re-
veal secrets can be prevented by ensuring that software
does not have access to at least some of the secrets that
are protected. Some secrets may be generated, stored and
used by dedicated hardware [21]. However, authenticat-
ing software with the secrets provides a boot-strapping
problem [18]. After all, some software should be loaded
which includes instructions to load a secret and carry out
the steps required to perform authentication.

Realizing TMs that truly deserve trust calls for some
simple common-sense restrictions to be imposed on the
TMs. If the entire functionality of the TM is trivial
enough to be hard-wired (and thus eliminate the need
for mutable code), we can side-step issues associated with
guaranteeing the functionality of the TM. If the TM func-
tionality is simple and immutable, it is less expensive to
verify such functionality as the testing infrastructure can
be easily automated. If the TMs do not draw significant
electrical power to perform its tasks (and consequently
disseminate very little heat) we can then afford to physi-
cally shield the TMs extremely well from external intru-
sions aimed at exposing secrets.

It is for these reasons, that in identifying good TCB
functionality for TCB-DNS we enforce these restrictions.
The low-complexity, low-power, hard-wired TMs em-
ployed by TCB-DNS will merely require i) protected reg-
isters for storing a few secrets, ii) a hash function (for
example SHA-1), and iii) hard-wired logic which drives a
fixed sequence of logical and hash computations.

5.2 Leveraging TPMs

While creating a dedicated infrastructure for DNS-TMs is
the preferred approach to realize highly trustworthy TMs,
a practical alternative to lower the cost of the infrastruc-
tural requirements is to take advantage of an existing in-
frastructure for trusted platform modules (TPM).

The trusted computing group (TCG) approach to re-
alize a trusted platform includes a thorough specification
of trusted platform modules (TPM) [25], and recommen-
dations on how such modules can be leveraged to provide
some assurances regarding the integrity of the software
stack running on a platform (a general purpose computer)
equipped with a TPM chip. Several manufacturers of
TPM chips exist today. Many desktop/laptop computers

already posses a TPM chip, or have the capability (a slot
in the motherboard) to accept a TPM chip.

The TPM exposes several interfaces which can be used
by the platform to submit values for secure storage in-
side the TPM, and conveying such values to other parties,
attested using secrets protected inside the TPM. Specif-
ically, about 120 TPM interfaces have been specified in
the current version of the TPM [24]. These interfaces
are intended for a wide variety of purposes like i) tak-
ing ownership of the TPM; ii) generation/regeneration of
keys; iii) submitting “measurements” of loaded software
(in the form of hashes of loaded software) and extending
such hashes into platform configuration registers (PCR)
inside the TPM; iv) attestation of PCR values by the
TPM for reporting the state of the platform; v) binding
secrets to specific platform states (PCR values), etc.

The TCG model relies on three roots of trust: the root
of trust for measurement (RTM); root of trust for stor-
age (RTS); and root of trust for reporting (RTR). RTS
and RTR are housed inside the TPM chip. The RTM
is however constituted by components outside the TPM.
More specifically, trusting the RTR and RTS amounts to
trusting the integrity of the TPM chip. However, trust-
ing the RTM implies trusting numerous components of
a general purpose computer like the BIOS, CPU, RAM,
CPU-RAM bridge, and possibly even some peripherals
which have direct access to the RAM. In addition, to an
infrastructure for verifying code is trusted to verify soft-
ware and disseminate measurements (hashes) of authentic
verified software.

Almost every attack on the integrity of a TCG trusted
platform [4, 23] is a result of the fact that the RTM is
constituted by components outside the TPM, which obvi-
ously do not merit the same extent of trust as components
inside the TPM chip. Furthermore, the problem of ver-
ifying functionality of software is becoming increasingly
intangible due to the ever increasing size of software and
frequency of updates. For these reasons, some researchers
have focused on strategies for securing applications run-
ning on untrustworthy platforms by relying only on the
TPM [5]. The recent TPM 1.2 version added some addi-
tional TPM interfaces which expands the scope of appli-
cations that can be secured by relying only on the TPM
as the TCB. Some desirable additions to TPM interfaces
have been suggested in [6].

The atomic relay interface can be simply be an addi-
tional interface offered by the next version of TPMs. More
specifically, TPMs will require two additional interfaces to
serve as the TCB for a DNS server: i) an interface for se-
curely receiving MLS keys (which can then be stored in
some TPM PCRs reserved for this purpose), and ii) the
atomic relay interface.

6 TCB-DNS vs. DNSSEC

The main reasons for the poor adoption of DNSSEC are
i) the significant increase in the size of zone files (over
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that of plain-old DNS) due to the addition of RRSIG,
DS, DNSKEY, and NSEC/NSEC3 records; ii) increased
bandwidth overhead for DNSSEC responses; and iii) the
susceptibility of DNSSEC to DNS-walk. Due to the sub-
stantial overhead, it is especially expensive for large zones
(for example, .com) to adopt DNSSEC.

DNSSEC and TCB-DNSSEC have many significant
similarities:

1) Both do not require DNS servers and their operators
to be trusted. Both protocols achieve this require-
ment by their ability to securely convey a pre-image
resistant one-way function of RRSets created by zone
authorities to end-points (clients), without the need
to trust the intermediary servers.

2) In both protocols lifetimes are imposed on the valid-
ity of zone keys. Both specify validity periods for the
authentication appended for RRs (which can at most
be till the expiry of the keys used for validation).

3) Both use a strategy for ordering names (or a one-way
function of names) to provide authenticated denial of
enclosed names (or hashes of names).

4) Both protocols do not possess a mechanism for re-
voking authentication. Consequently both protocols
are susceptible to replay attacks - under some condi-
tions. If the authentication appended for an RRSet is
indicated as valid till some time t, and if for some rea-
son, there arises a requirement to modify the RRSet
before time t, then an attacker may be able to re-
play the old RRSet (with a signature valid till time
t) until time t.

The primary differences between DNSSEC and TCB-
DNS include

1) The cryptographic mechanisms employed - DNSSEC
relies on digital signatures, while TCB-DNS relies on
TMs to atomically relay MACs.

2) Unlike TCB-DNS, DNSSEC does not provide assur-
ance A3. Some of specific differences in the mecha-
nism for authenticated denial, and the rationale for
the choices made in TCB-DNS are outlined in Sec-
tion 6.1.

3) DNSSEC demands substantially higher overhead
compared to TCB-DNS; Section 6.2 provides a
comparison of the storage bandwidth overheads of
DNSSEC and TCB-DNS.

4) DNSSEC is more susceptible to replay attacks com-
pared to TCB-DNS; Section 6.3 outlines the reasons
for this phenomenon.

Since the discovery of the Kaminsky attack [12] the
need to secure DNS has attracted renewed attention.
Some modifications have been proposed to DNSSEC to
address the main reasons for its poor adoption. How-
ever, while such efforts reduce some of the overhead for

DNSSEC (and thereby reduce the resistance to adoption
of DNSSEC), they are at the expense of watering-down
some of the originally intended assurances of DNSSEC.

In Section 6.4 and we discuss such a mechanism,
TSIG [26], which can reduce overhead for clients, but has
the unfortunate side-effect of requiring to trust the PNSs.
In Section 6.5 we discuss another modification (NSEC3
opt-out) [3] which is intended to facilitate easier adoption
of DNSSEC by large zones like .com. This feature has
an unfortunate side effect of interfering with the ability
to provide authenticated denial. More recently, some at-
tacks that exploit the NSEC3 opt-out feature have also
been demonstrated [2].

6.1 Authenticated Denial

Consider a scenario where the ANS for the zone
example.com is queried for a non-existent record
“a.b.example.com, A.” A negative response indicates that
i) the queried name does not exist; and ii) no wild-card
name like *.b.example.com exists; iii) no delegation exists
for a zone b.example.com; and iv) no alias (type CNAME)
record exists for the name a.b.example.com.

In NSEC the enclosures are textual strings indicating
names. A single NSEC record [example.com [A,MX,NS],
NSEC, cat.example.com] is adequate for the resolver to
verify that all three conditions are true (all three names
that have to be denied fall within the single NSEC en-
closure). In NSEC3 the enclosures are hashes of names.
Each NSEC3 enclosure can only be used to deny a specific
name (which hashes to a value inside the encloser). Thus,
proof of enclosure of three different name-hashes have to
be provided to the resolver.

If a record of a type different from NS does exist for
b.example.com or if a record with name a.b.example.com

does exist (but not the solicited type A), then the NSEC3
record has to indicate the list of types that do exist8.

Though intended as an improvement over NSEC, in
some ways NSEC3 is actually inferior to NSEC. In re-
sponse to a query for a non existent record, NSEC re-
vealed two unsolicited names; NSEC3 typically reveals
six hashes corresponding to six unsolicited name-hashes
(which are subject to brute-force attacks). Furthermore,
three RRSIG(NSEC3) signatures have to be verified (in-
stead of one RRSIG(NSEC)).

The mechanism in TCB-DNS for authenticated denial
is closer to NSEC3 than NSEC. The difference is that
in TCB-DNS the name and type are hashed together (in
NSEC3 only the name is hashed). As with DNSSEC-
NSEC3, multiple name-and-type hashes will have to be
denied by the ANS by using different enclosures. At first
sight, it may seem that an NSEC-like approach may be
preferable for TCB-DNS. After all, if only the TM is privy
to the enclosures - viz., textual strings (names) in NSEC
and hashes (of names) in NSEC3, there is no need for

8Thus, there are two ways in which NSEC3 fails to realize assur-
ance A3: i) by being susceptible to simple dictionary attacks; and
ii) by disclosing unsolicited types for a name.
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hashing names. However, checking NSEC enclosures will
require TMs to compare variable length text-strings, pos-
sibly of different formats (for example, ASCII, Unicode),
which can substantially increase the complexity of TMs.
With the NSEC3-like approach only fixed-length hashes
need to be compared. Thus,

1) In DNSSEC with NSEC3 the purpose of hashing is
to “hide” names (albeit ineffectively);

2) In TCB-DNS the purpose of hashing the names is not
to hide the names - it is to lower the TM complexity.

In TCB-DNS, the reason for hashing name-and-type
together is to ensure that (unlike NSEC3) names do not
have to be disclosed if queried for a non-existent type. In
TCB-DNS the number of encloser pairs equals the number
of unique name-and-type values (which is the same as the
number of RRSets). In NSEC3 the number of hashes
correspond to the number of unique names.

The disadvantage of TCB-DNS is a small increase the
number of encloser pairs. However, this is not a problem
in practice. The increase in the number of encloser pairs
would only be an issue for zones which have a very large
number of names, and many types corresponding to each
name. However, such large zones (like gTLD .com) which
have large number of names, have only a single type (type
NS) corresponding to most names!

Another difference between NSEC3 and TCB-DNS is
the mechanism used for hashing names. In TCB-DNS the
hash is computed as a function of name, type and a value
τ . The value τ is the time of expiry of the authentication.
In DNSSEC-NSEC3 the time of expiry is indicated in the
RRSIG record; the name-hash is computed after includ-
ing a salt to the name. Furthermore repeated hashing is
employed to derive the name-hash. The reason for using
the salt is to prevent precomputed dictionary attacks. The
purpose of repeated hashing is to increase the computa-
tional complexity for dictionary attacks. As dictionary
attacks are not possible in TCB-DNS (as the enclosers
are never sent), TCB-DNS does not need to deliberately
increase the computational overhead for generating name-
hashes.

6.2 Overhead

Table 2 provides a quick comparison of TCB-DNS and
DNSSEC.

The large size of DNSSEC records is due to the fact
that public keys and signatures are large (1000 to 2000
bits). This increases the cache memory requirements for
name servers. The longer RR sizes, and that multiple
RRSIGs, DS and DNSKEY records need to be fetched
and verified, results in substantial bandwidth overhead
for responses.

For a typical query, the DNSSEC specific bits that ac-
company the response (over and above the plain DNS
records) can easily be of the order of 2000 bytes. As
described in Section 2.4, the additional DNSSEC spe-
cific records required to verify a RRSet include (typically)

one RRSIG(RR), 3 DNSKEY records, 3 DS records, and
3 RRSIG(DS) records. Additionally, verification of an
RRset requires the computational overhead for verifica-
tion of 4 signatures.

For TCB-DNS the additional TCB-DNS specific bits
that accompany the response (to a typical query) include
i) the identity of the ANS and ii) one MAC in the ANSWER

section, and two identities (TCB-DNS identity of the par-
ent zone, and identity of an ANS TM of the parent zone)
and one MAC in the AUTHORITY section. If the identities
of TMs are 10 bytes long and identities of zones are 20
bytes long, and all MACs are 20 bytes long, the addi-
tional bandwidth overhead is of the order of 70 bytes. If
we consider the additional values inserted in NS records
the overhead may be close to 100 bytes (compared to 2000
bytes for DNSSEC).

For DNSSEC the increase in cache memory size for
any RRSet is due to the addition of one RRSIG for ev-
ery RRSet (about 200 bytes for every RRSet if 1600-
bit RSA modulus is used). Additionally (for authen-
ticated denial), corresponding to every unique name in
the master file, one NSEC/NSEC3 record along with an
RRSIG(NSEC/NSEC3) record are required: amounting
to an overhead of roughly 300 bytes for every unique name
in the master file.

In TCB-DNS, corresponding to every RRSet two addi-
tional values are required for regular responses - an index
(of the RRSet within the master file) and a MAC. For au-
thenticated denial, corresponding to every unique name
and type (the total number of which is the same as the
number of RRSets) three values are required: two hashes
(enclosers), and a MAC for the enclosure. Assuming 20
byte hashes and MACs, the overhead is about 60 bytes
for every unique name and type.

6.3 Replay Attacks

The fact that anybody can obtain verify a digital signa-
ture is a powerful feature of digital signatures. This power
can also be abused more easily when no mechanism exists
for revocation. A signed packet with prematurely invali-
dated contents can be more easily abused, compared to a
packet authenticated using a MAC.

A DNS RRSet signed by the zone authority can be
sent by anyone, from any place, to any place. However,
in TCB-DNS, a MAC appended by a zone authority is
intended only for the TM of a specific ANS. This implies
that only the entity with control of the specific ANS (who
has access to the TM) can replay such packets. This sub-
stantially reduces the scope of possible replay attacks.

For both protocols, reducing the scope of replay attacks
requires choice of short life-times for signatures (MACs for
TCB-DNS). Unfortunately shorter life-times imply more
frequent re-computation of authentication. Due to the
substantially lower computational overhead required for
TCB-DNS we can can actually afford to recompute MACs
more frequently.
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Table 2: Comparison of TCB-DNS and DNSSEC
Overhead in Bytes

Bandwidth Cache per RRSet Cache per Name Assurances
DNSSEC 2000 200 300 A1, A2
TCB-DNS 100 24 + 60 A1, A2, A3

6.4 DNSSEC with TSIG

As originally intended, DNSSEC provides the end-points
with the ability to verify the integrity of RRs. For most
clients this is a substantial computational burden. This
is especially true for an ever increasing number of bat-
tery operated mobile devices. Furthermore, to receive the
large number of DNSSEC specific records from the PNS
the clients may have to employ more expensive TCP in-
stead of UDP as the transport layer. Note that for PNSs
this is less of an issue as it receives the multiple records
required for verification as multiple packets from different
ANSs.

It is for this reason that in most standard installations
of DNSSEC the verification of RRs is performed only by
the PNS. Stub-resolvers are expected to establish a se-
cure channel with PNSs using some light-weight mecha-
nism like TSIG [26], and obtain verified RRSets over the
secure channel. TSIG is a protocol which leverages shared
symmetric keys (established by other means - outside the
scope of TSIG) for establishing secure channels. In DNS,
TSIG is used by zone authorities to securely send master
files to ANSs. This same strategy can also be used for
establishing a secure channel between clients and PNSs.

The implication of using such an approach to lower
overhead for clients is that DNSSEC can no longer claim
that end-points do not have to trust the middle-men. With
this approach, clients are required to trust the PNSs (and
consequently their operators). More specifically,

1) If a DNSSEC enabled PNS X is compromised, or if
the TSIG secret of X is privy to an attacker, then
X (or the attacker) can disseminate fake RRSets for
any zone; such RRSets will be blindly accepted by
all stub-resolvers which query PNS X.

2) Similarly, if a DNSCurve enabled PNS X is compro-
mised, or if the DNSCurve secret of X is privy to an
attacker, then X (or the attacker) can disseminate
fake RRSets to all stub-resolvers that query PNS X.

3) On the other hand, in the case of TCB-DNS, if a PNS
X (with DNS-TM P ) is compromised, the attacker
cannot disseminate fake RRSets. It is only if the se-
crets of the TM P become privy to the attacker (and
if the TM P has not been revoked) can the attacker
disseminate fake RRSets to the stub-resolvers that
query PNS X.

6.5 NSEC3 Opt-out

For consummate realization of DNSSEC assurances even
top level domains should adopt DNSSEC. While authenti-

cated denial is an especially important feature for gTLDs,
the overhead for this purpose can be substantial for large
zones, and especially for zones where new names are fre-
quently added. More specifically, zones with frequent ad-
dition/deletion of names become more susceptible to re-
play attacks.

Consider a scenario where an RRSet corresponding to
a new name (or name-hash) x needs to be added. Before
the name is added, a signed encloser (xl, xh) will exist for
x. However, after inserting x the encloser (xl, xh) needs to
be revoked. Two new enclosers should be added instead
- (xl, x) and (x, xh). Similarly, consider a scenario when
an existing name y needs to be removed, and two signed
enclosers (yl, y) and (y, yh) currently exist. In this case,
both enclosers (yl, y) and (y, yh) need to be revoked and
replaced with a new encloser (yl, yh).

Due to the fact that it is not possible to foresee which of
the currently valid records will need to be revoked due to
the addition of an (as yet unknown) name in the future,
it is necessary to choose small enough life-times for all
NSEC/NSEC3 enclosers. Obviously, for gTLDs like .com

with several tens of millions of names, this is far from
practical.

In TCB-DNS, due to the low overhead for comput-
ing MACs even gTLDs can afford to recompute enclosers
more frequently. However, frequent re-authentication of
NSEC3 records in DNSSEC is expensive for two reasons.
The obvious reason is that the computational overhead
for digital signatures is high. The other reason is that
NSEC3 deliberately increases the complexity of hashing
names to render dictionary attacks more time-consuming.
Due to the substantial overhead involved in re-generation
of signed NSEC3 records, DNSSEC is forced to employ
larger life-times for NSEC3 signatures and consequently
become more susceptible to replay attacks.

Recently, NSEC3 with an opt-out specification [3] has
been proposed to make it more practical for gTLDs to
adopt DNSSEC. Using opt-out NSEC3 can reduce the
instances leading to revocation of RRSIG(NSEC3) RRs,
thereby permitting longer lifetimes for NSEC3 RRSIGs.
An NSEC3 record indicating an encloser (xl, xh) with an
unset opt-out bit is proof that no enclosing records exist.
However, if the opt-out bit is set, the implication is that
zero or more unsigned delegations may exist - thereby di-
luting assurance A2. Furthermore, some serious security
exploits resulting from using the opt-out approach have
been identified recently [2].
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7 Conclusions

Adoption of DNSSEC has been marred by the substan-
tial overhead required, and the issue of DNS-walk. The
large increase in the zone file size is especially severe for
gTLD DNS servers and DNS servers employed by special-
ized DNS service providers who run DNS services for a
large number of zones. This is further exacerbated by su-
percilious queries from “DNS-walkers.” While the need to
address DNS-walk is especially crucial for large DNS oper-
ators, ironically, using NSEC/NSEC3 feature of DNSSEC
for this purpose is risky for such DNS servers due to the
possibility of DNS-walk. Recent attempts to reduce resis-
tance to adoption of DNSSEC have unfortunately come
at the expense of security.

The primary insight for TCB-DNS approach stems
from the fact that cryptographic techniques for inde-
pendently securing each link in a query response pro-
cess (like the approaches in symmetric key DNSSEC and
DNSCurve) demand substantially lower overhead. As the
light-weight link-security approaches require the interme-
diaries (DNS servers) to be trusted, a natural question
then is “what is the minimal TCB for a DNS server?” As
long as this TCB is trustworthy we will not be required
to trust other components of the intermediary servers.

A TCB which simply relays hashes can provide assur-
ances A1 and A2. By adding some intelligence to the
simple relay function (to verify that “one input lies be-
tween two other inputs”) we can realize assurance A3,
and thus eliminate the problem of DNS-walk. Due to
the negligible overhead (a few tens of bytes of bandwidth
overhead, and computation overhead amounting to a few
hashes) even gTLDs can easily switch to TCB-DNS.

To summarize, the main advantages of TCB-DNS over
DNSSEC are

1) TCB-DNS demands substantially lower overhead;

2) TCB-DNS eliminates the issue of DNS-walk;

3) TCB-DNS is less susceptible to replay attacks;

4) Due to the low overhead for verification, TCB-DNS
will not require clients to trust PNSs (as in DNSSEC
with TSIG);

5) Due to the low overhead for re-authentication of en-
closers, TCB-DNS does not need to employ poten-
tially dangerous practices like “NSEC3 opt-out.”

Deployment of TCB-DNS ideally requires a dedicated
infrastructure in place for some regulatory authority to
oversee the production and verification of trustworthy
DNS TMs. Alternately, two additional interfaces (one for
for accepting MLS keys, and the second for performing
the atomic relay) can be added to the next version of the
trusted computing group (TCG) specification for trusted
platform modules (TPM).
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