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Abstract

A non-interactive, simple and efficient publicly verifiable
secret sharing (PVSS) is constructed based on the bi-
linear pairing on elliptic curves, which has all advan-
tages of Schoenmakers’ PVSS in [15]. Moreover, in the
scheme’s distribution of shares phase, only using bilinear-
ity of bilinear paring, anybody can verify that the par-
ticipants received whether correct shares without imple-
menting interactive or the non-interactive protocol and
without construction so called witness of shares applying
Fiat-Shamir’s technique. Subsequently, in the scheme’s
reconstruction of secret phase, the released shares may
be verified by anybody with the same method. Since the
PVSS need not to implement non-interactive protocol and
construct witness in order to prevent malicious players,
hence it reduces the overhead of communication. Finally,
the PVSS has been extensions to the case without a dealer
(or without a trusted center). A distributive publicly ver-
ifiable secret sharing (DPVSS) is proposed, which also
reduces the overhead of communication. Analysis shows
that these schemes are more secure and effective than oth-
ers, and it can be more applicable in special situation.
Keywords: Bilinear pairing, cryptography, Diffie-Hellman
assumption, publicly verifiable secret sharing, secret shar-
ing

1 Introduction

Secret sharing schemes were introduced independently
in [16] and [1] and since then much work has been put
into the investigation of such schemes. In a Secret Sharing
scheme, the dealer shares a secret among n participants
such that only specified subsets of the whole participants’
can later recover the secret. In the so called (k, n) thresh-
old model for secret sharing, the sharing is done so that
subsets of k or more participants can later reconstruct
the secret, while subsets of at most k − 1 participants

have no information about it. The basic model for secret
sharing distinguishes at least two protocols: (i) a distri-
bution protocol in which the secret is distributed by a
dealer among the participants, and (ii) a reconstruction
protocol in which the secret is recovered by pooling the
shares of a qualified subset of the participants. In the
basic scheme (e.g., [1, 16] for threshold secret sharing) we
assumed that the dealer and all participants is reliable,
however, a misbehaving dealer or participants can deal
inconsistent shares to the participants, from which they
will not be able to reconstruct a secret. To prevent such
malicious behavior of the dealer and players, one needs to
implement a protocol through which a consistent dealing
can be verified by the recipients of shares. Thus basic
schemes solve the problem for the case that all players in
the scheme are honest.

In verifiable secret sharing (VSS) [6, 7, 13] the object
is to resist malicious players, such as (i) a dealer send-
ing incorrect shares to some or all of the participants,
and (ii) participants submitting incorrect shares during
the reconstruction protocol. Verifiable secret sharing or
the basic schemes such as [1, 14, 16] all require the avail-
ability of private channels from the dealer to each of the
participants individually. However, communication over
the private channels is clearly not publicly verifiable. In
publicly verifiable secret sharing (PVSS), as introduced
by Stadler [17], it is an explicit goal that not just the par-
ticipants can verify their own shares, but that anybody
can verify that the participants received correct shares.
It is explicitly required that can be verified publicly. In
fact, the VSS scheme of [6] already achieved this prop-
erty. Hence, publicly verifiable secret sharing (PVSS) is
a special kind of secret sharing, in which any-body, not
just the participants, can verify whether the dealer dis-
tributed correct to each participants at the secret distri-
bution phase and whether each participant releases the
correct share at reconstruction phase. Furthermore, in
an efficient PVSS, private channels are not assumed be-
tween the dealer and the participant. In the reference [10],
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Fujisaki and Okamoto present a practical and provably se-
cure PVSS scheme. At Crypto’99, Schoenmakers in [15]
proposed a simple PVSS scheme based on the discrete log
problem and its application to electronic voting, escrow
cryptosystems, etc. In the reference [19], the security of
Schoenmakers’ scheme is proved theoretically; and a dis-
tributed publicly verifiable secret sharing scheme (without
a dealer or trusted center) is proposed.

Earlier bilinear pairings, namely Weil pairing and Tate
pairing of algebraic curves were used in cryptography for
the MOV attack [12] using Weil pairing and FR attack [9]
using Tate pairing. These attacks reduce the discrete log-
arithm problem on some elliptic or hyperelliptic curves
to the discrete logarithm problem in a finite field. In
recent years, bilinear pairings have found positive appli-
cation in cryptography to construct new cryptographic
primitives. Joux [11], in 2000, showed that the Weil
pairing can be used for “good” by using it in a proto-
col to construct three-party one-round Diffie-Hellman key
agreement. This was one of the breakthroughs in key
agreement protocols. After this, Boneh and Franklin [2]
presented in Crypto 2001 an IDbased encryption scheme
based on properties of bilinear pairings on elliptic curves
which is the first fully functional, efficient and provably
secure identity-based encryption scheme. In Asiacrypt
2001, Boneh, Lynn and Shacham proposed a basic signa-
ture scheme using pairing, the BLS [3] scheme, that has
the shortest length among signature schemes in classi-
cal cryptography. Subsequently numerous cryptographic
schemes based on BLS signature scheme were proposed.
Apart from the three fundamental cryptographic primi-
tives: encryption, signature and key agreement, there are
protocol designs for signcryption, threshold decryption,
key sharing, identification scheme, chameleon hashes etc.

Although the bilinear pairing is an important tool for
construction encryption and signature algorithms, it is
almost not the secret sharing scheme based on bilinear
parings. Consequently, it is extremely necessary and
significant to construct the secret sharing scheme based
on bilinear pairing on elliptic curves. In this paper, a
non-interactive, simple and efficient PVSS is constructed
based on the bilinear pairing on elliptic curves. In the
scheme’s distribution of shares phase, using bilinearity
of bilinear paring on elliptic curves, anybody can ver-
ify that the participants received whether correct shares
without implementing the non-interactive protocol such
as DLEQ(g1, h1; g2, h2) by Chaum and Pedersen in [5]
and without construction so called witness of shares ap-
plying Fiat-Shamir’s technique in [8]. Subsequently, in
the scheme’s reconstruction of secret phase, the released
shares may be verified by anybody with the same method.
Compared to [10, 15, 17], consequently, this scheme is sim-
pler and more efficient.

Summarizing, our PVSS construction will be much
simpler and more efficient than the above approaches, and
since the PVSS need not to implement zero-knowledge
proofs or non-interactive protocol and construct witness
in order to prevent malicious players, the complexity of

communication is lower than the above approaches. We
only need techniques that work in any group for which
the discrete log problem is intractable and there exist bi-
linear pairing in any group. The protocols consist of a few
steps only, relying on simple primitives. The performance
is not only asymptotically optimal, but also good in prac-
tice. And, finally, we are able to use this to construct the
election scheme and other applications like [15].

The rest of the paper os organized in the following man-
ner. In Section 2, we will describe the definition of bilin-
ear pairings, the Diffie-Hellman assumption and bilinear
Diffie-Hellman problem. In Section 3, we then present our
main construction of a simple and efficient PVSS scheme
based on bilinear pairings and proof the scheme security.
In Section 4, we consider extensions to the case without
a dealer (or without a trusted center). In Section 5, we
analysis these performance and the comparison results.
In Section 6, we introduce main conclusion in this paper
and our next work.

2 Preliminaries

2.1 Bilinear Pairing

Definition 1. Let G1, G2 be two groups of the same
prime order q. We view G1 as an additive group and
G2 as a multiplicative group. Let P be an arbitrary gen-
erator of G1. (aP denotes P added to itself a times).
Assume that discrete logarithm problem (DLP) is hard in
both G1 and G2. A mapping e : G1 ×G1 → G2 satisfying
the following properties is called a cryptographic bilinear
map.

Bilinearity. e(aP, bQ) = e(P, Q)ab for all P,Q ∈ G1 and
a, b ∈ Z∗a . This can be restated in the following way.
For P,Q, R ∈ G1, e(P + Q,R) = e(P,R)e(Q,R) and

e(P, Q + R) = e(P, R)e(Q,R).

Non-degeneracy. If P is a generator of G1, then e(P, P )
is a generator of G2. In other words, e(P, P ) 6= 1.

Computable. There exists an efficient algorithm to
compute e(P,Q) for all P, Q ∈ G1.

2.2 The Classical Diffie-Hellman Prob-
lems

The security of many modern cryptosystems is based on
trap-door functions which are easy to compute in one way,
but hard to invert except if we know a secret key. One
of the main trap function was introduced by Diffie and
Hellman in 1976.

The Diffie-Hellman problem is defined as follows: con-
sider a cyclic additive group G =< g > (which means that
g is a generator of G or in other words that the elements
of G are exactly the successive multiples of g). We take
two elements of G namely g1 := a · g and g2 := b · g, and
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we suppose we know the generator g but we do not know
a and b. The problem is then to compute g3 = (ab) · g.
This problem is tightly linked with the Discrete Loga-
rithm problem (DLP) which is defined below.

Definition 2. Let us define formally the problems we are
dealing with:

1) Let G be a finite cyclic group and let g be a generator
of G. The discrete logarithm problem (DLP) in G
is as follows: Given (g, a · g) with uniformly random
choice of a ∈ Z∗|G|, find a.

2) Let G be a finite cyclic group and let g be a gener-
ator of G. The computational Diffie-Hellman prob-
lem (CDHP) in G is as follows: Given (a, a · g, b · g)
with uniformly random choice of a, b ∈ Z∗|G|, compute
(ab) · g.

3) Let G be a finite cyclic group and let g be a gen-
erator of G. The decisional Dif-fie-Hellman problem
(DDHP) in G is as follows: Given (g, a · g, b · g, c · g)
with uniformly random choice of a, b ∈ Z∗|G|, decide
(ab) · g = c · g.

It is clear that the CDHP can easily be solved if the
DLP can be solved. If the DLP can be solved, we can
indeed find a from a · g and then we compute (ab) · g as
a · (b · g). We then say that DLP → CDHP but the
reciprocity is not true. Yet, as far as we know, solving
the DLP is the only known method to solve the CDHP,
and for this reason the CDHP is believed to be as hard
as the DLP, which is usually of exponential difficulty.

Concerning the DDHP it is another story. Suppose
indeed that we can compute a bilinear map e : G1 ×
G1 → G2 (like the Weil pairing for example). We want
to confirm that cP = abP for the tuple (P, aP, bP, cP )
where a, b, c ∈ Z∗q . Then we just have to verify that the
equality e(aP, bP ) = e(P, cP ) holds: if it does then, in
the tuple (P, aP, bP, cP ), we must have cP = abP , and
if does not then we know that cP 6= abP . When we can
compute a map e the DDHP is easy, since it can be solved
in polynomial time (if e is computed in polynomial time),
and it is not linked to the difficulty of CDHP.

Groups for which the DDHP is easy and the CDHP is
hard are called gap groups.

2.3 Bilinear Diffie-Hellman Problem

New applications like ID-based encryption base their se-
curity on a bilinear version of the Diffie-Hellman prob-
lems. The bilinear Diffie-Hellman definitions presented
here, were first formally presented in [4]. We con-sider
G1 an additive group of prime order q, and P a genera-
tor of this group. We also consider a multiplicative group
G2 and a bilinear map e : G1 × G1 → G2 which can be
computed efficiently (in polynomial time).

Definition 3. The bilinear Diffie-Hellman problem
(BDHP) in (G1, G2, e) is as follows: Given (P, aP, bP, cP )

with uniformly random choices of a, b, c ∈ Z∗q , compute
e(P, P )abc ∈ G2.

An algorithm is said to have advantage ε in solving the
BDHP in (G1, G2, e).

IfPr[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ε.

Here the probability is measured over the random
choices of a, b, c ∈ Z∗q , P ∈ G1.

The BDH assumption states that no probabilistic poly-
nomial time algorithm has non-negligible advantage (in k)
in solving the BDHP for (G1, G2, e).

The BDHP for parameters (G1, G2, e) is no more dif-
ficult to solve than the CDHP in either G1 or G2. Given
(P, aP, bP, cP ) ∈ G4

1, there exist two ways for solving the
BDHP using the CDHP:

1) By solving the CDHP on (P, aP, bP ) in G1, we can
find abP ∈ G1. Given abP we then can compute
e(abP, cP ) = e(P, P )abc ∈ G2 which is the solution
to the BDHP;

2) By solving the CDHP on (e(P, P ), e(aP, P )),
e(bP, cP ) (which is the same as (e(P, P ), e(P, P )a),
e(P, P )bc in G2, we get e(P, P )abc which is the solu-
tion to the BDHP.

The conclusion of this is clear: if the BDHP is no
harder than the CDHP which is no harder than the DLP,
we should better ensure that this last one is really hard.

3 Special PVSS Scheme

Let G1 denote an additive group of prime order q, P and
Q denote independently selected generator of this group,
hence no party knows the discrete log of P with respect
to Q. At the same time, we also consider a multiplicative
group G2 of order q and a bilinear map e : G1×G1 → G2

which can be computed efficiently (in polynomial time).
Moreover, the computing discrete logarithms in G1 and
G2 are infeasible. The dealer will achieve this by first
selecting s ∈R Zq and then distributing shares of secret
S = sQ.

3.1 Protocols

The PVSS Scheme consists of three phases: Initialization,
Distribution and Reconstruction.

Initialization.
The group G1 and G2 denote an additive group and
multiplicative group of prime order q, among G1 and
G2 exist a bilinear map e : G1 × G1 → G2, and
the independently generators P , Q are selected using
appropriate public procedure. Participants Pi gener-
ates a private key xi ∈R Z∗q and registers yi = xiQ
as its public key.

Distribution.
The protocol consists of two steps:
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1) Distribution of the shares. The dealer wishes to
distribute a secret among participants P1, ldots,
Pn. The dealer picks a random polynomial f of
degree at most t − 1 with coefficients in Zq :
f(x)

∑t−1
j=0 ajx

j , and sets s = a0. The dealer
keeps this polynomial secret but publishes the
related commitments cj = ajP , for 0 ≤ j < t.
The dealer also publishes the encrypted shares
Yi = f(i) · yi, for 1 ≤ i ≤ n.

2) Verification of the shares. Verifier computes
xi =

∑t−1
i=0 ij · Cj from the Cj values. The ver-

ifier accepts if e(P, Y ) = e(Xi, yi) and rejects
otherwise.

Reconstruction.
The protocol consists of two steps:

1) Decryption of the shares and its verification.
Using its private key xi, each participants finds
the shares Si = f(i) · Q from Yi by computing
Si = x−1

i · yi. The correctness of the shares is
easy to verify since e(Yi, Q) = e(yi, Si).

2) Pooling the shares. Participants Pi produce cor-
rect values for Si, for i = 1, 2, · · · , t. The secret
S = sQ is obtained by Lagrange interpolation:

t∑

i=1

λi · Si =
t∑

i=1

λi · (f(i) ·Q)

=
t∑

i=1

(λif(i)) ·Q

= f(0) ·Q = sQ,

where λi = Πj 6=i
j

j−i is a Lagrange coefficient.

3.2 Security

We first consider the security of the share-encryptions.
We observe that directly breaking the encryption used in
special PVSS scheme implies breaking the Diffie-Hellman
assumption. Consequently, we have the following lemma.

Lemma 1. The encryption used in special PVSS scheme
is security if and only if the Diffie-Hellman assumption
holds.

Proof. (reduction to absurdity) Let the encryption of
shares is security, but the Diffie-Hellman assumption not
holds. Since the Diffie-Hellman not holds, then there ex-
ists a algorithm A: for two random elements αP, βP ∈ G1

(α, β ∈ Z∗q ), the algorithm output αβP with some success
probability ε. Now we need to prove that breaks the en-
cryption of shares with the same as success probability
ε. Breaking the encryption of shares amounts to finding
Si = f(i)Q given P, Q,Xi, Yi, yi, for the group G1. To
prove this, suppose Q = αP, α ∈R Z∗q , and pick random
elements α′, β′ ∈R Z∗q , subsequently α′Q (= α′αP ), β′Xi

(= βf(i)P ), as input of and run A. Then output with
success probability ε. Thus we can obtain the value of Si:

Si = α′−1β′−1 (αα′β′f(i)P ) (= αf(i)P = f(i)Q).

It shows that the encryption of shares is security the
Diffie-Hellman assumption must holds.

Suppose the Diffie-Hellman holds, then the encryption
of shares is no security. Then there exists a algorithm:
when any random elements P, Q, Xi, Yi, yi ∈R G1 as input
of the algorithm B, it can output Si(= f(i)Q) with some
success probability ε. Writing Q = αP , Xi = βP and
yi = γP .

Given P, αP, βP, γP, βγP , running B can output αβP
with the success probability ε. Now we need to prove
that given αP, βP , then z = αβP can be computed by
B with the success probability ε. To prove this, select
random α′, β′, γ ∈R Z∗q , and compute P, αα′P, ββ′P, γP,
as input of B, running has computed αα′ββ′P . Then we
can obtain the value of z:

z = α′−1β′−1(αα′Pββ′P )(= αβP ).

It shows that the Diffie-Hellman holds ⇒ then the en-
cryption of shares is security.

A strong result is that the secret can be reconstructed
by at least t − 1 participants. This is expressed by the
following lemma.

Lemma 2. If the Diffie-Hellman assumption holds, then
that t− 1 participants pool their shares and cannot obtain
the secret.

Proof. (reduction to absurdity) If t− 1 participants pool
their shares, the secret can be recovered. Suppose without
loss of generality that participants P1, P2, · · · , Pt−1 are
able to pool their and recover the secret. Now need to
prove that let be given, adversary II can compute with
using t − 1 participants as Oracle. Here are random; if
not, it is trivial to adapt the proof, as in the previous
lemma.

Now we will set up the system to simulate PVSS for
adversary II such that this fact enables adversary II to
compute with oracle. The Setup of system consists of six
steps:

1) Adversary II sets Q = αP , C0 = βP (= f(0)P ).

2) Taking t − 1 values: f(1), · · · , f(t − 1) ∈R Z∗q ; and
previous fixed f(0) such that function f(x) can be
decided.

3) Adversary II compute forward t− 1 values of Xi and
Y − i:

Xi = f(i) · P, Yi = f(i) · yi, i = 1, 2, · · · , t− 1.

4) f(0) is hiding fixed, thus II is not able to compute the
following values: f(t), f(t+1), · · · , f(n), but making
use of Lagrange interpolation formula II can compute
values of Xt, · · · , Xn.
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5) Compute Cj(i = 1, · · · , t − 1). Since f(x) =
∑t−1

i=n,
then there is the following linear system of equations:




1 01 · · · 0t−1

1 11 · · · 1t−1

· · · · · · · · · · · ·
1 (t− 1)1 · · · (t− 1)t−1







a0

a1

...
at−1


 =




f(0)
f(1)

...
f(t− 1)




In this linear system of equations, adversary II knows
values of (f(1), · · · , f(t−1)), but II do not know the
value of f(0). As a result, II cannot have solved
values of (a0, a1, · · · , at−1). However, so coefficient
matrix of the linear system of equations is Van der
Monde matrix, it have inverse matrix.

Then it is obvious that II can compute values of Cj

(= 1, · · · , t−1) by the linear system of equations and
values of C0, Xi(i = 1, · · · , t− 1).

6) Now, adversary II random picks up ωi ∈R Z∗q (i =
t, · · · , n), sets yi = ωiP , Yi = ωiXi, (i = t, · · · , n),
then Yi satisfied Yi = f(i) · yi.

The complete view for the system is now defined.
It is consistent with the private view of participants
P1, · · · , Pt−1, and comes from the right distribution.
Now, suppose that they are able to compute the secret
f(0) · Q. Since Q = αP and f(0) = β, we are thus able
to compute (αα) · P . This contradicts the Diffie-Hellman
assumption.

Making use of above two lemmas, it is easy that this
lead to follow theorem.

Theorem 1. Under the Diffie-Hellman assumption, the
special PVSS scheme is secure in the random oracle
model. That is, (i) the reconstruction protocol results in
the secret distributed by the dealer for any t participants,
(ii) any t−1 participants is not able to recover the secret.

4 Distributed PVSS Scheme

In the above section, special PVSS scheme is homomor-
phic. Thus we will consider extensions to the case without
a dealer (or without a trusted center), which is called dis-
tributed publish verifiable secret sharing (DPVSS). The
secret S is decided by all players.

For convenience, special PVSS scheme denotes
PV SS(S;Cj ;Yi; Si; f(x)), S: sharing secret, Cj and Yi:
publish information, Si: participants Pi received shares,
f(x): the dealer select random function. Then homomor-
phic of special PVSS scheme shows the following theorem.

Theorem 2. Given two implementing instances of the
PVSS scheme I1: PV SS(S;Cj ;Yi; Si; f(x)) and I2:
PV SS(S;Cj ;Yi; Si; f(x)) ⇔ one implementing instance
I3: PV SS(S + S; Cj + Cj ; Yi + Yi;Si + Si; f(x) + f(x)).

Proof. Its proof is very easy, omit.

Now we will design DPVSS scheme. Assumption the
secret S will distribute among n participants. Other as-
sumption is the same as the above section. In the DPVSS
scheme, anybody can verify the shares whether correct or
not, and any t participants can recover the secret but any
t−1 participants are not able to gain any information for
the secret.

The DPVSS Scheme consists of three phases: Distri-
bution, Computation of the shares and Reconstruction.

Distribution. Participants Pi implements the protocol
PV SS(S; Cij ;Yik;Sik; fi(x)), i.e. Pi pick a ran-
dom number Si ∈R Z∗q and a polynomial fi(x) =∑t−1

i=n aijx
j ∈R Zq[x] such that fi(0) = ai0 = si and

S = siQ. At the same time, Pi keeps this polyno-
mial secret but publishes the related commitments
Cij = αijP , for 0 ≤ j < t. Pi also publishes the en-
crypted shares Yik = fi(k) · yi, for 1 ≤ k ≤ n. Con-
sequently, anybody can verify that all participants
implement the protocol whether success.

Computation of the shares. All participants have
succeeded in distribution their shares. Then each
participants computes encrypted shares Yi:

Yi =
n∑

i=1

Yij(=
n∑

i=1

fj(j) · yi

= (xi

n∑

i=1

fj(i)) ·Q).

Reconstruction. The protocol consists of two steps:

1) Decryption of the shares and its verification.
Using its private key xi, each participants finds
the shares Si == (

∑n
i=1 f(i)) · Q from Yi =∑n

i=1 Yji by computing Si = X−1
i · Yi. The

correctness of the shares is easy to verify since
e(Yi, Q) = e(yi, Si).

2) Pooling the shares. Participants Pi produce cor-
rect values for Si, for i = 1, 2, · · · , t. The secret
S = sQ is obtained by Lagrange interpolation:

t∑

i=1

λi · Si =
t∑

i=1

λi · (f(i) ·Q)

=
t∑

i=1

(λif(i)) ·Q = f(0) ·Q = sQ,

where λi =
∏

j 6=1
j

j−i is a Lagrange coefficient.

The above distributive protocol denotes DPV SS (S;
Cij ; Yik; Sik; fi(x)). Then we have the following theorem:

Theorem 3. Let S =
∑n

i=1 S̄i, Si = X−1
i · Yi,

Ci =
∑n

ki Cki, Yi=
∑n

ki Yki, f(x) =
∑n

i=1 fi(x). Then
DPV SS(S; Cij; Yik; Sik; fi(x)) ⇔ PV SS(S; Ci; Yi; Sk;
f(x)).
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Table 1: Performance comparison

Schemes Secure channel Verifiable/Public verifiable Trusted Center Forward Secrecy
The scheme of [17] Not needed Public verifiable Required No
The scheme of [10] Not needed Public verifiable Required No
The scheme of [15] Not needed Public verifiable Required No
The scheme of [18] Required Verifiable Required Yes

The PVSS of the paper Not needed Public verifiable Required No
The DPVSS of the paper Not needed Public verifiable Not needed No

5 Performance Analysis

In this section, the performance of the proposed schemes
are analyzed and compared with those of previous
schemes. Compared to Schoenmakers’ PVSS in [15], the
PVSS has all advantages of Schoenmakers’ PVSS. At the
same time, in this PVSS, the dealer only needs to post
t+ n elements of G1 (the numbers Ci and Yi); in Schoen-
makers’ PVSS, the dealer not only needs to post t + n
elements of G1 (the numbers Ci and Yi), but also plus
n + 1 number of size |q| (the responses ri and the chal-
lenge c).

The number of exponentiations throughout the pro-
tocol is correspondingly lower than B. Schoenmakers’
PVSS, and all of these exponentiations are with relatively
small exponents from Zq (|q| = 160 bits in practice).

In distribution of shares phase, using bilinearity of bi-
linear paring on elliptic curves, anybody can verify that
the participants received whether correct shares with-
out implementing the non-interactive protocol such as
DLEQ(g1, h1; g2, h2) by Chaum and Pedersen in [5] and
without construction so called witness of shares apply-
ing Fiat-Shamir’s technique in [8]. Subsequently, in re-
construction of secret phase, the released shares may be
verified by anybody with the same method.

Since the PVSS need not to implement non-interactive
protocol and construct witness in order to prevent mali-
cious players, the complexity of communication is lower
than PVSS in [10, 15, 17]. Compared to [10, 15, 17],
consequently, this scheme is simpler and more efficient.
Clearly, the PVSS is homomorphic. For example, given
the dealer’s output for secrets QS1 and QS2, the com-
bined secret QS1+S2 can be obtained by applying the re-
construction protocol to the combined encrypted shares
Yi1, Yi2. Thus we are able to use this to construct the
election scheme and other applications like [15].

Moreover, the DPVSS also needs not implementing the
non-interactive protocol such as zero-knowledge proofs to
verify the shares, and also not construct so called witness.
It needs only the technology that is bilinearity of the bi-
linear paring. Thus its efficiency is extremely high. The
performance comparison with related schemes is shown in
Table 1.

6 Conclusion

The publicly verifiable secret sharing (PVSS) is a special
kind of secret sharing, in which anybody, not just the par-
ticipants, can verify whether the dealer distributed cor-
rect shares to each participant at the secret distribution
phase and whether each participant releases the correct
share at secret reconstruction phase. Furthermore, in an
efficient PVSS, private channels are not assumed between
the dealer and the participants. The bilinear pairing is an
important tool for construction encryption and signature
algorithms. In this paper, a non-interactive, simple and
efficient PVSS is constructed based on the bilinear pairing
on elliptic curves, and extent to the case without a dealer
(or without a trusted center), i.e. distributive publicly
verifiable secret sharing (DPVSS). Using bilinearity of the
bilinear paring anybody can verify the shares whether cor-
rect or not without implementing relative non-interactive
protocol and without construction so called witness. It
is obvious that the efficiency is extremely high. It is
very significant that study secure multi-party computa-
tion problem based on bilinear parings. This will be our
next work.
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