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Abstract

A differential electronic Susceptible-Infectious-Removed-
Susceptible (e-SIRS) epidemic model of virus and worms
in a computer network has been formulated. Latent pe-
riod, immune period and time for self replication have
been considered. Stability of the result is stated in terms
of the threshold parameter. We have derived an explicit
formula for the reproductive number and have shown that
the virus-worm- infection-free equilibrium, whose compo-
nent of infective is zero, is globally asymptotically stable
if threshold number is less than one, and unstable if it is
greater than one. Numerical method is employed to solve
the system of equations developed and interpretation of
the model yields interesting revelations.
Keywords: E-SIRS epidemic model, self replication, tem-
porary immunity, virus, worms

1 Introduction

The developments in cyber world have brought drastic
changes into human life. With the increasing technology
of Internet, the usage has drastically increased, offering
functionalities and facilities. Viruses were once spread by
sharing disks; now, global connectivity allows malicious
code to spread farther and faster. Similarly, computer
misuse through network intrusion is on the rise. The num-
ber of computer virus has been increasing exponentially
from their first appearance in 1986 to over 74 000 differ-
ent strains identified today [36]. It has also thrown sev-
eral challenges in the form of increasing attacks on cyber
world leading to increasing concerns over cyber defense
to safeguard the valuable information from certain ma-
licious agents over the Internet. Towards this objective,
it is hence important to study about different malicious
agents (virus, worms, Trojan horse) in the cyber space,
their features, propagating methods and means and their
limitations. The spread of malicious agents is identical to

that of spread of epidemic in the biological world.
While there are several opinions regarding the exact

definition of a computer virus, people generally agree that
a virus contains program code that can explicitly copy
itself, and by doing so has the ability to “infect” other
programs by modifying them or their environment. In
order for a virus to propagate, it typically needs to attach
itself to a host program. However, a prominent limitation
of these agents has been the lack of control over their rate
of propagation.

Whenever a vulnerable node in the network is attacked,
some of the malware (malicious agent) have the property
of self replicating within the same node by a factor known
as replication factor. It denotes the number of malicious
objects a single malicious object generates over a fixed
period of time. Virus and worms do have this character-
istic.

There are several computational techniques that look
to biology for inspiration. Some common examples in-
clude networks, evolutionary algorithms, and immunolog-
ical computation [7]. Many researchers have taken help of
the biological system to understand the behavior of spread
of malicious objects in a computer network and how to im-
mune the computer system [1, 3, 12, 13, 14, 20, 21, 22, 26,
27, 28, 29, 30]. The action of malicious objects throughout
a network can be studied by using epidemiological models
for disease propagation [5, 20, 21, 22, 26, 27, 30]. Based
on the Kermack and McKendrick SIR classical epidemic
model [15, 16, 17], dynamical models for malicious ob-
jects propagation were proposed, providing estimations
for temporal evolutions of infected nodes depending on
network parameters considering topological aspects of the
network [11, 14, 20, 21, 22, 31, 35]. The kind of ap-
proach was applied to e-mail propagation schemes [24]
and modification of SIR models generated guides for in-
fection prevention by using the concept of epidemiologi-
cal threshold [6, 20, 21, 22]. Richard et al. [28] propose
an improved SEI (susceptible-exposed-infected) model to
simulate virus propagation. However, they do not show
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the length of latency and take into account the impact of
anti-virus software. The model SEIR proposed by the au-
thors [32] assumes that recovery hosts have a permanent
immunization period with a certain probability, which
is not consistent with real situation. In order to over-
come limitation, Mishra and Saini [20] present a SEIRS
model with latent and temporary immune periods, which
can reveal common worm propagation. Recently, more
research attention has been paid to the combination of
virus propagation models and antivirus countermeasures
to study the prevalence of virus, for example, virus immu-
nization [4, 12, 18, 19, 22, 25] and quarantine [1, 23, 34].

Hyman and Li [10] proposed a biological SIR model
that describes the transmission dynamics of an infectious
disease assuming susceptible population divided into dif-
ferent groups. Individuals in each group have homoge-
neous susceptibility but susceptibility of individual from
different groups is distinct. Assuming homogeneous in-
fectiousness of infected individuals so that they can be
aggregated into one group, infected state, following sys-
tem of differential equations were given.

dSii
dt

= µ(piS
0 − Si)− λiSi

dI

st
=

n∑

k=1

λkSk − (µ + γ + δ)I

dR

st
= γI − (µ + ξ)R.

Where Si is the susceptible individuals in the ith group, I
is the infected individuals, R is the recovered individuals,
µ is the natural death rate, µS0 is a constant influx, γ is
the rate at which infective are removed, δ and ξ are the
disease-induced mortality rates for infective and removed
individuals respectively, and λ is the infectivity rate given
by λ = αβ.c. I

N , where α as the susceptible rate; β as the
infectious rate; as the average number of contacts per in-
dividuals and I

N is the probability that a random contact
is infectious with N = S + I + R as the total population
size.

In the above model full immunity of recovered individ-
uals is assumed such that these individuals are no longer
susceptible after they recovered. But in the cyber world
there is no permanent immunity for the nodes. The tem-
porary recovered nodes enter the susceptible class after
certain interval of time. We propose a differential com-
partment for e-SIRS epidemic model in which susceptible
and infected population are divided into different groups.
Nodes are susceptible due to virus and worms. Virus and
worms in each group has homogeneous susceptibility but
susceptibility of virus and worms from different group is
distinct. Virus and worms in each infected group (as per
their susceptible behavior group) has homogeneous infec-
tion but infection of virus and worms from different group
is distinct. We also assume the self-replication possibili-
ties of virus and worms.

S1 I1 

S2 I2 

Sk Ik 

R S0 

µS1 µI1(t) 

µSk µIk(t) 

q1 1I1 

Figure 1: Flow of virus and worms in computer network

2 Differential E-SIRS Epidemic
Model

After the virus and worms enter the computer network,
the nodes become susceptible and in later course of
time become infected and hence infective. There is a
certain time lag for the node to become infective once
it is in the network and it is termed as latent period
ω. After the node becomes infected, the malicious
object in it may/may not self-replicate. Hence after the
anti-malicious software is run, the node recovers and
attains temporary immunity for a time period termed
as period of temporary immunity τ . Flow of malicious
agents is depicted in Figure 1.

Assumptions:

1) Any new node added into the network is susceptible.

2) Death rate other than the attack of virus and worms,
µ, is constant.

3) The natural death rate (crashing of the nodes due to
the reason other than attack of virus and worms) of
the nodes as they are once susceptible to any virus
and worms decreases.

4) Death rate of the nodes due to virus and worms is
constant.

5) Latent period ω, immunity period τ , and period of
“self-replication Φk are” considered as constants.

6) When a node is infected, it may self-replicate with
a probability pk and may not self-replicate with a
probability (1− pk).

7) When a node is removed from infected class, it may
recover with a probability qk and may not recover
with a probability (1− qk) and that recovery is tem-
porary.

8) Susceptible population is divided into different
groups. Nodes may be susceptible due to virus and
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worms. Virus and worms in each group have homo-
geneous susceptibility but susceptibility of virus and
worms from different group is distinct.

9) Infected population is also divided into different
groups (as per their susceptible behavior group).
Virus and worms in each group has homogeneous in-
fection but infection of malicious objects from differ-
ent group is distinct.

We assume that the total population in the network at
any instance t is

N(t) = S(t) + I(t) + R(t).

Virus and worms is assumed to be in the computer net-
work for at least a time θ = max(ω, τ), so that the initial
perturbation have ceased. The systems of equations for
the model as per our assumptions take the following forms
for t > θ:

dSk(t)
dt

= mk(bN(t)) + (γkIk(t− τ)e−µτ )− µSk(t)

−λkSk(t)
dIl(t)

dt
= αβc

I(t− τ)
N(t− τ)

S(t− τ).e−µτ

+[pkαβc
I(t− (τ + ω + φk))
N(t− (τ + ω + φk))

.S(t− (τ

+ω + φk)).rk.e−µ(ω+φk)]

dRk(t)
dt

=
n∑

j=1

[qkγkIk(t)− γkIk(t− τ)e−µτ − εkR(t)]

−µR(t). (1)

2.1 No Virus and Worms - Induced Mor-
tality

For the simplicity of the model, we neglect the virus and
worms -induced crashing of the nodes such that δ = O =
ε. Thus we have the system of the model as

dSk(t)
dt

= mk(bN(t)) + (γlIk(t− τ)e−µτ )

−µSk(t)− λkSk(t)
dIk(t)

dt
= αβc

I(t− τ)
N(t− τ)

.S(t− τ).e−µτ

+[pkαβc
I(t− (τ + ω + φk))
N(t− (τ + ω + φk))

.S(t− (τ

+ω + φk)).rk.e−µ(ω+φk)]− (µ + rk)I(t).
(2)

As the dynamics of the system is unaffected by the
equation of R, we omit it. We further assume, c(S0)/S0 =
η. System (2) is positively time invariant in the set G :=
{Si ≥ 0, Ii ≥ 0}.

2.2 Reproductive Number

System (2) has virus and worms’ infection-free equilib-
rium in which the components of infective are zero and
other susceptible components are positive. We denote
this infection-free equilibrium by E0 := (Si = miS

0, i =
1, 2, . . . , n; I = 0). Analyzing the local stability of E0

gives the epidemic threshold conditions under which the
number of infected nodes will either increase or decrease
to zero as a small number of infective introduced into a
fully susceptible population. These threshold conditions
are characterized by the reproductive number, denoted
by R0, such that E0 is locally asymptotically stable if
R0 < 1, and unstable if R0 > 1.

The Jacobian of Equation (3) at E0 has the form

J =



−µ 0 · · 0 −ηβS0α1m1(1 + p1r1)
0 −µ 0 · 0 −ηβS0α2m2(1 + p2r2)
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · −µ −ηβS0αnmn(1 + pnrn)
0 0 · · 0 −(µ + γ) + ηβS0 ∑n

i−1 αimi(1 + piri).




All eigenvalues of J have negative real part if and only
if, −(µ + γ) + ηβS0

∑n
i−1 αimi(1 + piri) < 0. Therefore,

the reproductive number can be defined as

R0 :=
ηβS0

µ + γ

n∑

i−1

αimi(1 + piri)

=
c(S0)β
µ + γ

n∑

i−1

αimi(1 + piri).

The mean number of contact is c(S0) = z, the mean
duration of the infection is 1

µ+γ , and the mean infectivity
rate of each group is β̄i = βαi. We define the reproductive
number for each group as

R0i =
zβαi(1 + ripi)

µ + γ
(3)

The reproductive number of infection for the entire net-
work can be expressed as the weighted average of the re-
productive numbers of the groups such that

R0 =
n∑

i−1

miR0i.

Theorem 1. Define the reproductive number of infection,
R0, for System (1) as in Equation (3). Then the infection
free-equilibrium E0 is globally asymptotically if R0 < 1,
and unstable if R0 > 1 [10].

The node takes a time period of ω ≥ 0 before it gets
infective (see [2, 8, 9]). The self replication of any virus
and worms starts after the node gets infected and thus
it is infective only after the time for self-replication Φk.
The node gains a temporary immunity τ ≥ 0 before it
gets susceptible again.



International Journal of Network Security, Vol.14, No.3, PP. 149-155, May 2012 152

Figure 2: Susceptibility versus time

We have the following non-negative conditions for a
shift of time θ to new time t > 0 : S(t) ≥ 0 on [−ω, 0],
I(t) ≥ 0 on [−θ, 0], R(t) ≥ 0 on [−τ, 0].

Rk(t) =
∫ t

t−τ

qkrkIk(u)e−µ(t−u)du

Rk(0) =
∫ 0

−τ

qkrkIk(u)eµu)du.

Our e-SIRS model formulated in Equation (1) is dif-
ferent from SIR model proposed by Hyman and Li [10],
which is designed for computer networks in which only
temporary immunity is assumed for recovered nodes such
that a recovered node again gets susceptible after certain
interval of time. We also assume the infected stage to
be divided into different groups in which individual nodes
are a group and have homogeneous infectiousness which
is different from that of individuals in other group. The
self replication behavior of the malicious objects is also
considered in infected stage.

3 Numerical Method

Numerical Methods are employed to solve Equation (1)
under different real parametric values

(S(0) = 100, I(0) = 10, R(0) = 10, δ(0) = 0.6, ε = 0.7,

b = 10,mk = 0.6, λ = 0.45, µ = 0.3, γ = 0.40,

pk = 0.3, rk = 0.2, qk = 0.58, θ = 1, ω − 10),

and the graphs are plotted in MATLAB. The susceptibil-
ity versus time graph is depicted in Figure 2. It is ob-
served that the susceptibility is at a maximum level when
no node is infected in the network and gradually decreases
as infection increases and the node recovers temporarily

when it undergoes temporary immunity period. The cor-
responding infectivity versus time graph considering cer-
tain variables as valid arbitrary integers is depicted in
Figure 3.

The interpretation of the derived graph yields inter-
esting revelations. The infection is initially very less and
as the nodes spends time in the system, the infectivity
increases exponentially and at a certain time increases
abruptly before it reaches a maximum level. As the
temporary recovery starts after the run of anti-malicious
software, the infection decreases and reaches a minimum
point and the system remains there for a short time which
is due to the immunity and latency periods.

In order to set an efficient strategy in controlling virus
and worms transmission in the computer network, we can
identify more susceptible groups and make efforts to re-
duce the influx into those groups with the help of the
formula developed in Equation (3) for Roi.

4 Concluding Remarks

We have formulated a differential e-SIRS epidemic model
in which susceptible and infected population are divided
into different groups. The susceptible and infected popu-
lation is subdivided into n subgroups based on the attack
due to virus and worms.

Virus and worms in each group have homogeneous
susceptibility but susceptibility of virus and worms from
different group is distinct. Virus and worms in each
infected group (as per their susceptible behavior group)
has homogeneous infection but infection of malicious
objects from different group is distinct. For the case
where the number of contacts is proportional to the
total population, we derived an explicit formula for
the reproductive number R0, and had shown that the
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Figure 3: Infectiousness versus time behavior respectively

infection-free equilibrium, whose component of infective
is zero, is globally asymptotically stable if R0 < 1, and
unstable if R0 > 1. Also we have defined the reproductive
number in each subgroup, mean infectivity, and the mean
duration of infection. The reproductive number for the
whole population, R0, is defined as a weighted average
of those Roi, weighted by the distribution of the influx
into the susceptible subgroups. For a class of population,
e-SIRS model with constant latent period(ω), immunity
period(τ) and replication period(φk) is developed keep-
ing in view the replication concept of malicious agents.
Whenever a node is infected there is chance of malware
getting replicated with replication factor rk. After a
node has been included in the infective class, it may self-
replicate with a probability pk and may not self-replicate
with a probability (1− pk). In our model when a node is
removed from infected class it recovers temporarily and
acquires temporary immunity with probability qk or the
node may vanish with probability (1 − qk) which Yan
and Liu [33] considered the recovery from infected class
acquiring permanent immunity with probability q. The
recovered node remains in state of temporary immunity
for a time period of τ before it becomes susceptible again.
The future work will address on the endemic equilibrium
and its stability & Disease-induced mortality.

Nomenclature

S0 = Inflow population rate

b = constant birth rate

mk = probability of getting susceptible by the kth mali-
cious agent

λ = infectivity rate

µ = natural death rate

γ = recovery rate

δ = death rate of nodes which are infected due to infec-
tion

ε = disease induced mortality rate for recovered nodes

α = susceptibility of susceptible nodes

β = infectious rate of infected nodes

I/N = probability that a random contact is infected

c = c(N) = average number of contacts per nodes

pk = probability of self replication of kth malicious agent

rk = self replication factor of kth malicious agent

qk = probability of recovery from the attack of kth ma-
licious agent

1 − qk = probability of non recovery from the attack of
kth malicious agent

τ = temporary immunity period

ω = latency period

Φk = time for self replication of kth malicious agent

S(t) = the susceptible population at any time t

R(t) = the infected population at any time t

I(t) = the infected population at any time t

N = S + I + R, the total population size.
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