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Abstract

We propose an adaptively secure broadcast encryption
scheme with short ciphertexts, where the size of broad-
cast encryption message is fixed regardless of the size of
the broadcast group. In our proposed scheme, members
can join and leave the group without requiring any change
to public parameters of the system or private keys of ex-
isting members. Our construction has a twofold improve-
ment over previously known best broadcast encryption
schemes. First, we propose a scheme that immediately
yields adaptive security without any increase in the size
of ciphertexts or use of a random oracle. Secondly, the
proof of security in the proposed scheme is defined in a
stronger security model closely simulating an adversary
in real world. In our security model, the adversary can
selectively query private keys of the group members after
the setup and can receive decryption of broadcast encryp-
tion messages at any given time.
Keywords: Adaptive adversary, broadcast encryption,
short ciphertext

1 Introduction

Sharing secrets or common keys between two parties has
been solved by public key cryptosystems, but extending
the secret sharing operations in an efficient manner be-
yond two parties remains a challenging task. Securely
sharing secrets over an insecure, public channel is a prob-
lem that rises in many applications, such as satellite
broadcasts, cable TV subscriptions, digital rights man-
agement systems and secure IP multicasting. Various en-
tities belonging to the same group share the same (digital)
resource that needs to be protected from intruders. En-
cryption is usually the preferred means of securing digital
assets in an open environment. There are many efficient
encryption schemes available for a full range of digital
contents, including files, folders, audio and video streams.

However, members of the broadcast group must have the
decryption key, in order to access the protected content.
A naive solution would be to share individually the de-
cryption key with all members of the group using conven-
tional public key of every member. Despite of being very
common, this approach is not efficient as the manager
of the group has to communicate the decryption key as
many times as the number of group members. Moreover,
every time there is a change in the group membership,
a new set of messages to share the decryption key must
be communicated with the members of the group. We
are looking for non-trivial solutions to share a secret key
among dynamic members of a group with minimum com-
putation and communication overheads. A distributed
system is displayed in Figure 1, where establishing a se-
cure communication channel among a very disperse and
dynamic set of users is desired. This is a challenging
task, mainly because traditional access control systems,
e.g. Role Based Access Control (RBAC), often give full
access to users depending on the roles they take. This re-
sults in an all-or-nothing authorization, not being flexible
in granting access to resources. The solution should be
able to set permissions dynamically per document and ef-
ficiently share the cryptographic access-keys to intended
users. The solution has to be adapted to any arbitrary
set of users over any domain and must allow for dynamic
changes in the group memberships.

As it can be seen from Figure 1, we have supposed
that a secret message (e.g. the decryption key) needs to
be communicated with Users 1,2,3,4 and all the users in
Users Group B. Note that the users might have different
roles or might be located at different domains. Neverthe-
less, the server in Figure 1 should be capable of sending
a short broadcast message to share the access-key with
the privileged users in the network. The broadcast mes-
sage has to be encrypted to be secure and should be short
to avoid flooding the network. Users have different pub-
lic/private keys pairs unique to them. The broadcast mes-
sage has to incorporate all the receiving members, and
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therefore it needs to be generated using each user’s pub-
lic key. Obviously, any subset of colluding users in the
network should not be able to access the broadcast mes-
sage if the users are not included the calculation of the
broadcast message.

Broadcast encryption is a cryptographic solution that
involves sharing a cryptographic key between multiple
(more than two) members in a group. Members can arbi-
trarily select any subset of members for sharing a crypto-
graphic key. Members leave and join the group depending
on the credentials they receive from the group manager
at any time. We refer to the group manager as admin-
istrator (Admin), and he is responsible for managing the
group and distributing keys to group members. A change
in the group membership usually requires updating or dis-
tributing new keys to all of the group members including
the existing members. This incurs extra communication
overheads in the group and should be avoided. This is re-
ferred to as 1-affects-all effect. Regarding the communi-
cation bandwidth as a limited natural resource, our main
design goal is to reduce the communication overheads in
a dynamic broadcast group, while preserving a very high
level of security for all members.

Within the given requirements, we propose the first
broadcast encryption scheme that is secure in a fully adap-
tive model. The proposed scheme is proved secure in the
formal model based on a known, strong complexity as-
sumption. Our security model under which the security
proof is provided is devised to simulate the adversary in
the real world as closely as possible. We achieve an adap-
tively secure broadcast encryption with short ciphertexts
without using a random oracle (hash functions).

In this work, we first review some of the related work
in Section 2. We give the preliminaries to understand
this work in Section 3, which is followed by Section 4,
where the main protocol is given. Security of the proposed
protocol in its underlying attack model is formally proved
in Section 5. Performance of our broadcast encryption
scheme is discussed in Section 6. Finally in Section 7,
conclusions and future work are provided.

2 Related Work

There exist various broadcast encryption schemes that
can be used for secure group communication. For a com-
prehensive survey of most recent group key multicast pro-
tocols, the reader can refer to [8]. There is usually a cen-
tral authority who manages the entire multicast group
and its memberships. The central authority is also re-
sponsible for distributing the public/private key pairs to
members of the group. With the exception of the Secure
Lock protocol [10], in (almost all) broadcast encryption
schemes, any change in the group memberships requires
changing the public/private keys of all the other members,
creating huge communication overheads in the group. In
the Secure Lock protocol [10], this is avoided at the ex-
pense of increasing the size of broadcast messages to the

size of the entire broadcast group. In our work, we refer
to the central authority as Admin. In Table 1, we have
tersely listed some of the protocols that are relevant to
our scheme and briefly compared their performances in
the rest of this section.

An attempt to efficiently scale group-key sharing from
two (as in public key cryptography) to many entities is
found in [15], where bilinear pairings (Weil or Tate) are
used in a key agreement protocol between three entities.
The protocol is extended to large groups consisting of n
members in [2], where ternary trees are used to expand
to n members requiring O(log3 n) communication mes-
sages. Choi et al. [11] propose a constant-round broadcast
encryption protocol with short ciphertexts from bilinear
pairings, but their proposal suffers from 1-affects-all effect
and any change in the group membership requires O(n)
updates to be broadcast in the network. A good collection
of identity-based protocols from pairings is listed in [9, 16]
and their security is compared to each other in full details.
We avoid repetition by referring the reader to [9, 16] for
performance analysis and to [1, 19] for parameters and
efficiency comparisons.

One of the key requirements of a secure broadcast
encryption scheme is resistance against group members’
collusion. In a collusion resistant broadcast encryption
scheme, excluded members are not able to cooperate to-
gether to obtain the current encrypted message in the
broadcast or to compromise other members in the group.
There are a few collusion resistant protocols in literature
[12, 14, 17], but in most cases collusion resistance has re-
sulted in an increase in communication overheads. That
is the ciphertext in these schemes grows (usually) linearly
with the number of privileged members in the broadcast
group. Nevertheless, Boneh et al. [6] have proposed a
collusion resistant scheme that has short ciphertexts, i.e.
the size of the broadcast message is fixed and does not
change with the size of the broadcast group. Their collu-
sion resistant broadcast encryption is designed in a static
security model, where the adversary must commit to the
set of identities S′ that it will attack before seeing the
public parameters of the protocol (denoted by PK). This
is considered a weak security model that is not reflective
of the adversary in real world and does not capture all
possible attacks. That is the adversary is prohibited from
querying private keys of protected members with index i
for any i ∈ [1, n] \ S′. In other words, the security as-
sumption is based on the fact that prior to organizing
the broadcast group, the adversary and the compromised
members are known to the system’s Admin.

In a more realistic simulation of the adversary, Gen-
try and Waters [13] propose a semi-static security model,
where the adversary still commits to a set S′ of in-
dices before the setup phase as before, but it can query
an arbitrary subset of S′ after the setup. Note that
S′ ∪ S∗ = [1, n] and the adversary cannot query the pri-
vate keys of any i ∈ S∗. It is claimed in [13] that “a
semi-static adversary is weaker than an adaptive adver-
sary, but it is stronger than a static adversary, in that its
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Figure 1: Sharing secrets among a dynamic group of users

choice of which subset of S′ to attack can be adaptive”.
In an adaptively secure system, no initial commitment is
required from the adversary. The adversary is allowed
to see the public parameters, to take the identity of any
member and to receive the private keys of any compro-
mised member. The attacker in real world is an adap-
tive adversary that can take the identity of any subset
of group members, receive decryption of ciphertexts at
any time or exploit the private keys of an arbitrary set
of compromised members. We propose a secure broad-
cast encryption scheme that addresses this attacker and
presents a scheme in the adaptive security model.

3 Preliminaries

In this section, we begin by formally defining a broad-
cast encryption system. Then, we present the adaptive
security model devised for a broadcast encryption sys-
tem. Later in this section, we introduce the cryptographic
primitives that are used as the basis of our work.

3.1 Broadcast Encryption Systems

To define a broadcast encryption system, we use
the formal definition of Gentry and Waters [13] for
the broadcast encryption protocol. The broadcast
encryption scheme is comprised of four algorithms:
Setup(λ, n), KeyGen(i, SK), Encrypt(S, PK) and

Decrypt(S, i, Di,Hdr, PK).

Setup(λ, n) Takes as input the number of receivers
(n) and the security parameter λ of a broadcast group.
Note that λ implicitly determines the maximum size
of the broadcast group for which a secure broadcast
encryption can be built. It outputs a public/secret key
pair 〈PK, SK〉 belonging to the Admin. Note that SK is
called a secret key, as the security of the given broadcast
encryption system depends on it.

KeyGen(i, SK) Takes as inputs an index i ∈ {1, · · · , n}
that denotes the member’s identity and the secret key
SK. It outputs a private key Di for the i-th member. We
will see later that the private key is used for decryption
in the Decrypt() algorithm.

Encrypt(S, PK) Takes as input a subset S ⊆ [1, n] and
a public key PK. If the size of the subset (|S|) satisfies
|S| ≤ n, it outputs a pair 〈Hdr,K〉, where Hdr is called
the header and K ∈ K is a message encryption key that
will be shared among all the intended recipients. We will
show later that K is used as the session (encryption) key
and Hdr contains data to help find the encryption key
by intended recipients only. The broadcast message to all
members in S is fixed in size and only consists of 〈S,Hdr〉.

Decrypt(S, i,Di,Hdr, PK) Takes as input a subset S ⊆
[1, n], an index i ∈ {1, · · · , n}, private key Di correspond-
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Table 1: Comparison of centralized group key sharing protocols

Scheme 1-Not-All Communication Computation Storage Update
Secure Lock [10] X O(n) O(1) O(1) O(1)

Burmerster et al. [7] - O(1) O(n) O(1) O(n)
Perrig et al. [18] - O(log2 n) O(log2 n) O(log2 n) O(log2 n)
Barua et al. [2] - O(n) O(n) O(1) O(log3 n)
Choi et al. [11] - O(1) O(n) O(1) O(n)
Boneh et al. [6] X O(1) O(n) O(n) O(1)

Gentry & Waters [13] X O(
√

n) O(n) O(n) O(1)
Our scheme X O(1) O(n) O(n) O(n)

Legend
Size of the broadcast group n

Does not have the 1-affects-all effect 1-Not-All

Communication complexity of broadcast messages Communication

Computation complexity to send broadcast messages Computation

Storage complexity to store private/public keys Storage

Size of update messages Update

ing to member i, a header Hdr for the given S and the
public key PK. If |S| ≤ n and i ∈ S, then the algorithm
outputs the message encryption key K ∈ K.

3.2 Security Model

Having defined the framework of the broadcast encryp-
tion scheme, we can devise the security model. The
security of our protocol is defined in the adaptive adver-
sary model. Adaptive security in broadcast encryption
is defined using the following game between an attack
algorithm A and a challenger. Both A and the challenger
are given n and λ in the beginning. The adversary is
adaptive; that is, it does not commit to a subset of
members before seeing the public parameters PK. In
addition, our security model permits the adversary to
adaptively obtain the private keys of the compromised
members; the adversary can send decryption queries to
receive the decryption of any broadcast message that was
sent for members in the challenge set. The security model
presented in this paper represents a stronger model, as it
captures a wider range of attacks. It is therefore closer
to the adversary in real world as compared to others in
the literature. Our model is defined as follows:

Setup. The challenger runs Setup(λ, n) to obtain the
public key PK, which is later revealed to the adversary
as well.

Key Query Phase. Algorithm A adaptively issues
private key (Di) queries for any set of indices S′ ⊂ [1, n].

Challenge. The challenge set is specified as
S∗ = [1, n] \ S′. Note that for all private keys (Di)
queried in the Key Query Phase, we have S′ ⊂ [1, n]
and i /∈ S∗. The challenger then runs Encrypt(S∗, PK)
and outputs 〈Hdr∗,K〉. The challenger secretly picks a

random Z
R←−∈ K. It then sets b

R←−∈ {0, 1} and returns
〈Hdr∗, K∗〉 to the adversary, where K∗ ← K if b = 0,
otherwise K∗ ← Z.

Decryption Query Phase. The adversary issues
arbitrary decryption queries q1, · · · , qD, where a de-
cryption query consists of the triple (i, S,Hdr) for any
S ⊂ [1, n], even including S ⊂ S∗. The only constraint
is that Hdr 6= Hdr∗. The challenger responds with
Decrypt(S, i,Di,Hdr, PK).

Guess. The adversary uses algorithm A to output its
guess b′ ∈ {0, 1} for b and wins the game if b′ = b.

We refer to the game described above as the adaptive
security model. The adversary’s advantage by using algo-
rithm A to break the broadcast encryption system (BE)
with parameters (λ, n) is defined as follows:

AdvA,BE(λ, n) = |Pr[b′ = b]− 1
2
|,

where b′ is the algorithm A’s guess of b in the adaptive
security model. Let’s define a helpful notation that will
be used in the rest of this work.

Definition 1. A broadcast encryption system BE is
adaptively (negl(λ), n, qD)-secure if for all polynomial-
time algorithms A that make a total of qD decryption
queries, we have AdvA,BE(λ, n) = negl(λ). The adver-
sary has a negligible advantage if negl(λ) can be made
smaller than 1

poly(λ) for any arbitrary polynomial poly().

We refer to the BE scheme that is secure in the adap-
tive model as BEA in the rest of this work.
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3.3 Bilinear Maps

We make extensive use of bilinear maps at the core of our
proposed schemes, so let’s first properly define a bilinear
pairing.

Let G and GT be groups of order p, and let g be a gen-
erator of G. A bilinear map is an efficiently computable
function from G×G onto GT , such that it has the follow-
ing properties:

1) Bilinearity : For all g, g′, h, h′ ∈ G,

e : G×G→ GT ,

e(gg′, h) = e(g, h)e(g′, h),
e(g, hh′) = e(g, h)e(g, h′)

Note that e(·, ·) is symmetric, that is we have
e(ga, gb) = e(gb, ga) = e(g, g)ab ∀a, b.

2) Non-degeneracy : If e(g, h) = 1 for all h ∈ G, then
g = I (identity).

Weil pairing and Tate pairing are two implementations
of an efficient bilinear map over elliptic curve groups use-
ful for cryptography. For a more detailed discussion on
bilinear maps and pairings, we refer the reader to [3].
Cryptographic bilinear maps must have certain complex-
ity properties that are explained in the following section.

3.4 Complexity Assumptions

In general, cryptographic bilinear maps need to be one-
way functions, that is computing the bilinear pairing
should be efficient, but the inverse has to be diffi-
cult [4, 5, 6, 13]. The many complexity assumptions
found in literature have slightly different settings, but
they are all related to the difficulty of solving Discrete
Logarithm Problem (DLP) over large algebraic groups.
Our main construction, which is given later in Section 4,
is based on a narrower variant of the DLP assump-
tion referred to as the Bilinear Diffie-Hellman Exponent
(BDHE)-Sum assumption. This is the same complexity
assumption that has been used in Gentry and Waters’
adaptive scheme [13]. We have simplified the definition
to relate directly to our proof of security.

Definition 2 (BDHE-Sum Assumption (for n):). As
usual, let G and GT be groups of order p with a bilinear
map e : G×G→ GT , g a generator for G and α

R−→ Z∗p.
Set S = [−2n, 2n]. Given {yi = gαi

: i ∈ S}, compute
e(g, g)α4n+1

, without knowing α.

The decision-variant assumption of above assumptions
is stated as follows:

Definition 3. Let ŷg,α,n = {yi = gαi ∀i ∈ S}. An algo-
rithm B that outputs b ∈ {0, 1} has advantage ε in solving

the decision BDHE-Sum for n in G if

Pr
[
B(g, ŷg,α,n, e(g, g)α4n+1

) = 0
]
−

Pr [B(g, ŷg,α,n, Z) = 0] ≥ ε,

where the probability is over the random choice of the gen-
erator g ∈ G, the random choice of α ∈ Z∗p, the random
choice of Z ∈ GT and the random bits consumed by B.
We refer to the distribution on the left as PrBDHE and
the distribution on the right as RBDHE.

We say that the decision (ε, n)-BDHE-Sum assumption
holds in G if no polynomial-time algorithm has any ad-
vantage greater than ε in solving the decision BDHE-Sum
problem for n in GT .

4 Adaptively Secure BE Con-
struction

To derive a fully adaptively secure BEA scheme with
short ciphertexts, our protocol increases the number of
private keys. As before, we denote the maximum number
of members in the broadcast group by n. Our BEA

scheme is given as follows:

Setup(λ, n) Run 〈G,GT , e
R←− GroupGen(λ, n)〉.

Set α
R←− Z∗p, the generator g ∈ G, identity values

x1, · · · , xn
R←− Gn and a secret value γ

R←− Z∗p. Set
PK to include a description of G,GT , e, {x1, · · · , xn},
{gαi

, ∀i ∈ [0, 2n]} and e(g, g)α2n+1
as the session key.

The group’s secret SK is set as 〈γ, α〉, which is known
by Admin only. Output 〈PK, SK〉.

KeyGen(i, SK) Pick ri
R←− Z∗p and for all j ∈ [0, n], pick

randomly Bj
R←− Z∗p. Release to member i its private key

as Di ← {ri, di,j , Ti,j}, where:

di,j = g
γαnBj

α2−ri
α−xi ∀ j ∈ [1, n] and j 6= i

Ti,j = g
αj

γBi ∀ j ∈ [0, n]

We emphasis that ri and di,j values are used for
decryption and Ti,j values are used to compute the
broadcast encryption message.

Encrypt(S, i, Di, PK) The set S includes the index of
members for which the broadcast message will be created,
as well as the index of the sender i. Pick t

R←− Z∗p and
set Hdr ← 〈C1, C2〉, where C1 ← gt and

C2 ← gt(γBi)
−1αn−|S| ∏

j∈S(α−xj),

where i is the sender’s index i. Let’s denote p(α) =
αn−|S|∏

j∈S(α − xj). It should be clear that p(α) is a

polynomial of degree n, and therefore gt(γBi)
−1p(α) is in

the following form:

gt(γBi)
−1p(α) = g

t

∑n
j=0 ejαj

γBi
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where ej is a multiple of a few xj values depending on the
indices included in the set S. By knowing the random t,
all the Ti,j and xj (∀ j ∈ [0, n]) values, the sender (mem-
ber i) can readily calculate gt(γBi)

−1p(α). The session key
(K) is set as follows:

K ← e(g, g)tα2n+1
.

Output 〈Hdr,K〉.

Decrypt(S, i, Di, Hdr, PK) If i ∈ S, find the sender’s
index (j) and then expand Hdr to 〈C1, C2〉. Output

K ← e(C1, g
pi(α) · grihi(α))e(C2, di,j)

where pi(α) = α2n+1 − αn+2p(α)
α−xi

and hi(α) = αn p(α)
α−xi

.
Note that only if i ∈ S, pi is a polynomial of degree
2n and gpi(α) can be directly calculated from gαj

and
xj values. If i /∈ S, then pi(α) is polynomial of degree
2n + 1, and it cannot be directly calculated from gαj

as
the maximum power i in gαi

available is 2n (i.e. gα2n

).
Similarly if i ∈ S, then rihi(α) is polynomial of degree
2n− 1 that can be directly calculated by knowing ri, gαj

and xj values.

Correctness: Let’s check that decryption recovers the
correct value of K. Recall that member i’s decryption
key corresponding to the sender j is given as di,j =

g
γαnBj

α2−ri
α−xi . Then, we have the following proceedings:

e(C1, g
pi(α) · grihi(α))e(C2, di,j) = e(gt, gpi(α)+rihi(α))

× e(gt(γBj)
−1p(α), g

γαnBj
α2−ri
α−xi )

= e(g, g)t(pi(α)+rihi(α))e(g, g)tαnp(α)
α2−ri
α−xi

= e(g, g)tαn(αn+1−α2p(α)
α−xi

+ri
p(α)

α−xi
+p(α)

α2−ri
α−xi

)

= e(g, g)tα2n+1

as required.

It is very easy to see how the proposed BEA scheme
can be adapted to add sender’s authentication to the
broadcast encryption message.

Sender’s Authentication: Let SymEnc and SymDec
be symmetric encryption and decryption functions, re-
spectively. Let M be a random verification message to be
broadcast to the set S, and let CM

R←− SymEnc(K, M)
be the randomized encryption of M under the session key
K, which is broadcast to the set S. The broadcast to
members in S consists of 〈S,Hdr,M, CM 〉. The privi-
leged receiver, a member in the set S, can easily verify the
sender of the broadcast message as follows: First, mem-
ber i (if i ∈ S) retrieves the session key K from Hdr via
the Decrypt(S, i,Di,Hdr, PK) function. Then, member
i checks if M = SymDec(K, CM ). If it passes, it verifies
the sender, otherwise, it refuses the sender’s authentica-
tion.

5 Security Analysis

In this section, we prove the full security of the proposed
BEA scheme in the adaptive security model.

Theorem 1. Let GT be a bilinear group of prime order p,
which is directly determined by the security parameter λ.
For any positive integer n (s.t. 2n < p) our n-broadcast
encryption system is adaptively secure assuming the deci-
sion (negl(λ), 2n)-BDHE-Sum assumption holds in GT .

Proof. As usual, we start by the assumption that there is
an algorithm A with advantage ε > negl(λ) in attacking
the proposed BEA scheme. If this is true, we prove
that A can be used to solve the decision n-BDHE-
Sum in G with an advantage ε, which contradicts the
presumed advantage negl(λ) of the initial complexity
assumption. We build a simulation machine B that
receives an instance of the decision n-BDHE-Sum prob-
lem comprised of Z ∈ G and the set of {gai |i ∈ [−2n, 2n]}.

No Commit. It has to be emphasized that the adver-
sary’s algorithm A does not commit to a predetermined
set of indices S∗ to attack, before seeing the public
parameters of the scheme. Without loss of generality,
we assume |S∗| = 2. This implies that the adversary
can attack and retrieve the private keys of all members,
except two members that will be used in the challenge
round. One non-compromised (non-attacked) member is
used to generate a broadcast message (Hdr∗) only for
the other non-compromised member. Otherwise, it is
obvious that the adversary will be able to recover the
session key, as it already has the private key of all the
other members.

Setup. B disguises the parameters of the challenge
problem into parameters of the proposed BEA scheme.
B replaces α = a and using the challenge instance, it
sets the public parameters as: gαi

= gai

for i ∈ [0, 2n].
For public identities xi, B as usual picks xi

R←− Z∗p

and publishes public parameters PK as G,GT , e,
{x1, · · · , xn}, and {gαi

, ∀i ∈ [0, 2n]}. Then, B picks a
random y0

R←− Z∗p and sets γ = y0a
−2n. The session key,

as before, is the following K = e(g, g)α2n+1
= e(g, g)a2n+1

.
The secret key SK includes the set {α = a, γ = y0a

−2n}.

Private Keys Query. Algorithm A queries private
keys (di,j) for any arbitrary subset S′ of [1, n], where
max(|S′|) = n − 2. Let’s denote the set of non-attacked
members by S∗. Thus, we have S∗ ∪ S′ = [1, n]. We
have assumed that |S∗| = 2, so the notation j ⊕ 1 refers
to the index in S∗ other than j in our notations. Hav-
ing known the set of attacked members (S′) and the
set of non-attacked members (S∗), B picks a random
bj

R←− Z∗p and sets Bj = bja
n for j ∈ S′, but it sets

Bj = bja
n−1(a− xj⊕1) and Bj⊕1 = bj⊕1a

n−1(a− xj) for
j ∈ S∗.

For i ∈ S′, B responds to the query for
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member i’s private keys as follows: it returns
Di ← 〈ri, di,j , Ti,j〉, where in the real protocol

ri as a random value, di,j = g
γαnBj

α2−ri
α−xi and

Ti,j = g
αj

γBi . Therefore for all i ∈ S′ and for j ∈ S′,
B sets ri = x2

i and returns di,j = gy0bj(a+xi). For
j ∈ S∗, it returns di,j = gy0bja−1(a−xj⊕1)(a+xi) and
di,j⊕1 = gy0bja−1(a−xj)(a+xi) to the adversary. Finally,
Ti,j = g(y0bi)

−1an+j

for all i ∈ S′ and for j ∈ [0, n]. It
should be noted that B does not need to calculate and
return any Ti,j for i ∈ S∗. All these parameters can be
readily calculated from the BDHE-Sum instance and
the random parameters picked by B. It is easy to check
that the private keys are matched with the parameters
in the real protocol, and they are valid. The set of
indices in the challenge (non-attacked) set S∗, which
have not been queried, will be used in the challenge phase.

Challenge. In the challenge phase, B creates a broad-
cast encryption message for i ∈ S∗. It sets S ⊂ S∗ and
generates C∗1 = gt and C∗2 = gt(γBi)

−1αn−|S| ∏
j∈S(α−xj),

where i ∈ S∗. Let’s suppose that the broadcast message
is generated by member i, where i ∈ S∗ and therefore
S = {i ⊕ 1}. The challenge is then calculated as follows:
pick a random t0

R←− Z∗p, and set t = t0a
2n. By apply-

ing the B’s simulation parameters, the broadcast message
Hdr∗ ← 〈C∗1 , C∗2 〉 is calculated as C∗1 = gt0a2n

. Since
Bi = bia

n−1(a− xi⊕1), we have C∗2 given as follows:

C∗2 = gt0a2n(y0a−2nBi)
−1an−1(a−xi⊕1),

= gt0a2n(y0a−2nbia
n−1(a−xi⊕1))

−1an−1(a−xi⊕1),

= gt0(y0bi)
−1

.

Note that both C∗1 and C∗2 can be directly calculated
from the BDHE-Sum instance and the random param-
eters picked by B. Therefore, Hdr∗ = {C∗1 , C∗2}, where
C∗1 = (ga2n

)t0 and C∗2 = (g)t0(y0bi)
−1

, is a valid ciphertext
for indices in S ⊂ S∗. The corresponding session key
would then be K = e(g, g)t0a2na2n+1

= e(g, g)t0a4n+1
. B

outputs Hdr∗ and K∗ = Zt0 , where Z is the challenge
from the BDHE-Sum instance, as the new challenge to A.

Decryption Query. We further allow A to use the
set of private keys it received to generate a broadcast
message for any i ∈ [1, n] and even for i ∈ S∗. B is able
to derive the private keys di,j for i ∈ S∗, in the same
way as in the Private Keys Query phase, except Ti,j

values for i ∈ S∗. Nevertheless, this does not stop B
from returning correct decryptions, since only ri and di,j

are used in decryption and Ti,j values are used only to
create the broadcast encryption. By setting ri = x2

i and
di,j = gy0bj(a+xi) for any i ∈ S∗ and j ∈ S′, B is able to
respond correctly to the decryption queries as in the real
application.

Guess. The algorithm A outputs its guess b′ ∈ {0, 1}
and wins the game if b′ = b. B sends b′ to the challenger

in the proposed BEA scheme to solve the BDHE-Sum in-
stance. From A’s perspective, B’s simulation has almost
the same distribution as the adaptive security model de-
fined earlier in Section 3. The public and private keys
are appropriately distributed, since xi and therefore ri

values are uniformly random. When b = 0 in the adap-
tive game, 〈Hdr∗,K∗〉 is generated according to the same
distribution as in the real application with a valid ses-
sion key K∗ = e(g, g)ta2n+1

, where t = t0a
2n. Thus,

the challenge is a valid ciphertext under the randomness
of t0. From B’s simulation, when b = 0, we can easily
find the solution to BDHE-Sum problem, by outputting
Z = K∗1/t0 = e(g, g)a4n+1

.
When b = 1 in the adaptive game, 〈Hdr∗,K∗〉 is gen-

erated with K∗ being replaced by a random key. Since
K∗ R←− GT is a uniformly random element of GT , this dis-
tribution is identical to that of B’s simulation where Hdr∗

is a valid ciphertext. Therefore, B’s advantage (ε) in de-
ciding n-BDHE-Sum problem is precisely A’s advantage
(negl(λ)) in attacking the proposed BEA scheme.

6 Performance Analysis

In this section, we analyze the overheads of the proposed
scheme over previously known schemes. A fully adaptive
BEA with short ciphertexts is achieved in this work. The
design is aimed at constructing a fully secure BE scheme
with O(1) communication overheads (Hdr), regardless of
the size of the broadcast group. This is achieved with-
out using the Random Oracle Model (ROM) and hash
functions. In comparison with Gentry and Waters’ BE
scheme and its variants [13], the security of the proposed
scheme is proved in an attack model that is stronger than
Gentry and Waters’ BE scheme. In our security model,
we allow the adversary to query the private keys of all
members under attack and also to receive decryption of
broadcast messages intended for all members. Gentry and
Waters’ semi-static BE scheme requires O(1) private keys
and O(n) public keys to be stored by each member in the
broadcast group. They extend the security from semi-
static to fully adaptive by increasing the size of broadcast
message to O(

√
n) without using random oracles (hash

functions). In our scheme, the increase in security has led
to an increase in the size of private keys – each member in
our scheme has to store O(n) private keys. We manage to
keep the size of the ciphertext remains fixed, and it does
not increase with the size of the broadcast group.

6.1 Group Operations

In the proposed BEA scheme also, removing from the
group membership do not affect existing members.
Excluding a member simply means not including the
index of excluded member in calculate the ciphertexts
(Hdr). If a member is permanently removed from the
group, only the identity parameter (xk) of the excluded
member is removed and no further changes to private
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keys of members are required. Keys of members remain
the same as the group membership changes without
compromising security of the BEA protocol. It should
be added that member removal is performed at no extra
communication or computation cost to group members.

Removal: membership removal is inherent in the
BEA scheme. Excluding a member is as usual and
is performed by not including the index of the ex-
cluded member in S. Thus, no extra communication or
computation overhead is incurred for removing a member.

Addition: adding a member is authorized by Admin. If
the group’s maximum capacity, set by n, is not reached,
any new member i′ can be added to the group at no ex-
tra communication overhead. In the proposed scheme,
if more members (greater than n) need to be added to
the broadcast group, adding new members causes extra
communications and requires updates in private keys of
existing members. Nevertheless, the maximum size of the
group n in the proposed scheme is bounded by size of the
pairing group, i.e. n < |G|. The Admin simply generates
a new set of private keys {di′,j , Ti′,j} for the new member
and publishes its identity (xi′) to the group. Unlike the
semi-static scheme of Boneh et al. [6] that did not re-
quire a key-update for existing members, we have to send
the new decryption key di,i′ to the existing member (i) to
allow communication with the new member i′.

7 Conclusions and Future Work

A broadcast encryption scheme based on cryptographic
pairings is proposed in this work. The scheme is the
first adaptively secure broadcast encryption with short
ciphertexts that does not use the random oracle model.
The security model of the proposed broadcast encryp-
tion scheme is a strong model simulating the adversary
in the real world as closely as possible. In our model, the
adversary can receive the private keys of any subset of
members in the broadcast group as well as decryption of
previous broadcast messages. The increase of security in
our scheme has resulted in an increase in the size of pri-
vate keys. However, this increase is compensated with the
ability of our scheme to offer sender’s authentication at
no additional overheads. In our scheme, we have showed
that how the sender of a broadcast message can be readily
verified to all the members of the broadcast group.

It has also been shown that the communication and
computation overheads needed for the protocol to ac-
tively exclude or include memberships are very minimal,
i.e. with O(1) communication and O(n) computations,
where n is the size of the broadcast group. The amount
of storage required for each member is trivial when com-
pared to other protocols. Members can join or leave the
group, while the security keys of other members will not
be affected by the changes in the group. The maximum
number of members that can join the group is limited by

the underlying algebraic group structure. The maximum
size of the broadcast group is bounded by the size of the
underlying bilinear group. This implies that the size of
the underlying pairing group increases linearly with the
maximum size of the broadcast group.
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