
International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 86

Private Entity Authentication for Pervasive
Computing Environments

Feng Zhu1, Matt W. Mutka2, and Lionel M. Ni3

(Corresponding author: Feng Zhu)

Department of Computer Science, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA1

Department of Computer Science and Engr, Michigan State University, East Lansing, Michigan 48824, USA2

Department of Computer Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China3

(Email: fzhu@cs.uah.edu, mutka@cse.msu.edu, ni@cs.ust.hk)

(Received June 21, 2010; revised and accepted Aug. 29, 2010)

Abstract

Entity authentication becomes ubiquitously necessary in
pervasive computing environments. We provide taxon-
omy of entity authentication between keys and locks.
Based on the discussion, we propose a novel authentica-
tion approach for pervasive computing environments. A
person uses a single device, the Master Key, which aggre-
gates all his digital keys for entity authentication. The
Master Key initiates authentication and selects proper
keys by exchanging code words with locks. With an
emphasis on usability, the Master Key secures authen-
tication, keeps authentication private, and supports var-
ious key-lock interactions. We analyze privacy and secu-
rity properties, verify the protocols, and measured perfor-
mance.
Keywords: Authentication, pervasive computing, privacy,
probabilistic, security

1 Introduction

We prove our identities everyday by showing the posses-
sion of access tokens. Using a key to open a lock may be
the most common form, which has about 4000 years of his-
tory since ancient Egypt. As one may access many locks,
traditional master keys were designed to enable access-
ing multiple locks with a single key. Nevertheless, master
keys are not widely used. Instead, people carry multi-
ple access tokens for entity authentications, for example,
keys, magnetic stripe cards, smart cards, RFID tags, and
other tokens. We propose the Master Key, which is a
novel approach for digital access tokens to have the ad-
vantages of both master keys and multiple access tokens.
In this paper, we use the term, key, for an access token
or a digital access token and the term, lock, for a digital
lock or a computing resource.

Traditional master keys are convenient. One does not
need to carry many keys and memorize relationships be-

tween keys and locks. However, traditional master keys
have fatal problems that are not suitable for everyone’s
daily use. The delegation of a master key equals dele-
gating access to all locks that one has privilege to access.
Revocation of a master key to access a lock is costly be-
cause the lock and the keys of other owners need to be
replaced. If an intruder acquires a master key, then the
intruder may open many locks. In addition, locks that
support master keys are vulnerable to the malicious in-
sider who has a normal key [9].

The use of multiple keys does not have the fatal delega-
tion and revocation problems as traditional master keys
have because one key usually matches one lock. If a key-
lock pair is compromised, it does not put other locks at
risk.

Issues of delegation and revocation are better ad-
dressed by replacing keys with digital keys, for instance, a
hotel room key in the form of a magnetic stripe card or a
smart card. With the encoding of privileges within a dig-
ital form, the delegation and revocation of the privileges
are done on the computers at the front desks. Moreover,
digital keys improve usability in a wide variety of applica-
tions, for example, unlocking a car using a remote control;
accessing an enterprise facility using a smart card badge;
entering a parking facility using a RFID gate card; open-
ing a hotel room using a magnetic stripe card; or locking
and unlocking a computer by wearing a digital key [17].
Additional digital key designs are emerging as well as their
applications. Nevertheless, the management of keys and
key-lock relationships become tedious as the number of
keys increases.

In pervasive computing environments, entity authenti-
cations might be ubiquitously necessary. To the best of
our knowledge, our Master Key is the first design for dig-
ital master keys. It achieves the good usability as tradi-
tional master keys because it automatically and properly
selects digital keys for entity authentications. The Master
Key also achieves security and privacy as multiple digital

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 87

keys. While it aggregates one’s digital keys on a single de-
vice, it maintains the original key-lock relationships (one
key for one lock). The key contributions of this paper are:

Good Usability.
The Master Key frees users from memorizing key-
lock relationships. Users operate the Master Key by
pushing lock and unlock buttons. The Master Key
and locks discover whether an authentication process
is needed by speaking code words - encrypted mes-
sages that are without keys’ or locks’ identifications
and only the proper keys and locks understand.

Key Initiated Authentication.
The Master Key does not require users to select keys,
instead it automatically select the proper keys for au-
thentications. The design becomes challenging when
the Master Key initiates an authentication process.
Via three messages, the Master Key discovers and
selects the proper key among hundreds of keys and
finishes a mutual authentication.

Private Authentication.
The threat in pervasive computing environments is
that unauthorized parties can eavesdrop and learn
the identities sent in clear text and associate with
the time, location, and other context information.
When authentication is ubiquitous necessary, unau-
thorized parties may infer much sensitive information
from authentication sessions. We mitigate the threat
by speaking code words only. And therefore, only
those who understand code words understand who is
authenticating with whom.

Flexible Encoding Scheme.
Our novel encoding scheme enables the Master Key
and locks to express authentication information from
precisely to vaguely in terms of probability. In ad-
dition, each key-lock pair may choose the order of
exposure. Therefore, the Master Key and locks can
protect sensitive information by control the amount
of authentication information they expose.

We formally define the Master Key design problem.
The mathematical properties of our encoding scheme are
proved. Different exposure strategies and their respective
advantages and disadvantages are discussed. We present
three representative protocols for different key-lock rela-
tionships. The protocols are formally verified using BAN
logic and our extension to ensure the protocols’ freshness,
binding, and privacy properties. Our implementation on
PDAs shows that the approach is efficient. An authenti-
cation process between the Master Key and a lock is less
than half a second.

The rest of the paper is structured as follows. In Sec-
tion 2, we discuss related work. Then in Section 3, we il-
lustrate taxonomy of the key-lock interaction design and
the requirements for the Master Key design. Section 4
presents the design and analysis of the automatic key se-
lection process using code words. In Section 5, we discuss

the support for various exposure orders and amount of ex-
posure between keys and locks. In Section 6, we demon-
strate three protocols for key-lock interactions with differ-
ent requirements. We show the implementation and per-
formance measurements of our protocols in Section 7. We
discuss some related issues in Section 8. Last, in Section
9, we outline our future work and conclude our contribu-
tion.

2 Related Work

Several technologies are used and embedded in small de-
vices for entity authentication. Magnetic stripe cards are
widely adopted as hotel guestroom keys, bankcards, and
employee badges [23]. Most magnetic stripe cards contain
three tracks on which data or even PIN numbers are en-
coded and stored. Nevertheless, counterfeit cards cause
huge financial loss every year [3].

Smart cards are utilized as prepaid transit cards,
ID cards, health cards, or even embedded within pass-
ports [20, 33]. Many smart cards contain not only mem-
ory but also microprocessors. The chips on the smart
cards have tamper-resistant features. There are contact
or contactless smart cards. The former type needs physi-
cal contact with readers, while the latter works over wire-
less links.

RFID tags are mainly used to provide unique identifi-
cation numbers as the name suggests. Some RFID tags
(i.e., passive, semi-passive, and active tags) are used as
authentication tokens, such as in [4, 29], respectively. Pas-
sive RFID tags usually do not have processing capabili-
ties to perform cryptographic operations. Semi-passive
RFID tags may be capable of running hash functions,
whereas active tags can execute public key encryption op-
erations. The main privacy concerns for RFID tags are
clandestine tracking and inventorying. Counter attack
approaches have been designed, but there are still serious
challenges [25].

Remote Keyless Entry systems are commonly installed
on new automobiles and garage-doors. On a typical Re-
mote Keyless Entry system [34], when its owner pushes a
button, the remote control sends a message (8 or 16 bytes)
to the receiver. The message contains a “rolling code”
for authentication [21]. The “rolling code” is a pseudo-
random number that is generated at both the controller
and the receiver by using the same seed. The seed is
computationally difficult to find from the pseudo-random
numbers.

iButtons are used as keys, e-cash, and asset man-
agement devices. For instance, in New York City over
200,000 iButton owners are using iButtons to access over
10,000 buildings [24]. Interestingly, memory and proces-
sor chips in iButtons are encapsulated within stainless
steel cans. The cans serve as the iButton’s network inter-
face when iButtons touch readers. Some iButtons support
password protected memory data, challenge-response au-
thentication, or even public key encryptions. In Table 1,

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 88

Table 1: Comparison of entity authentication technologies

Built-in Memory Power Authentication Tamper Multiple-key User
processing size source resistant support interface
power

Magnetic None Hundreds N/A One-way No No No
stripe of bytes

Smart Yes Up to From Mutual Yes Yes No
card (most) few MB readers

RFID (passive) Limited 4KB No One-way No No No
capability

RFID (semi- Yes 4KB Battery Unknown No No No
passive/active)

Remote Limited 4KB Battery One-way or No No Buttons
Keyless Entry capability mutual

iButton Yes Up to From Mutual Yes Yes No
(some iButtons) 134KB readers

or battery

we compare the devices that we have discussed.
Using a single digital key as a master key might be a

possible design choice. It would achieve good usability as
the traditional master keys. Nevertheless, a single digi-
tal key sacrifices users’ privacy and reduces security. A
recent unsuccessful attempt, Microsoft Passport, uses a
single digital identity for websites across administrative
domains. Using a single identity unnecessarily exposes
the same identity information to all websites that a user
accesses [13]. Additionally, users’ preferences and behav-
iors can be connected and learned.

There have been attempts to improve the usability
of entity authentication using digital tokens. Beaufour
and Bonnet proposed to use Personal Servers as digital
keys [6]. In their design, a lock actively looks for devices
to make a connection. Once a connection is established,
a lock identifies itself. If the device is a Personal Server
with digital keys, it identifies and proves itself to the lock.
Otherwise, the lock marks the device as an invalid key
device. Sure enough, a lock that initiates an authenti-
cation process simplifies the design such that a Personal
Server can easily select the key for the lock. Nevertheless,
it is irrational for some locks to send discovery messages
continuously because most processing and communication
efforts are wasted. Moreover, without mutual authentica-
tion and privacy protection, malicious attackers may send
a fake message to query one’s identity and track him.

In Zero-Interaction Authentication (ZIA), an owner
wears a token to secure files on his laptop without ac-
tively typing the password [15]. When the owner leaves,
all file systems on the laptop are protected via encryption.
When detecting that the owner returns (i.e., the token is
nearby), the laptop fetches decryption keys from the token
and restores itself to the state before the owner left. Since
there is no owner’s involvement in an authentication, ZIA
achieves optimal usability. XyLoc uses a similar idea to
automatically lock and unlock a PC [17]. However, these
approaches may not be suitable for applications that are

beyond trustworthy locks and key owners. If an owner
wears tokens for all his authentication tasks, a malicious
insider (a lock or other key owner) might query a token
to track the owner without the owner’s knowledge.

To address the usability issues of multiple identities for
different websites of a user, cross domain single sign on
systems have been developed and are evolving rapidly.
Security Assertion Markup Language (SAML), an Oa-
sis and ITU standard, offers a framework for different
service providers and identity providers to exchange au-
thentication and authorization information [31]. Behind
the scenes, service providers and identity providers link
a user’s accounts of different websites and share related
attributes with each other. Therefore, a user only needs
to login once for accessing protected websites across ad-
ministrative domains. Similarly, OpenID eliminates the
multiple user names and passwords for different websites
and applications [19]. The OpenID authentication pro-
tocol enables websites to redirect authentication requests
to OpenID providers to verify users. Unlike SAML and
OpenID, the Master Key allows users to keep different
identities for different applications and automatically se-
lects correct identities for authentications.

Windows CardSpace stores all digital access tokens of
a user as information cards [14]. CardSpace provides a
consistent user experience for Internet accesses with the
capability to support any type of digital tokens includ-
ing user names, x.509 certificates, and Kerberos tickets.
When a user accesses a protected website, the website
sends a policy to the web browser and then to CardSpace.
CardSpace finds information cards that match the policy
and let the user select a digital access token. The Mas-
ter Key addresses a more difficult challenge. A user does
not need to explicitly specify a lock and memorize the
key-lock relationships.

Biometric recognition, such as fingerprint, iris, hand
geometry, and voice recognition, is used in various au-
thentication applications including being used as keys to

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 89

open locks [30] and secure data [26]. Nevertheless, bio-
metrics may not be suitable to serve as a master key be-
cause biometrics is difficult or even impossible to revoke
and delegate. However, biometric recognition can be used
to secure the Master Key, for instance using fingerprint
recognition to activate the Master Key.

In our PrudentExposure paper [35], a similar data
structure, namely the Bloom Filter [10], is used dur-
ing service discovery processes to find legitimate service
providers and users. The PrudentExposure uses a differ-
ent encoding scheme, which is limited to the full exposure.

In our progressive service discovery protocol [36], ser-
vice providers and users exchange partial information in
multiple rounds to discover available services. In case of
mismatches during the service discovery processes, both
service providers and users stop communicating. Thus,
service discovery and authentication information is pro-
tected because only partial information is exposed and
a malicious party acquires the sensitive information with
uncertainty. We may adopt the approach in the Master
Key design when both a key owner and a lock have pri-
vacy concerns.

The Bloom filter has wide applications in database
and networking [11], and it has applications in secu-
rity [22, 35]. The Bloom filter is a compression method to
express memberships. It has the efficiency advantages of
storage space and computational time, while paying the
price of false positive cases in membership tests. In most
applications, the tradeoff is worthwhile [11]. The Master
Key utilizes not only its time and space efficiency but also
false positive cases to preserve privacy.

3 Key-Lock Interaction

Since we have not seen any systematic analysis and com-
parison of digital key-lock interaction designs, we present
taxonomy of existing designs. There are many choices
when designing the Master Key. We discuss the poten-
tial choices for the Master Key to achieve good usability,
private authentication, and security. Then, we formally
define the Master Key design problem.

3.1 Taxonomy of the Key-lock Interac-
tion

Figure 1 illustrates the taxonomy based on three design
characteristics, namely communication among keys and
locks, a key’s initial status, and the exposure methods.

During communication, some keys may physically con-
tact locks in order to operate locks. For example, a guest
inserts a card into a hotel room’s lock. Other keys may
operate locks via wireless links, and thus are contactless.
Contactless interaction may work over a span from short
distance to long distance. Contactless smart cards inter-
act with locks within a few centimeters, whereas a key in
the Remote Keyless Entry system works over dozens of
meters. Contact keys are the least convenient and slow-

est to use because they need to physically contact locks.
Long distance contactless keys do not have the limitation
that locks need to be within the reach of a key owner.

During authentication, contact keys implicitly provide
strong context that the key is present. Although one
might assume a similar context that contactless keys are
within the vicinity, such assumption may be invalid. For
instance, a RFID tag usually is accessible within a short
distance, but a malicious attacker may build a powerful
reader to read tags [1].

A key’s initial status may be passive, reactive, or ac-
tive. If a key is passive, it requires the owner to insert
the key into the lock, such as a magnetic stripe card
or an iButton. Passive keys communicate with locks via
physical contact. While being reactive, a key is ready to
respond upon receiving an authentication message from
a lock. For example, when using a passive/semi-passive
RFID tag or a contactless smart card as a key, the key is
reactive. After receiving a message and power from a lock
(reader), the key proves itself to the lock. Active means
that a key initiates the authentication process and trans-
mits a message. For instance, in a Remote Keyless Entry
system for a car, the key (remote control) becomes ac-
tive when an owner pushes a button, while the system in
the car wakes up frequently (every 20ms) to receive com-
mands from the key [34]. In general, reactive keys should
be avoided for entity authentication, since they are more
susceptible to attacks. Unlike the passive and active keys,
a reactive key does not require its owner to initiate an au-
thentication process. Thus, a hacker may build powerful
readers to track people and maliciously acquire authen-
tication messages without a key owner’s knowledge. For
example, recent attack on Mifare Classic card may po-
tentially affect billions of users who use the RFID cards
as reactive digital keys [28]. Passive keys are the safest
but the least convenient because key owners need phys-
ically touch the locks using the keys. Like passive keys,
active keys require key owners to initiate authentication
sessions. Locks do not need to send authentication mes-
sages periodically and thus are very suitable for the locks
using batteries.

If only a lock verifies a key, it is one-way authentication.
If they both verify the other parties, it is mutual authen-
tication. Mutual authentication provides better security
and increases users’ trust.

Keys and locks may expose different degrees of their
authenticity to the other parties. In one-way authenti-
cation, a key exposes its information to the lock in full,
while a lock exposes no information to the key. In mutual
authentication, both a lock and a key expose their infor-
mation in full. Potentially, a key and a lock may expose
partial information in a round and verify the other party’s
authenticity in multiple rounds. Although such exposure
approach has not been used in digital keys and locks, we
proved elsewhere that it can effectively protect both par-
ties’ privacy [36]. If a party detects that authentication is
unnecessary, it can immediately stop the process without
fully exposing its authentication information.

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 90

Lock first

Partial

Exposure

Contact
 Contactless

Short distance
 Long distance

Communication

Reactive
 Active

Initial status

Passive
 One way
 Mutual

Key first

Full
No

Figure 1: AES in counter mode acts as a keystream generator for an additive stream cipher

Keys and locks may predetermine their orders of the
exposure. Either a key sends the authentication message
first (key first), or a lock sends its authentication message
first (lock first). Based on the authentication message re-
ceived, the party that exposed later can determine proper
reactions. For example, a Remote Keyless Entry system
ignores authentication messages if they are not for the
car. When the authentication is one-way, the order of ex-
posure becomes a degenerate case, in which only the key
exposes. The design choices for digital keys are shown in
Table 2.

3.2 The Master Key and Lock Interaction

To meet different key-lock interaction requirements and
constraints, the Master Key supports all key-lock interac-
tions except reactive and one-way authentication. Keys
with reactive initial status are susceptible to attacks as
discussed in Section 3.1. For contactless communication,
the Master Key requires users to actively start an authen-
tication process. For contact communication, the Master
Key will be passive. We assume that the Master Key has
appropriate physical and wireless channels to support pas-
sive and active keys. We require the Master Key and locks
to mutually authenticate each other (no one-way authen-
tication). Thus, the Master Key can ensure that a key is
exposed to the intended lock. Combining all characteris-
tics together, Figure 2 shows the interaction approaches
that the Master Key supports.

Besides supporting various key-lock interactions, the
Master Key needs to address a critical requirement - users
do not need to remember key-lock relations. From users’
perspective, the ultimate goal is to ensure access to pro-
tected physical places and digital resources instead of
managing keys and locks. Ideally, the Master Key au-
tomatically selects the correct key for an intended lock,
and thus it frees users from identifying keys and memo-
rizing the relationship between keys and locks. We use a
private and secure discovery approach to find the proper
key for the intended lock.

We define the Master Key and lock interaction as fol-
lows:

Lock first

Mutual

Full

Contact
Contactless

Active
 Passive

Partial

Key first

Figure 2: Supported interactions of the Master Key

The Master Key contains a set of keys, {Ki}i ∈ N . A
lock, L, may be operated by one or more digital keys
{KL

M}m ∈ N .

The Master Key and lock achieve strong authentication
via mutual authentication such that a lock believes
Ki ∈ {LL

M} and the Master Key believes the lock is
the intended lock, Lj = Lintended.

Based on their requirements between a lock and the
Master Key, they may choose partial or full ex-
posure in a message. Therefore, the probability
p(Ki ∈ {KL

M}) = a, a ∈ (0, 1) and the probability
p(Lj = Lintended = b, b ∈ (0, 1)).

The Master Key and a lock may predetermine who ex-
poses authentication information first.

When a user operates a lock, Lintended, the Mas-
ter Key automatically selects the key, KLintended ,
KLintended ∈ {Ki}i ∈ N .

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 91

Table 2: Comparison of key-lock interaction design

Initial status Communication Exposure
Magnetic stripe Passive Contact Full, one-way
Smart card (contact) Passive Contact Most mutual, some one-way, full
Smart card (contactless) Reactive Contactless, 10 cm or less Full, mutual
RFID (passive/semi- Reactive Contactless, a few feet Full, one-way
passive)
RFID (active) Active Contactless, hundreds of feet Full, one-way
Remote Keyless Entry Active Contactless, dozens of feet Full, most one-way, some mutual
iButton Passive Contact Full, mutual
ZIA Reactive Contactless Full, mutual
Personal Servers Reactive Contactless Full, one-way

4 Discover the Proper Key to Op-
erate a Lock

There are two situations. In the simpler situation, a lock
actively notifies the Master Key its information. The
Master Key can search all the key-lock pairs based on
the lock’s information. Thus, the Master Key can select
the proper key, KLintended ,KLintended ∈ {Ki}i ∈ N , for
authentication. This method can be applied to locks that
require digital keys to physically contact them (passive
initial status). The event that a lock and a key physically
touch each other triggers the lock to notify the Master
Key its information.

For a key and a lock that communicate over wireless
channels (contactless), a lock might continuously broad-
cast authentication messages. Nevertheless, locks waste
almost all their power and communication because they
are not being operated most of the time. For locks run-
ning on batteries such as Remote Keyless Entry on cars,
the method may not be acceptable. When some locks do
not continuously broadcast authentication messages, the
Master Key has to actively discover locks. In the rest of
the paper, we focus on this more challenging situation.

The Master Key initiates a contactless entity authen-
tication (active initial status). Locks are in the listening
mode. (A battery powered lock may switch between sleep
mode and listening mode periodically to save power.)
When a user pushes a button to lock and unlock, the Mas-
ter Key broadcasts a discovery message to query whether
there is any lock in the vicinity that it can operate. The
message is in the code word form. If a lock understands
and recognizes the Master Key, it replies back. Then, the
Master Key searches all the key-lock pairs and verifies the
lock. If a proper key is found, the Master Key submits
the proper key, KLintended ,KLintended ∈ {Ki}i ∈ N , for
authentication.

4.1 Private Discovery by Speaking Code
Words

In pervasive computing environments, a user may au-
thenticate with different parties in unprotected network
environments. If identities are exchanged in clear text,
malicious attackers may infer sensitive information and
associate it with the identities. To mitigate the threat,
the Master Key and locks exchange only code words. A
code word is generated at both the Master Key side and
a lock’s side. It is calculated from a secret shared be-
tween the Master Key and the lock. The shared secrets
are unique. (We will discuss more details about shared
secrets in Section 6.)

The Master Key operates many locks at different
places. Without knowing the existence of a lock, it broad-
casts all potential code words to locks in the vicinity. The
code words are encoded in an array as shown in Figure 3.
A code word is represented by the combination of some
bits in the array. For example, Figure 3 shows that two
bits (bit 5 and 11) is a code word. The Master Key sets
all code words in the array.

A lock verifies the code word bits in the array. If all
the bits that represent a code word are set to 1, the lock
believes that there is a code word match. For example,
when the lock sees the bits 5 and 11 are set in the array,
it believes that the Master Key knows the code word.
Then, the lock notifies the Master Key its information
and requests the Master Key to supply the key. (Note
that the code words are just for the Master Key and locks
to identify each other. They are not used as keys to open
the locks.)

In addition, the Master Key will randomly set bits in
the array to reach a fixed percentage of bits set in the
array. By default, the Master Key uses an 8192-bit array
with 50% of the bits set in the array. Eavesdroppers who
listen on the channel but do not understand code words
find arrays with the same length and the same number of
bits set. They do not know which Master Key is sending
the discovery message.

Our encoding scheme is scalable. Hundreds of code

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 92

 1
 0
 0
 0
 1
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 0

A code word

15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0
bits

Figure 3: Code words encoded in an array

words may be expressed in one network packet. For in-
stance, if the Master Key uses an 8192-bit array, of which
50% are set, and on average each code word is 5 bits,
then at least 8192 ÷ 50%5 = 819 code words may be set
in a discovery message. The result (819 code words) is a
lower bound, which is calculated from the extreme case,
in which no two code words set the same bits.

This is an application of the Bloom filter [10]. Our
Bloom filter generation (discussed in the following Sec-
tion 4.2) has different constraints than those used in
database and networking [11]. Unlike other approaches,
our approach allows different number of bits to represent
a member (code word). In addition, random bits are set
in the Bloom filter. The mathematical properties are dif-
ferent and we discuss and prove them in Section 4.3.

4.2 Generating and Verifying One-time
Code Words

Figure 4 illustrates the generation of a code word in an
array. All bits in the array are initially set to zero. A time
variant parameter (TVP) and the shared secret are the
two inputs to h(∗). A TVP consists of a timestamp and
a random number. We assume that the Master Key and
the locks have loosely synchronized clocks, and thus they
do not need to maintain large caches to verify whether
or not a TVP is fresh. Function h(∗) is the hash-based
message authentication codes (HMAC) proposed in [8].
MD5 or SHA-1 [27] is used in the place of h().

The hash result is further separated into chunks. The
size of the chunks, x, depends on the length of the array,
which is 2X bits. For example, if the array size is 8192 =
213 bits, the chunk size is 13 bits. The value of a chunk
serves as an index to the array. The Master Key uses it
to set the corresponding bit in the array. A code word is
represented by a combination of several bits. The Master
Key uses several chunks to set the bits. For example,
three chunks are used to set bits 8, 6, and 3 to represent
a code word as shown in Figure 4. The hash results are
128 bits and 160 bits when MD5 and SHA-1 are used,
respectively. Thus, they can be separated into 9 and 12
chunks.

For all potential locks that the Master Key wants to
discover, it repeats the above process using the same TVP
and the shared secrets. Then, it sets the code word bits in
the same array. Next, the Master Key generates random

h
(
Shared Secret
 ,
XOR padding
 1
,
h
(
Shared Secret
 ,
XOR padding
 2
,
TVP
))

...
 Chunk
Chunk
Chunk
Chunk

Time Variant

Parameter
 (
TVP
)

Shared secret

Hash result

12
 11
 10
 9
 8
 7
13
14
 6
 5
 4
 3
 2
 1
 0
15

0
 0
 0
 0
 1
 0
0
0
 1
 0
 0
 1
 0
 0
 0
0

Bit

Figure 4: The generation of a code word

numbers in the range between 0 and 2X − 1. It uses the
random numbers as indices to set bits in the array until
the number of bits that are set reach a fixed ratio. Last,
the array and the TVP are broadcasted to query the locks
in the vicinity.

Code word verification is efficient and independent of
the number of code words in an array. First, a lock checks
whether 50% of the bits are set in a Bloom filter. Then,
it calculates the hash results using the TVP and its copy
of the shared secret. Next, it verifies whether the bits
indexed by the chunks of the code word in the array are
set to one. If all the bits are one, there is a code word
match. If any bit is not one, then the code word does not
match.

The code words are one-time code words. Each au-
thentication session, the Master Key and a lock use a
different TVP. Thus, their code word bits set in the array
are different in sessions.

4.3 Mathematical Properties of the Code
Words

Unlike other applications [11, 18], which are based on hav-
ing each element in a Bloom filter with the same length,
the Master Key may use various code word lengths and
set random bits in the array. Specifically, the mathemat-
ical property of the false positive rate is different from
other applications.

Proposition 1. The code word encoding scheme has:

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 93

1) No false negative case, that is

p(codewordmatch|keyowner) = 1

2) The false positive rate is:

p(codewordmatch|notkeyowner) = (
m

n
)k. (1)

Proof.

1) The first part means if the Master Key has a key
to operate a lock, the lock will always find the code
word match in the array. No false negative case is a
property of the Bloom filter. In our case, the Master
Key and the lock use their shared secret and the same
TVP as inputs. The hash results are the same. The
Master Key uses the hash results to set the bits in
the array and the lock uses the bits to verify. So,
they will always find matches.

2) False positive match is possible because the bits that
are set to 1 in the array are not exclusive. When a
lock finds a code word match, the same bits may be
set by other code words or the random bits that the
Master Key generates. If the code word bits follow
uniform distribution, the false positive rate in our
case is a typical sampling with replacement problem.
By our design, the number of bits set and the array
length, m/n, is a fixed ratio. Given that the array is
not generated by a key owner, the probability to find
a code word match is = (m

n)k.

Figure 5: False positive rates decrease as the length of the
code word increases

Examining Equation 1, we find that a key-lock pair
can control their false positive rate by selecting the code
word length. When the length of a code word increases,
the false positive rate decreases as shown in Figure 5. The
m/n ratio at around 50% provides a good span of false
positive rates. For example, if the m/n ratio is at 50%,
a code word of 1 bit has a false positive rate of 0.5, a
code word of 5 bits has a false positive rate of 0.03, and
a code word of 10 bits has a false positive rate less than

0.001. To further reduce unnecessary overhead, another
hash algorithm or another shared secret may be used to
generate a code word of 20 bits or longer.

It is computationally difficult for an eavesdropper who
does not know the shared secret to find a hash result from
the array of the code words. For example, if the array is
8192 bits, 50% bits are set, and a code word is 5 bit,
the probability to find the partial hash result is less than
10-18. We prove the following proposition.

Proposition 2. The probability to find a hash result from
an array of code words is 1∑n2

k=n1
(m!
(m−k)!)

, where k is a code

word length and m is the number of bits set in the array.

Proof. If an eavesdropper does not know the code word
length, he needs to try different lengths from k = n1 to
k = n2. For each k, an eavesdropper needs to select k bits
from m bits and then permutate the k chunks to guess a
hash result. Assume the code word bits follow uniform
distribution, there are (m!

(m−k!)) permutations. Therefore,
the probability to find the hash result is 1∑n2

k=n1
(m!
(m−k)!)

.

Note that the hash result found may be only part of the
hash result because code words may not use all the chunks
to set the bits in the array.

4.4 Code Words Follow Uniform Distri-
bution Over an Integer Set

When we analyze the mathematical properties of the code
words, we assume that the values of the chunks of the
hash results follow the uniform distribution over an inte-
ger set [32]. That is any bit in the Bloom filter is equally
likely to be set. If the bits are not equally likely to be set,
we may not acquire desired results as we discussed in last
sub section.

We use the chi-square goodness-of-fit tests to deter-
mine if this assumption (null hypothesis) holds. Since
MD5 and SHA-1 are the underlying functions used in
HMAC, we test results by using both functions. For MD5,
our algorithm may use up to 9 chunks. For SHA-1, up to
12 chunks may be used. Every individual chunk is tested
as shown in Table 3. We use a randomly generated num-
ber as the shared secret, a 2-byte timestamp, 14 1-byte
random numbers as a TVP, and an array of 213-bit. For
each chunk, 6,400,000 code words are generated and the
number of occurrences for each outcome is counted.

We calculate the chi-square test statistics and select
5 percent as the significance level. Table 3(a) and 3(b)
shows the test results. If the value is greater than 8402.5,
then it is significant, which means we reject the hypoth-
esis. There is only one test, chunk 2 for the hash result
using SHA-1, is insignificant. However, it may be given
a false result. Because, given that the significance level
is 5 percent, it seems reasonable that 1 out of 21 tests
is false. Thus, we do 20 runs to test the chunk again.
Table 3(c) shows that only 1 of the 20 tests (run number
15) is significant. Therefore, we believe that the values of

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 94

Table 3: Pearson’s chi-square tests for code word chunks
(a) x2 tests on chunks generated using
MD5.

Chunk no. X2 p-value
1 7986.62 0.9458
2 8181.34 0.5281
3 8084.54 0.7969
4 7978.28 0.9527
5 8334.58 0.1314
6 8303.95 0.1883
7 8150.03 0.6239
8 8155.17 0.6086
9 8084.77 0.8801

(b) x2 tests on chunks generated using
SHA-1

Chunk no. X2 p-value
1 8302.02 0.1925
2 8498.40 0.0087
3 8106.66 0.7442
4 8138.58 0.6276
5 8019.14 0.9111
6 8082.59 0.8011
7 8286.50 0.2271
8 8192.96 0.4917
9 8264.93 0.2807
10 8032.32 0.8930
11 8036.60 0.8866
12 8121.27 0.8057

(c) 20 runs of tests on chunk no. 2

Chunk no. X2 Run X2

1 8115.41 11 8217.66
2 8272.11 12 8308.70
3 8228.07 13 8273.77
4 8081.83 14 8300.54
5 8046.90 15 8441.22
6 8186.90 16 8381.66
7 8201.50 17 8166.25
8 8215.75 18 7876.70
9 8332.42 19 8145.32
10 8142.11 20 8231.54

the chunks follow the uniform distribution over an integer
set.

5 Choose the Amount of Expo-
sure and Exposure Orders

Our code word encoding scheme is flexible that the Master
Key and a lock can determine their amount of exposure
based on their requirements. They may choose from par-
tial exposure to full exposure. Meanwhile, their amount
of exposure is independent of other code words in the ar-
ray because an array always has the fixed ratio of bits set.
To control the amount of exposure, the Master Key and a
lock can simply choose the number of bits used in the code
word. The more bits used the more precisely the Master
Key exposed. If the code word is very precise (very low
false positive rate), it is considered as full exposure.

If a lock has privacy concerns or power constraints and
only wants to expose to its key owners, the Master Key
may specify a precise code word. If the Master Key wants
to make sure a certain lock is in the vicinity before its
precise exposure, the Master Key may specify a partial
code word with few bits. The use of partial code word

changes the order of precise exposure from a key to send
authentication information first to a lock to send authen-
tication information first. Precise exposure at a later time
has the advantage to protect privacy. If there is any mis-
match and unnecessary exposure, a party that exposes
later can avoid exposure. If both the Master Key and a
lock have concerns and want the other party to expose
first, they may progressively expose partial code words
and verify each other. We described this approach and
analysis in [36]. In short, our design enables a lock and
the Master Key to choose their order of exposure and
partial or full exposure in a message, such that the prob-
ability p(Ki ∈ {KL

M}) = a, a ⊂ (0, 1) and the probability
p(Lj = Lintended) = b, b ⊂ (0, 1).

From a lock’s perspective, the preciseness that the
Master Key exposes is determined by the probabil-
ity, p(keyowner|codewordmatch). That is the proba-
bility that the code word is generated by a true key
owner, if the lock finds a code word match. Based
on the definition of conditional probability, it equals
to p(keyowner|codewordmatch)/p(codeword, atch). Af-
ter applying multiplication law and law of total proba-
bility to the numerator and denominator respectively, we
get the following equation. (It is similar from the Master

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 95

Key’s perspective.)

p(keyowner|match) = p(match|keyowner)
×p(keyowner)/p(match|notkeyowner)
×p(notkeyowner) + p(match|keyowner)
×p(keyowner) (2)

where p(keyowner) is the percentage of key owners
among all people who send discovery messages at a place;
p(codewordmatch|notkeyowner) is the false positive rate;
and is as we discussed in Proposition 1. Note that
Equation (2) is only valid at the lock’s place. At other
places, p(keyowner|codewordmatch) is not defined be-
cause p(keyowner) is unknown.

Figure 6 illustrates the relation between the num-
ber of bits in a code word and p(keyowner|match) for
various p(keyowner) values. The false positive rates,
p(match|notkeyowner), are based on setting 50% of the
bits in the Bloom filters. Note p(keyowner|match) is for
one lock at a place. Different locks may have different
p(keyowner|match) values at the same places.

If the Master Key speaks code words vaguely, it may
use few bits for a code word. The eclipse area in Fig-
ure 6 suggests the number of bits to use for different
values. Nevertheless, overhead occurs at the lock’s side.
The lock may unnecessarily involve in the interactions
with non-key owners. The probability of the overhead is
1 − p(keyowner|codewordmatch). We will show in Sec-
tion 7 that the overhead in terms of processing time is
small.

Figure 6: The relationship between the number
of bits in a Bloom filter format code word and
p(keyowner|codewordmatch)

6 Mutual Authentication Proto-
cols for Different Key-Lock
Types

In this section, we present protocols for three types of
key-lock relations. A unique key is owned by one or a few
owners to open a lock. A lock and the Master Key share
a unique secret. An individual key is that its key owner
can be identified among a group of owners. Beside the

unique shared secret for the group as the unique key, a
lock and the Master Key share an individual secret with
each owner. A group key is also owned by a group of
people. The lock is able to verify a key, but key owners
are not differentiable. They may share some plain text to
discover each other.

The initialization processes for all types of keys are
the same. We assume that shared secrets are delivered
from locks to the Master Keys via secure channels. Locks
indicate the number of bits for code words.

6.1 The Unique Key

The protocol for the unique key is shown in Figure 7(a).
In the first message, the Master Key sends code words
to locks in the vicinity. After a lock finds a code word
match, it indicates the last bit of the matched code word
and proves its knowledge of the shared secret by reply-
ing back a hash result. Last, the Master Key supplies
another hash as the key to operate the lock. In the lat-
ter two messages, the Master Key and the lock may use
any authentication approach that they prefer, for example
certificates. Without loss of generality, we use the HMAC
as discussed in Section 4.2. (The Master Key and a lock
exchange hash results directly). In the first and second
messages, both the Master Key and a lock post challenges,
TVP1 and TVP2, respectively; while in the second and
third messages the other parties respond based on the
challenges.

Usually, a lock and its few key owners use this type
of keys to exchange precise code words. For example,
one uses the unique key to lock and unlock a car. This
key type minimizes unnecessary authentication between
a lock and the Master Key.

6.2 The Individual Key

Some locks need to identity individual key owners among
many key owners. The challenge for the Master Key de-
sign is that the Master Key holds many keys and a lock
has many key owners. If we directly use the unique key
approach, locks find that many false positive cases hap-
pen. To address the problem, we use domain secrets and
individual secrets. A domain secret is shared and used
by all key owners to discover the lock, whereas an indi-
vidual secret is used by the lock to identity an individual
key owner. The individual secret is only shared between
a key owner and the lock and it is unique.

Figure 7(b) shows the protocol for the individual key.
The first message uses the domain secret. In the reply
message, the lock proves its knowledge of the domain se-
cret by generating the hash. If the key owners are con-
cerned that the reply message may come from another
key owner who impersonates the lock, a digital signature
may be used in place to counter the attack. As shown
in Figure 7(b), the lock signs the hash result. The lock
sends another Bloom filter in the second message that en-
codes code words for every key owner. The code words

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 96

Notation:

L is a lock. M is the Master Key.

tX is a timestamp that X attaches.

RX is a random number that X generates.

A TVP consists of a tX and a RX.

()KX
1
 is X’s signature using its signing private key.

BFP(y, S) is a code word in a Bloom filter that P generates from a shared secret, S, and a TVP, y.

HashP(y, S) is a hash result that P generates from a shared secret, S, and a TVP, y.

MBP is the last bit of a code word that a party, P, finds the match.

Msg No. Sndr/Rcvr Message

1 M L: BFM(RM, tM, SUnique), RM, tM

2 L M: RM, tM, MBL, RL, tL, HashL(RM, tM, SUnique)

3 M L: RL, tL, HashM(RL, tL, SUnique)

(a). The protocol for the unique key.

Msg No. Sndr/Rcvr Message

1 M L: BFM(RM, tM, Sdomain), RM, tM,

2 L M: RM, tM, MBL, HashL(RM, tM, Sdomain),

(HashL(RM, tM, Sdomain))KL
1
, BFL(RL, tL, Sindividual), RL, tL

3 M L: RL, tL, MBM, HashM(RL, tL, Sindividual)

(b). The protocol for the individual key.

Msg No. Sndr/Rcvr Message

1 M L: BFM(RM, tM, SPlainText), RM, tM

2 L M: RM, tM, MBL, RL, tL, HashL(RM, tM, SGroup)

3 M L: RL, tL, HashM(RL, tL, SGroup)

(c). The protocol for the group key.

Figure 7: The Master Key protocols

are generated from the individual secrets using the same
approach that the Master Key generates the code words.
Furthermore, the lock sets random bits in the array to
reach a fixed ratio of bits set. In the third message,
the Master Key indicates its identity by specifying the
matched code word and supplies the hash result as the
key.

6.3 The Group Key

Unlike the individual key, the group key has the require-
ment that a lock cannot differentiate key owners from
their keys. This means that all key owners should have
the same key. Nevertheless, the Master Key initiates the
authentication process. A malicious lock may provide dif-
ferent key owners with different keys. Based on the keys,
the lock differentiates key owners and responds accord-
ingly. We suggest the following two approaches.

The Master Key and a lock may use the unique key
protocol. But a key owner only speaks few bits of a code
word. A short code word ensures that a lock cannot dif-
ferentiate among key owners. Because when there are
two different code words of length 1 or 2 bits, it is very

likely that the lock will find a false positive match and
a true match in the code word array. If the lock replies
with an incorrect hash, the key owner knows that he has
a different key than other owners.

If the overhead caused by the false positive cases is
large, a lock and its owners may use more bits for the
code word. However, the code word is generated from
some plain text, as shown in Figure 7 (c). The plain text
in the message may be some human readable text such as
“the CS department’s mail room” or “XYZ Company’s
parking lot”. The usage of plain text instead of a secret
changes the order of who first expresses knowledge of a
secret. Since the lock expresses its knowledge first, the
Master Key knows that it shares the same secret as other
key owners. If there is more than one secret, the lock may
provide an incorrect code word in the second message.

6.4 Revocation

To revoke a unique key, a lock invalidates the shared se-
cret. If there is more than one key owner, a new shared
secret needs to be delivered to the other key owners. To
revoke an individual key from a key owner, a lock inval-

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 97

idates the individual secret, while notification of a new
domain secret to other key owners may not be imminent.

To revoke a group key from a key owner, all other key
owners need to update their group keys. Not all key own-
ers are online all the time, and thus timely delivery of the
new key may be a problem. If an owner updates his key
when he finds that the key has expired, the lock may be
able to determine the owner’s identity because he has just
updated his key. We are designing an approach, which is
similar to sending email to a group of recipients, so that
a new group key is dispatched to all key owners at the
same time.

6.5 Formal Verification of the Protocols

We use BAN logic [12] to verify our protocols to assure
that the bindings are correct and messages are fresh. Our
extension is added to the logic for the verification of code
words and hashes. We add three logic constructs:

P∞yQ: P shares a secret Y with Q. Q may be an
individual or a group.

(M ⊂ G): M is a member of group G.

P [CW]Y : P finds a match in a code word, CW , which
uses Y as a shared secret. If the code word is in the
array, there is a possibility that the party that gen-
erates the array knows the shared secret, Y . When
a hash is used, the party that generates it knows the
secret.

The message-meaning and nonce-verification rules are
extended as follows:

P Y
∞,P [CW]Y

P |≡Q| CW : When P finds a matched code word, P

knows that Q once said it. If Q is a member of a
group, P only knows that one member (including P)
once said the code word. If a hash is received, P is
sure that Q said it. If the code word is received, P
knows there is a probability that Q said it.

P |≡Q| CW,](CW)
P |≡Q|≡CW : Based on the freshness of the code
word, P believes that the code word or hash is fresh.

Since the verifications of the protocols are similar, we
only discuss the protocol for the individual key type. Fol-
lowing the BAN logic’s procedure, we convert the proto-
col to an idealized protocol as shown in Table 4(a). Then
we explicitly write our assumptions in Table 4(b). Next,
we deduct step-by-step to reach conclusions and check
whether the conclusions are consistent with our expec-
tation. Due to space limitations, we omit the lengthy
deduction of the protocol and only show the stepwise re-
sults in Table 4(a). We reach the conclusions: a lock
believes that the Master Key has the key to operate it,
Ki ∈ {KL

m}, and the Master Key believes that the lock is
the intended lock, Lj = Lintended.

7 Performance Measurement

We implemented our protocols and measured performance
on a set of PDAs. Handheld devices such as cell phones
or PDAs are good candidates for the Master Key, since
people regularly carry them. Locks may have diverse pro-
cessing and communication capabilities. Some may have
limited processing power, while others may be powerful
to support hundreds of key owners. We used a Compaq
iPAQ as the Master Key (an ARM SA1110 206 MHz pro-
cessor, 64MB RAM, and a D-Link DCF-650W wireless
card) and a Dell AXIM X5 as a lock (Intel PX250 400
MHz processor, 64MB RAM, and a Dell TrueMobile 1180
wireless card). The PDAs run Microsoft PocketPC 3.0,
and the wireless cards are set to 2Mbps in the 802.11 ad
hoc mode.

Table 5 shows processing and communication times of
the major components of the Master Key and lock. The
processing time is an average measurement of 100 runs.
It takes about 231 ms for the Master Key to generate and
send the first message with 820 code words. It takes the
lock about 4 ms to generate and send the second message,
and the Master Key about 3 ms to generate and send the
third message. In case of the individual key, it takes the
lock another 169 ms to generate a Bloom filter with 500
key owners. One protocol run takes less than half second
in this extreme case, in which the Master Key specifies 820
code words and a lock has 500 key owners. Therefore, our
design is efficient in most cases.

8 Discussion

During our design of the Master Key, an interesting ques-
tion was raised: when there are multiple locks at a place
and the Master Key owner has the privileges to access
them, to which lock should the Master Key send the op-
eration code? For example, suppose Bob walks to his
office and pushes a button on the Master Key to unlock
the door. However, the mailroom is also close by. Which
door should the Master Key unlock? If the antenna on
the Master Key is directional, then the door at which the
Master Key points is unlocked. Nevertheless, if Bob also
uses the Master Key to unlock his computer in the office,
then the office door and the computer may in the same
direction. Should both the computer and the door be
unlocked? It may be convenient that both the door and
the computer are unlocked. Or perhaps the Master Key
may store a rule such that unless the office door is un-
locked, the computer will not be unlocked. Alternatively,
the Master Key may utilize location or proximity informa-
tion if such information is available. Only if the Master
Key is within a certain distance, the computer accepts
the unlock command. For a greater challenge, if Bob has
two cars parked side by side outside his house, which car
should be unlocked when Bob pushes the unlock button
on his Master Key? The Master Key may list the locks
that reply back in the order of the frequency of the locks’

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 98

Table 4: Formal verification of the protocol for the individual key
(a) The idealize protocol of the individual key and the stepwise results of our verification

Msg no. Idealize protocol Stepwise results
1 BFM{RM , tM} L| ≡ (⊂ G)| ≡ BFM

2 HashL{RM , tM},HashL{RL, tL}}−1
KL, BFL{RL, tL} M | ≡ L| ≡ HashSdomain,M | ≡ L| ≡ BFL

3 HashM{RL, tL}, L| ≡ M | ≡ HashSindividual

(b) Assumptions

M | ≡ MSindividud ↔ L,L| ≡ MSindividud ↔ LL,M | ≡ LSdomain ↔ LL, L| ≡ MSdomain ↔ LL
L| ≡](tL),M | ≡](tL), L| ≡](tM), M | ≡](tM), L| ≡](RL),M | ≡](RL), L| ≡](RM),M | ≡](RM), M | ≡K

→ L

Table 5: Performance measurement of the major protocol components

Party Operation
The Master Key Generate an 8192-bit array with 820 code words.

(Average code word length is 5 bits.)
The Master Key Generate and set random bits in the array to reach 50% of bits set.
The Master Key Send the first message.
Lock Generate and check the code word in the array in the first message.
Lock Generate a hash.
Lock Send the second message.
The Master Key Waiting time for the reply message.
The Master Key Verify the hash from the lock and generate another hash.
The Master Key Send the third message.
Lock Generate an 8192-bit array with 500 key owners.

Each key owner is identified by 2 bits.
The Master Key Generate a code word from an individual secret and check it in the array.

usage, and then let Bob select one. Note that Bob selects
a lock and not a key. The fundamental difference between
multiple keys and the Master Key is that a user does not
need to remember the key for the lock.

The Master Key protocols that we discussed so far are
susceptible to the Mafia fraud attack, as are other en-
tity authentication protocols. In our case, for example,
an adversary may put a device near Bob’s office and a
device near Bob’s house. When Bob pushes a button on
the Master Key to unlock his office door, the adversary’s
devices relays messages - the first discovery message to
Bob’s house, the house’s reply message back to the Mas-
ter Key, and the Master Key’s unlock command to Bob’s
house door to gain access to Bob’s house. If the Mas-
ter Key notifies Bob that two doors are ready to unlock
and lets Bob select a door to unlock before it sends the
third message, Bob may notice that something abnormal
is occurring.

Mafia fraud attacks may not have countermeasures by
cryptography alone. Presently, there are some representa-
tive solutions: using location information [16], measuring
the transmission time [5, 7], and using multiple commu-
nication channels simultaneously [2]. These approaches
can be adapted and fit into our protocols. For instance,
the Master Key and a lock use location information to

generate code words. An attack can be easily detected
from the location information. Moreover, the Master Key
and a lock may measure their upper distance bound. In-
stead of sending a code word in one message, the Master
Key and a lock may send a bit at a time over multiple
rounds and determine whether their distance is reason-
able. Securing the Master Key is critical. Losing it may
be as serious as losing a key chain and/or a wallet. Finger
recognition and tamper-resistant features may reduce the
problem. The problem is important, but it is out of the
scope of this paper.

9 Conclusion and Future Work

In this paper, we propose the Master Key approach for en-
tity authentication in pervasive computing environments.
Our approach improves usability such that a person car-
ries one device for various authentication purposes while
it maintains the favorable properties of carrying multi-
ple access tokens. The Master Key exchanges code words
with locks securely and privately and supports various
key-lock interactions. Users do not need to remember the
relations between keys and locks.

The current design of the Master Key does not support
multiple groups of key owners. Thus, a lock will find up to

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 99

one code word that matches. However, if multiple groups
are supported in a lock, the lock may find multiple code
words that match several groups due to the false positive
cases. The lock could determine the false positive cases
by establishing multiple sessions and exchanging messages
with the Master Key, but in the group key type this vio-
lates the privacy feature, and thus the Master Key owner
will not be sure that his shared secret with the lock is the
same as other owners. We are designing an approach to
support multiple groups, while the group key type still
maintains its desirable privacy feature. In the meantime,
we are designing an approach to make the revocation of
a group key easier.

The Master Key needs contact and contactless inter-
faces for various locks. The current design requires users
to identify the correct interface to access a lock. Different
interfaces may reduce the usability or might even cause
authentication errors if a user infrequently accesses a lock.
Proper user interfaces or visual hints may help users to
choose the proper interfaces. This is an interesting issue
and it is out of the scope of this paper.

The Master Key will be further extended to function
more than just a set of keys. It may possibly represent
a person’s real life roles. For instance, the Master Key
may be used as a remote control for a TV. Therefore,
the TV channels that are available to Bob may be differ-
ent from what are available to his son. Nevertheless, the
more functions that the Master Key supports, the more
challenging it is for automatic authentication.

Acknowledgements

This paper is an extension of a paper that appeared in the
Proceedings of the Forth IEEE International Conference
on Pervasive Computing and Communications, March,
2006.

References

[1] P. Agrawal, N. Bhargava, C. Chandrasekhar,
A. Dahya, and J. D. Zamfirescu, The MIT ID
Card System: Analysis, and Recommendations,
2004. (http://swiss.csail.mit.edu/6.805/student-
papers/fall04-papers/mit id/)

[2] A. Alkassar, C. Stüble, and A. R. Sadeghi, “Secure
object identification or: Solving the chess grandmas-
ter problem,” Workshop on New security paradigms,
pp. 77-85, Ascona, Switzerland, 2003.

[3] Association for Payment Clearing Services, UK Card
Fraud Losses Reach l504.8M, 2005.
(http://www.epaynews.com/downloads/APACS%20
UK%20Card%20Fraud%20PR%208%20March%2020
05.pdf)

[4] AXCESS Inc web site, Personnel Access Control,
2005. (http://www.axcessinc.com/)

[5] S. Brands, and D. Chaum, “Distance-bounding pro-
tocols,” Advances in Cryptology - EUROCRYPT’93,
pp. 344-359, Lofthus, Norway, 1993.

[6] A. Beaufour, and P. Bonnet, “Personal Servers as
Digital Keys,” 2nd IEEE Annual Conference on Per-
vasive Computing, and Communications, pp. 319-
328, Orlando, Florida, 2004.

[7] T. Beth, and Y. Desmedt, “Identification tokens - or:
Solving the chess grandmaster problem,” Advances
in Cryptology Crypto’90, pp. 169-176, 1991.

[8] M. Bellare, R. Canettiy, and H. Krawczykz, “Key-
ing hash functions for message authentication,” Ad-
vances in Cryptology-CRYPTO’96, LNCS 1109, pp.
1-15, 1996.

[9] M. Blaze, “Rights amplification in master-keyed me-
chanical locks,” IEEE Security & Privacy, vol. 1, pp.
24-32, 2003.

[10] B. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Communications of ACM,
vol. 13, no. 7, pp. 422-426, 1970.

[11] A. Broder, and M. Mitzenmacher, “Network appli-
cations of bloom filters: A survey,” Internet Mathe-
matics, vol. 1, pp. 485-509, 2005.

[12] M. Burrows, M. Abadi, and R. Needham, “A logic
of authentication,” ACM Transactions on Computer
Systems, vol. 8, no. 1, pp. 18-36, Feb. 1990.

[13] K. Cameron, The Laws of Identity, Microsoft Corpo-
ration, May 2005. (http://msdn.microsoft.com/en-
us/library/ms996456.aspx)

[14] D. Chappell, Introducing Windows CardSpace,
Chappell & Associates, Apr. 2006. (http://msdn. mi-
crosoft. com/en-us/ library/ aa480189.aspx)

[15] M. Corner, and B. Noble, “Zero-interaction authen-
tication,” Conference on Mobile Computing, and
Networking (MobiCom), pp. 1-11, Atlanta, Georgia,
USA, 2002.

[16] Y. Desmedt, “Major security problems with the ‘un-
forgeable’ (feige)-fiat-shamir proofs of identity, and
how to overcome them,” SecuriCom’88, pp. 15-17,
Paris, France, 1988.

[17] Ensure Technologies, (http://www.ensuretech.com/
products/technology/technology.html]HowXyLoc
Works)

[18] L. Fan, et al., “Summary cache: A scalable wide-area
web cache sharing protocol,” IEEE/ACM Transac-
tions on Networking, vol. 8, pp. 281-293, June 2000.

[19] B. Ferg, et al., “OpenID authentication 2.0,”
Dec. 5 2007. (http://openid.net/specs/openid-
authentication-2 0.html)

[20] J. Ferrari, et al., “Smart cards: a case study: IBM
corporation,” IBM Press, 1998.

[21] G. Goebel, Codes, Ciphers, & Code breaking, Jun. 1
2004 (http://www.vectorsite.net/ttcode.html)

[22] E. J. Goh, “Secure Indexes,” 2004. (http://crypto.
stanford.edu/ eujin/papers/secureindex/index.html)

[23] S. G. Halliday, “Introduction to Magnetic Stripe &
Other Card Technologies,” SCAN-TECH ASIA 97,
Singapore, 1997.

International Journal of Network Security, Vol.14, No.2, PP. 86–100, Mar. 2012 100

[24] iButton home page, 2005. (http://www.maxim-ic.
com/products/ibutton/)

[25] A. Juels, “RFID security, and privacy: A research
survey,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, pp. 381-394, 2006.

[26] M. Mana, M. Feham, and B. A. Bensaber, “Trust
key management scheme for wireless body area net-
works,” International Journal of Network Security,
vol. 12, pp. 75-83, 2011.

[27] A. Menezes, P. v. Oorschot, and S. A. Vanstone,
“Handbook of applied cryptography,” CRC Press,
1996.

[28] K. Nohl, et al., “Reverse-engineering a cryptographic
RFID tag,” 17th USENIX Security Symposium, pp.
185-193, San Jose, CA, 2008.

[29] J. Pearson, Securing the Pharmaceutical Supply
Chain with RFID and Public-Key Infrastructure
(PKI) Technologies, Texas Instruments, June 2005.
(http://www.ti.com/rfid/docs/manuals/whtPapers/
wp-Securing Phar-ma Supply Chain w RFID and
PKI final.pdf)

[30] S. Prabhakar, S. Pankanti, and A. Jain, “Biometric
recognition: security, and privacy concerns,” IEEE
SECURITY & PRIVACY, vol. Mar./Apr., pp. 33-
42, 2003.

[31] N. Ragouzis, et al., “Security assertion markup
language (SAML) V2.0 technical overview,” OA-
SIS Open, 9 Oct. 2006. (http://www.oasis-open.org/
committees/documents.php?wg abbrev=security)

[32] J. Rice, Mathematical Statistics, and Data Analysis,
2nd Duxbury Press, Thomson Learning, 1995.

[33] Smart Card Alliance, Smart Card Implementation
Profiles. (http://www.smartcardalliance.org/indu
stry info/profiles.cfm)

[34] D. Semiconductor, “Requirements of remote
keyless entry (RKE) Systems,” Nov. 11, 2004.
(http://www.maxim-ic.com/appnotes.cfm/appnote
number/3395)

[35] F. Zhu, M. Mutka, and L. Ni, “A private, secure, and
user-centric information exposure model for service
discovery protocols,” IEEE Transactions on Mobile
Computing, vol. 5, pp. 418-429, 2006.

[36] F. Zhu, et al., “Private, and secure service discovery
via progressive, and probabilistic exposure,” IEEE
Transactions on Parallel, and Distributed Systems,
vol. 18, pp. 1565-1577, 2007.

Feng Zhu received the B.S. degree in computer science
from East China Normal University, the M.S. degree
in computer science and engineering from Michigan
State University, the M.S. degree in statistics from
Michigan State University, and the Ph.D. degree from
Michigan State University. He is an assistant professor
at The University of Alabama in Huntsville. He was a
program manager at Microsoft and a software engineer
at Intel. His current research interests include pervasive
computing, security for pervasive computing, computer
networks, and distributed systems.

Matt Mutka received the B.S. degree in electrical
engineering from the University of Missouri-Rolla, the
M.S. degree in electrical engineering from Stanford
University, and the Ph.D. degree in Computer Science
from the University of Wisconsin-Madison. He is on
the faculty of the Department of Computer Science and
Engineering, Michigan State University, East Lansing,
Michigan, where he is currently professor and depart-
ment chairperson. He has been a visiting scholar at the
University of Helsinki, Helsinki Finland and a member of
technical staff at Bell Laboratories in Denver, Colorado.
His current research interests include mobile computing,
wireless networking, and multimedia networking.

Lionel M. Ni earned the B.S. degree in electrical en-
gineering from National Taiwan University in 1973, the
M.S. degree in electrical and computer engineering from
Wayne State University, Detroit, MI, in 1977, and the
Ph.D. degree in electrical and computer engineering from
Purdue University, West Lafayette, IN, in 1980. He is
Chair Professor in the Computer Science and Engineer-
ing Department at HKUST. He served as the Depart-
ment Head from 2002 to 2008. He also serves as Director
of HKUST China Ministry of Education/Microsoft Re-
search Asia IT Key Lab, Director of HKUST Fok Ying
Tung Graduate School Digital Life Research Center, and
Chief Scientist of the National Basic Research Program of
China (973 Program) on Wireless Sensor Networks. Be-
fore joining HKUST in July 2002, he was a professor in
Computer Science and Engineering Department at Michi-
gan State University, where he started his academic career
in 1981.

