
International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 101

A New Parallel Window-Based Implementation
of the Elliptic Curve Point Multiplication in

Multi-Core Architectures

Saikat Basu

Department of Computer Science and Engineering, National Institute of Technology
M. G. Avenue, Durgapur - 713209, India

(Email: deepbasu007@gmail.com)
(Received July 24, 2010; revised and accepted Oct. 4 & Nov. 13, 2010)

Abstract

Point multiplication is an important computation in el-
liptic curve cryptography. Various methods like binary
method and window method have been implemented in
the past for performing efficient elliptic curve point mul-
tiplications. However, all these implementations rely on
serial computations performed on uni-core architectures.
A new approach on multi-core implementation has been
proposed in this paper. Hence, a new parallel algorithm
has been designed and implemented on machines with
upto 8 cores. Later, experimental studies have been per-
formed with different window sizes and degrees of paral-
lelism.
Keywords: Elliptic curve, exponentiation, point multipli-
cation, parallel algorithm, window method

1 Introduction

Elliptic curves over a finite field FP are used in con-
junction with existing cryptographic schemes such as
the Diffie-Hellman scheme, ElGamal scheme and RSA
scheme. Since their inception in [17], Elliptic curve cryp-
tosystems have been in wide use among the cryptographic
community for their relatively better security and ease of
implementation. The size of the elliptic curve determines
the difficulty of the problem. It is believed that the same
level of security afforded by an RSA-based system with a
large modulus can be achieved with a much smaller ellip-
tic curve group. Using a small group reduces storage and
transmission requirements. It is known that for a 80-bit
security level, the key size is 1024 for RSA while it is only
160 bits for ECC as shown in [20]. Owing to these factors,
computations over elliptic curves have been a vibrant area
of research in recent years.

The basic operation performed on an elliptic curve is
the computation of a multiple d.P of a point P on the
elliptic curve modulo n, which corresponds to the com-

putation of xd mod n. For large n and d, the time com-
plexity of elementary operations as well as the number
of elementary operations is very high. Thus reducing the
number of such operations as well as the cost of each is an
important issue involved in the elliptic curve cryptosys-
tems. Various schemes have been proposed in the past
that highlight this issue through methods like the binary
method [11], the window method [3] and the addition-
subtraction chains [12]. A refined algorithm was proposed
in [14] that uses a signed binary window method to speed
up the computation of d.P.

Although, all the aforementioned computation schemes
propose techniques to improve the computation times,
but all of them are implemented in serial. For example,
the binary and window methods compute the value of d
using its binary representation, considering the bits (or
windows) from left to right, i.e., starting from the most
significant bit and continuing up to the least significant
one. The signed binary window method proposed in [14]
consists of four phases (1) representation of d. (2) spitting
the representation into segments (windows), (3) comput-
ing the segments, and (4) concatenating all the segments.
Out of these the phases 3 and 4 are the computationally
most intensive ones.

Here, a new parallel algorithm is proposed that divides
these computation phases into parallel segments each im-
plemented in one of the cores on a multi-core architec-
ture. This consists of the computation of segments and
concatenating the computed segments in parallel.

The rest of the paper is organized as follows: Section 2
describes the literature review and the foundation of the
proposed algorithm. Section 3 illustrates the new parallel
algorithm. The implementation details are discussed in
Section 4. Section 5 contains the experimental studies
whereas Section 6 concludes the paper.



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 102

Table 1: Computing times of an addition (ECADD) and a doubling (ECDBL)

Coordinate ECADD ECDBL
System Z 6= 1 Z = 1 α 6= −3 α = −3

A 2M+aS+1I - 2M+2S+1I
P 12M+2S 9M+2S 7M+5S 7M+6S
τ 12M+4S 8M+3S 4M+6S 4M+4S

τC 11M+3S 8M+3S 5M+6S 5M+4S
τm 13M+6S 9M+5S 4M+4S

2 Literature Review

An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where a1, a2, a3, a4, a6, K and ∆ = 0, where ∆ is the
discriminant of E. Table 1 shows the computing times of
an addition (ECADD) and a doubling (ECDBL).

Equation (1) is the Weierstrass equation defined over
K. If the characteristic of K is not equal to 2 or 3, then
the admissible change of variables,

(x, y) = (
x− 3a2

1 − 12a2

36
,
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24
)

transforms E to the curve

y2 = x3 + ax + b

where a, b, K. The discriminant of this curve is
∆ = −16(4a3 + 27b2).

The Group Law:
The set of points E(K) forms an abelian group with ∞
serving as its identity. It is this group that is used in
the construction of elliptic curve cryptographic systems.
Algebraic formulas for the group law are presented next
for elliptic curves E of the simplified Weierstrass form
(2) in affine coordinates when the characteristic of the
underlying field K is not 2 or 3 (e.g., K = Fp where
p > 3 is a prime).

Group Law for E/K : y2 = x3 +ax+ b, char(K) 6= 2, 3

1) Identity. P +∞ = P for all P ∈ E(K).

2) Negatives. If P = (x, y) ∈ E(K), then (x, y) +
(x,−y) = ∞. The point (x,−y) is denoted by −P
and is called the negative of P .

3) Point Addition. Let P = (x1, y1) ∈ E(K), where
P 6= ±Q. Then P + Q = (x3, y3) where

x3 = (
y2 − y1

x2 − x1
)2 − x1 − x2

and

y3 = ((y2 − y1)/(x2 − x1)(x1 − x3)− y1

4) Point doubling. Let P = (x1, y1) ∈ E(K), where,
P 6= −P . Then, 2P = (x3, y3), where,

x3 = (
3x2

1 + a

2y1
)2 − x1

and

y3 = (
3x2

1 + a

2y1
)(x1 − x3)− y1.

3 The Proposed Parallel Algo-
rithm

In this section, a new parallel algorithm is proposed that
computes the elliptic curve point multiplication d.P in
parallel. Accordingly, the bit stream d is at first split into
segments. Then, each segment is assigned to a proces-
sor. Once all the segment values are computed, they are
concatenated in parallel. Since both the pre-computation
and post-computation stages are performed in parallel,
so, there is a significant improvement in speedup values.
The various steps of the algorithm can be listed as follows.

3.1 Representation of d

Here, the binary representation of d is converted to a form
in which there are three digits, viz, 0, 1 and -1 (denoted
by 1̄). The transformation algorithm discussed next in-
creases the average length of zero runs while minimizing
the weights (number of non-zero digits) in the new rep-
resentation marked as T . This way of representation was
first proposed in [14]. The algorithm is incorporated in
the present paper for the sake of maintaining integrity
and clarity of discussions. In T , the average length of
zero runs Z(T ) is defined as follows.

Z(T ) =
1
L

L−1∑

i=0

z(i)

where, z(i) = 1 + z(i− 1) if ti = 0. (0 ≤ i ≤ L− 1) = 0,
if ti 6= 0 and, z(−1) = 0.

This is an improved version of the non-adjacent form
(NAF) in which no two non-zero digits are adjacent to
each other. Increasing the average number of zero runs
helps in reducing the number of non-doubling addition



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 103

operations while computing d.P. at the cost of doubling
which are computationally less expensive.

The above algorithm converts the bit stream B to the
transformed string T as follows (see Algorithm 1). Let ]1
(B) indicate the number of 1’s in the bit stream B and ]0
(B) be the number of 0’s. The algorithm counts

D(B) = ]1(B)− ]0(B)

and applies the transformation rule repeatedly to B with
D(B) ≥ 3. Thus a threshold value of 3 is used here.
The output of the algorithm is not sparse as two adjacent
digits may be non-zero. The Addition-subtraction chain
method proposed in [12] sets this threshold value as 2.
So, it is more sparse as compared to the one proposed in
this paper. The transform algorithm creates a bit stream
with an average length of zero runs being 1.42.

3.2 Splitting

The next phase is spitting that divides the number T into
segments (also called windows) of a fixed length. The fol-
lowing algorithm generates the list of segments (see Algo-
rithm 2).

3.3 Computing the Segments

Due to the property of the transform algorithm, the value
of a segment cannot attain the value (2w−1) or −(2w−1)
and it can attain a maximum value of (2w−3) or−(2w−3).
Now, for computing the segment values we calculate an
addition sequence {1, 2, 3, 5, 7, 9, 11, 13, . . . , (2w−3))} con-
taining all the segment values. This is primarily called the
pre-computation phase whereby a matrix is created prior
to the actual computations containing the values of the
segments. This pre-computation phase involves the com-
putation of the addition sequence for which a new par-
allel implementation is proposed in this paper. For this
purpose, the values in the addition sequence are divided
among the cores, each core computing a particular set of
the sequence values. This is done by assigning the alter-
nate segment values to the individual cores. For instance,
in a dual-core implementation, the computation of addi-
tion sequence values, i.e., 1P, 2P, 3P, 4P, 5P, 9P, 13P, . . .
are assigned to one core, while the computation of the
addition sequence values 1P, 2P, 3P, 4P, 7P, 11P, 15P, . . .
are assigned to another core. Although the computation
of the first four values up to 4P is done by both the cores
but still this parallel implementation is quite efficient for
large window values where window width w = 10. This
is because the addition sequences then have to computed
from 1P up to (2w − 3)P , i.e., 1021P (see Algorithm 3).

The algorithm discussed above computes the segment
values in parallel with the load evenly distributed among
the cores. The average number of computations per-
formed by the serial execution in only one core takes ](C)s

number of computations where

](C)s = 2w − 3 (2)

Algorithm 1 The transformation algorithm
1: begin:
2: M ← 0, J ← 0, Y ← 0, X ← 0, U ← 0, V ← 0, W ←

0, Z ← 0;
3: while X < log2 d
4: if B[X] = 1
5: Y ← Y + 1;
6: else
7: Y ← Y − 1;
8: end
9: X ← X + 1;

10: if M = 0
11: if Y − Z ≥ 3
12: while J < W
13: T [J ] ← B[J ];
14: J ← J + 1;
15: end
16: T [J ] ← −1; J ← J + 1; V ← Y ; U ← X; M ← 1;
17: else if Y < Z
18: Z ← Y ; W ← X;
19: end
20: else if V − Y ≥ 3
21: while J < V
22: T [J ] ← B[J ]− 1; J ← J + 1;
23: end
24: T [J ] ← 1; J ← J + 1; Z ← Y ; W ← X; M ← 0;
25: else if Y > V
26: V ← Y ; U ← X;
27: end
28: end
29: if (M = 0) ∨ (M = 1 ∧ V ≤ Y )
30: while J < X
31: T [J ] ← B[J ]−M ; J ← J + 1;
32: end
33: T [J ] ← 1−M ; T [J + 1] ← M ;
34: else
35: while J < V
36: T [J ] ← B[J ]− 1; J ← J + 1;
37: end
38: T [J ] ← 1; J ← J + 1;
39: while J < X
40: T [J ] ← B[J ]; J ← J + 1;
41: end
42: T [J ] ← 1; T [J + 1] ← 0;
43: end
44: return T
45: end

whereas, the parallel implementation takes ](C)p compu-
tations where,

](C)p = 2n +
2w − 3− 2n

n
(3)

The 2n part on the right hand side of Equation (3)
is the serial part and the 2w−3−2n

n part represents the
parallel portion of the implementation. It can be seen
that putting n = 1 in Equation (3) yields Equation (2)



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 104

Algorithm 2 Algorithm 2 (procedure split)
1: input T , output S
2: begin:
3: Let S be the empty segment list
4: w is the window size
5: while length(T ) ≥ w
6: W ← left w digits of T
7: R ← T excluding W
8: W̃ ≥← W excluding the right 0s /*Generates the new

window*/
9: R ← R excluding left 0s

10: S ← S + W̃ /*Adds the new window obtained to the
existing list of segments*/

11: T ← R̃
12: end
13: return S
14: end

Algorithm 3 The parallel computation algorithm
1: begin:
2: w ← width of the windows assigned
3: n ← total no. of cores
4: compute the values 1P, 2P, 3P, . . . , 2nP
5: for each core i
6: for k ← 0 to 2(w−1)−i−n−2

n
7: compute the value (2n + 2i + 1 + 2kn)P
8: end for
9: end for

10: end

which proves the argument.

3.4 Concatenating The Computed Seg-
ments

Once the segment values are computed in the pre-
computation stage, the next step is to perform the ac-
tual point multiplication using the concept of point dou-
blings and non-doubling additions. This requires the pre-
computed values obtained in the previous step. In signed-
binary window method proposed in [14], the concatena-
tion of the segments is done in serial using only one core.
In that work, the window values are computed starting
from the most significant segment and continuing up to
the least significant one with the output of the first seg-
ment carried forward to the next and so on till the last
one. In the present work, this concatenation part is im-
plemented in parallel whereby a divide and conquer al-
gorithm is proposed. This algorithm computes the seg-
ment values after dividing them among the cores, each
core computing a particular block of segments. In the se-
rial implementation discussed in [14], the value dP where
d=dndn−1dn−2 . . . d0 is computed as follows.

dP = ((. . . (((dnP.2zeros(n)+length(n−1) + dn−1P )
. 2zeros(n−1)+length(n−2) + dn−2P ).

2zeros(n−2)+length(n−3) + . . .) + d0).2zeros(0)

The above equation shows that the computation
begins at the most significant segment denoted by dn

and ends at the least significant one, i.e., d0.

Parallel concatenation.

In the present work, a new parallel algorithm is pro-
posed that pre-allocates a group of segments to each core
and combines the results after the cores have computed
the segment values. This parallel implementation can be
represented as follows.

dP = (..(dnP.2zeros(n)+length(n−1) + dn−1P )
. 2zeros(n−1)+length(n−2)computed by core 0
+ (dn−2P ).2zeros(n−2)+length(n−3) + . . .) . . .

+ d0).2zeros(0)computed by core 1 . . .

where, zeros(n) denotes the number of zeros to the right
of the segment dn and length(n) denotes the width of
segment dn. The parallel algorithm attains substantial
load balancing in terms of computational speedup and
efficiency (see Algorithm 4).

Algorithm 4 The algorithm
1: begin:
2: for i ← 0 to n
3: sumi ←∞
4: end for
5: for each core i
6: for t ← iP

n to (i+1)P
n

7: compute the value of the segment dtP
8: sumi ← sumi.2zeros(t)+length(t+1) + dtP
9: end for

10: end for
11: for i ← 0 to n− 1
12: sum ← sumi.2zeros(i)+length(i+1) + sumi+1

13: end for
14: end

The aforementioned parallel concatenation algorithm
does not change the number of elementary operations, it
only reduces the effective computation time per operation
by allocating the computation of individual set of seg-
ments to each core of the multi-processor. Although ear-
lier implementations of elliptic curve algorithms were all
designed to reduce the number of elementary operations,
the algorithm proposed in this work strives to achieve
both reduction in the number of elementary operations
through the use of the transformation algorithm proposed
in Section III.A as well as significant improvement in com-
putation speed through the use of parallelism.



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 105

4 The Implementation

In this paper, the elliptic curve arithmetic has been imple-
mented in Affine coordinates. The equation being chosen
has a and b values both equal to 1. So, the resultant
equation is as follows.

y2 = x3 + x + 1.

The parallel algorithm has been implemented in the
C language using the OpenMP library. This library is
available in gcc 4.3.2 and later. It helps in performing
parallel computations in multi-core architectures avail-
able in Intel machines. For experimental purposes, an
Intel Xeon x8 machine @ 2.33 Ghz has been used.

Amdahl’s Law:
In the case of parallelization, Amdahl’s law [1] states that
if P is the proportion of a program that can be made
parallel (i.e. benefit from parallelization), and (1 - P ) is
the proportion that cannot be parallelized (remains se-
rial), then the maximum speedup that can be achieved
by using N processors is

1
(1− P ) + P

N

.

In the limit, as N tends to infinity, the maximum
speedup tends to 1/(1 − P ). In practice, performance to
price ratio falls rapidly as N is increased once there is
even a small component of (1− P ).

Gustafson’s Law:
On the other hand, Gustafson’s Law [7] states that any
sufficiently large problem can be efficiently parallelized
using sufficient computing power. According to the law,
the speedup due to N processors on a piece of code in
which (1−P ) is the proportion that cannot be parallelized
(remains serial) is given by

S = N − (1− P )(N − 1).

But, there is a major difference between the implemen-
tation of the two Laws, i.e., the usage of the parameter P ,
which is different for both the laws. Asillustrated in [18],
since both the P values are not same so, for the purpose
of clarity, the P values for Amdahl’s law is denoted by PA
and that for Gustafson’s law is denoted by PG. For Am-
dahl’s Law, the parameter PA is derived using the time
taken by the various portions of the algorithm as follows:

PA =
ts

ts + tp(1)

where, ts denotes the processing time of the serial part of
the program (using only 1 processor).

tp(1) denotes the processing time of the parallel part
of the program (using only 1 processor).

So, using Amdahl’s law, the theoretical maximum
speedup can be defined as follows:

SpeedupSA =
ts + tp(1)

ts + tp(1)
N

=
1

PA + (1−PA)
N

For Gustafson’s Law, the parameter PG is derived using
the following equation.

PG =
ts

ts + tp(N)

where, tp(N) denotes the processing time of the parallel
part of the program using N processors.

So, using Gustafson’s law, the experimental speedup
can be defined as follows:

Speedup = SG =
ts + Ntp(N)
ts + tp(N)

= PG + (1− PG)N.

In the present work, both Amdahl’s Law and
Gustafson’s Law has been used. This is because, when
the serial algorithm is implemented in parallel, the struc-
ture of the code changes. So, there is a difference between
the computational complexities in the parallel portion of
the code implemented in 1 processor and that of the com-
plexity using multiple processors. Hence, the speedup
obtained through the implementation of Amdahl’s law
gives the theoretical speedup obtained with the assump-
tion that the structure of the code does not change when
implemented in parallel. On the other hand, the speedup
obtained through Gustafson’s law gives the actual exper-
imental speedup taking into consideration the change in
the structure of the algorithm when implemented in par-
allel.

5 Experimental Studies

The experimental studies have been performed to com-
pute dP where d is of width λ, i.e., d is λ bits long.
The binary representation of d is divided into windows of
width δ. Different theoretical and experimental speedup
values are obtained for different values of N and δ, where,
N is the total number of processors used. For the pur-
pose of experimentation, an Intel Xeon x8 @ 2.33 Ghz
machine was used. In the following graphical representa-
tions (see Figures 1-5), the number of processors used is
listed along the X-axis, whereas, the Y-axis denotes the
computational speedup attained. The green lines indicate
the theoretical maximum speedup obtained through Am-
dahl’s law, while, the red lines denote the experimental
speedup obtained through Gustafson’s law.

It is evident from the experimental results that the
theoretical speedups obtained through Amdahl’s law are
an upper bound on the experimental speedup values ob-
tained through Gustafson’s law. Also, it can be seen that
the speedup values are nearly equal to the number of pro-
cessors used, i.e., N as would happen in the ideal case. It
is also evident from the graphs that as the window sizes in-
crease, there is an increase in the speedup values as can be
seen that when the window size δ approaches the value 12,
the experimental speedup nearly reaches the theoretical
maximum. However, there is a disadvantage associated
with choosing a high value of δ since a high value indi-
cates higher pre-computation and hence a higher amount



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 106

Figure 1: No. of processors, λ = 1024, δ = 4

Figure 2: No. of processors, λ = 1024, δ = 6

Figure 3: No. of processors, λ = 1024, δ = 8

of storage required for the pre-computed array. The pre-
computation stage with window sizes of 4 bits involves
the computation of 24, that is, 16 values, whereas, it in-
volves the computation of 215, that is, 32768 values. So,
it leads to frequent segmentation faults on systems with
lesser amount of cache memory. In order to maintain the

Figure 4: No. of processors, λ = 1024, δ = 10

Figure 5: No. of processors, λ = 1024, δ = 12

tradeoff between the window sizes and the ease of imple-
mentation on machines with limited cache, window sizes
of the order of 10 are selected.

6 Conclusions

The transformation algorithm proposed in Section 3A re-
duces the number of elementary operations whereas the
parallel computation and concatenation stages proposed
in Sections 3.C and 3.D reduce the computation time
through efficient parallel implementation. The simulation
studies performed by implementing the parallel algorithm
on the multi-core architectures indicate speedup that at-
tain values nearly equal to the ideal case, i.e., speedup
of the order of N , for N number of processors. This
is achieved by implementing both the pre-computation
and post-computation stages in parallel. The tradeoff be-
tween the amount of pre and post-computations is main-
tained by selecting optimum window sizes. As a result of
the above implementations, efficient speedup is obtained
while performing point multiplication in multi-core ar-
chitectures. No parallel point multiplication algorithm is
available as of the date of this work. Although, a fast par-



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 107

allel elliptic curve multiplication algorithm is discussed
in [10], but, it only highlights the resistance of the al-
gorithm against Side-channel attacks. Also, the parallel
algorithm illustrated in that work is based on the point
addition and point multiplications being implemented in
two registers which is an altogether different approach of
study as compared to the present work. So, comparative
studies with existing algorithms on the basis of speedup
values could not be done in this work. However, simu-
lation studies show that parallel implementations of the
elliptic curve point multiplication attains speedup of the
order of (N-1), for N number of processors and hence pro-
vides a good starting point for parallel elliptic curve al-
gorithms.

References

[1] G. Amdahl, “Validity of the single processor ap-
proach to achieving large-scale computing capabil-
ities,” AFIPS Conference Proceedings, vol. 30, pp.
483V485, 1967.

[2] D. F. Aranha, J. Lȯpez, and D. Hankerson, “High-
speed parallel software implementation of the ητ
pairing,” Topics in Cryptology - CT-RSA 2010, vol.
5985, pp. 89-105, 2010.

[3] J. Bos and M. Coster, “Addition chain heuristics,”
Proceddings of CRYPTO’89, vol. 435, pp. 400-407,
1989.

[4] R. P. Gallant, R. J. Lambert, and S. A. Vanstone,
“Faster point multiplication on elliptic curves with
efficient endomorphisms,” Advances in Cryptology -
CRYPTO 2001, vol. 2139, pp. 190-200, 2001.

[5] J. M. Garcia and R. M. Garcia, “Parallel algo-
rithm for multiplication on elliptic curves,” Report
- 2002/179, 2002.

[6] D. M. Gordon, “A survey of fast exponentiation
methods,” J. Algorithms, vol. 27, no. 1, pp. 129-146,
Apr. 1998.

[7] J. L. Gustafson, “Reevaluating Amdahl’s law,” Com-
munications of the ACM, vol. 31, no. 5, pp. 532-533,
1988.

[8] A. Gutub and M. Ibrahim, “High performance el-
liptic curve GF (2k) cryptoprocessor architecture for
multimedia,” Proceedings IEEE International Con-
ference on Multimedia & Expo, pp. 81- 84, ICME,
Baltimore, Maryland, USA, July 6-9, 2003.

[9] D. Hankerson, “Implementing elliptic curve cryptog-
raphy (a narrow survey),” Workshop in Implementa-
tion of Cryptographic Methods, pp. 1-110, 2005.

[10] T. Izu and T. Takagi, “A fast parallel elliptic
curve multiplication resistant against side channel at-
tacks,” Proceedings of Indocrypt 2002, LNCS. 2274,
pp. 371-374, Springer-Verlag, 2002.

[11] D. E. Knuth, Art of Computer Programming, vol. 2,
Addison Wesley, 1969.

[12] F. Morain and J. Olivos, “Speeding up the computa-
tions on an elliptic curve using addition-subtraction

chains,” Theoretical Informatics and Applications,
vol. 24, no. 6, pp. 531-544, 1990.

[13] N. Koblitz, “Elliptic curve cryptosystems,” Mathe-
matics of Computation, vol. 48, pp. 203-209, 1987.

[14] K. Koyama and Y. Tsuruoka, “Speeding up ellip-
tic cryptosystems by using a signed binary window
method,” Proceedings of Crypto 1992, vol. 740, pp.
345-357, 1998 .

[15] T. C. Lin, “Algorithms on elliptic curves over fields
of characteristic two with non-adjacent forms,” In-
ternational Journal of Network Security (IJNS), vol.
9, no. 2, pp. 117-120, 2009.

[16] M. M. Rasslan, “A stamped hidden-signature scheme
utilizing the elliptic curve discrete logarithm prob-
lem,” International Journal of Network Security
(IJNS), vol. 13, no. 1, pp. 49-57, 2011.

[17] F. Rodri̇guez-Henri̇quez, N. A. Saqib, and A. Di̇az-
Pėrez, “A fast parallel implementation of elliptic
curve point multiplication over GF (2m)” Micropro-
cessors and Microsystems, vol. 28, no. 5-6, pp. 329-
339, Aug. 2004.

[18] Y. Shi, Reevaluating Amdahl’s Law and Gustafson’s
Law, Oct. 1996. Unpublished monograp.

[19] J. Shi and H. Yun, “Software implementations of el-
liptic curve cryptography,” International Journal of
Network Security (IJNS), vol. 7, no. 1, pp. 141-150,
2008.

[20] R. Soram and M. Khomdram, “Juxtaposition of RSA
and elliptic curve cryptosystem,” International jour-
nal of Computer Science and Network Security, vol.
9, no. 9, pp. 11-21, 2009.

[21] D. Yong, Y. F. Hong, W. T. Wang, Y. Y. Zhou,
and X. Y. Zhao, “Speeding scalar multiplication of
elliptic curve over GF (2mn),” International Journal
of Network Security (IJNS), vol. 11, no. 2, pp. 70-77,
2010.

Appendix

This section contains the results of the experimental
studies performed in section V. Table 2 lists the speedup
values obtained when the algorithm is implemented in
parallel in an Intel Xeon x8 machine @ 2.33 Ghz. The
parallel algorithm is run iteratively for 10 consecutive
times. The time taken to run the serial and parallel parts
of the program are used to derive the values of SA and
SG that denote the theoretical and experimental speedup
values respectively. The size of bit streams (λ) is chosen
as 1024 for all the experiments and the window widths
(δ) are chosen serially.

Saikat Basu is a final year undergraduate student of the
Computer Science and Engineering department at Na-
tional Institute of Technology, Durgapur in India. He
joined the institute in 2007 and graduates in 2011. His
primary research interest lies in the fields of Cryptography
and Network Security.



International Journal of Network Security, Vol.14, No.2, PP. 101–108, Mar. 2012 108

Table 2: Listing of the speedup values for various window sizes and number of processors

Size of No. of Window Theoretical Experimental
d(λ) Processors (N) Width (δ) Speedup (SA) Speedup (SG)
1024 2 4 1.9917 1.9891
1024 2 6 1.9969 1.9882
1024 2 8 1.9973 1.9879
1024 2 10 1.9972 1.9914
1024 2 12 1.9969 1.9846
1024 3 4 2.9702 2.96
1024 3 6 2.9862 2.966
1024 3 8 2.967 2.619
1024 3 10 2.9938 2.976
1024 3 12 2.9843 2.9475
1024 4 4 3.9407 3.669
1024 4 6 3.9790 3.9331
1024 4 8 3.9781 3.9300
1024 4 10 3.9792 3.9467
1024 4 12 3.9158 3.89
1024 5 4 4.8947 4.6594
1024 5 6 4.8901 4.195
1024 5 8 4.8827 4.3732
1024 5 10 4.9834 4.9192
1024 5 12 4.8505 4.7611
1024 6 4 5.8408 4.8807
1024 6 6 5.9727 5.8348
1024 6 8 5.9748 5.8098
1024 6 10 5.8772 5.6632
1024 6 12 5.7751 5.7322
1024 7 4 6.944 6.7826
1024 7 6 6.9616 6.7761
1024 7 8 6.7219 6.4874
1024 7 10 6.8175 6.6674
1024 7 12 6.9010 6.6974
1024 8 4 7.6894 6.0934
1024 8 6 7.6964 6.5543
1024 8 8 7.6735 6.5578
1024 8 10 7.7517 7.289
1024 8 12 7.8936 7.5890


