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Abstract

Pairing based cryptosystems have became suitable for use
on constrained devices with small resources. Recently, It
has shown that side channel attacks are a serious threat
for such cryptographic applications. In order to secure
the pairing based cryptosystems against the side chan-
nel attacks, many countermeasures have been proposed
but their cost is proved to be highly expensive. In this
paper, we propose a new technique for securing the eta
pairing ηT over binary fields K = F2m . The main idea of
the proposed countermeasure is the use of the random-
ized values x+ fi(r), where x is a variable involved in the
computation of eta pairing, fi is a polynomial function,
and r is a random integer in F2m . The overhead cost
of the proposed countermeasure is only (m + 1)/2 field
multiplications which makes it the most efficient known
countermeasure for securing eta pairing against the side
channel attacks over binary fields.
Keywords: Countermeasures, eta pairing, side channel at-
tacks (SCA)

1 Introduction

Most identity based schemes use bilinear functions defined
on elliptic curve such as Weil Pairing and Tate Pairing.
A lot of researches have focused on the improvement of
Tate and Weil Pairing computation, on which depends the
efficiency of the pairing based cryptosystems. All these
algorithms are based on Miller’s algorithm [12]. In recent
years, a large number of papers [1, 6, 7] have improved
the efficiency of the pairing computation. A new pairings
such as the eta pairing [3, 6] and ate pairing [8, 9] have
been proposed.

Pairing based cryptosystems have been implemented
on hardware devices with small resources like FPGAs [10,
15] and smart cards [18]. The security of such applica-
tions against Side Channel and Fault attacks [8, 11] have
became a serious question. For a category of the Pair-
ing based cryptosystems, like the short signature scheme
by Boneh et al. [5], well known Countermeasures can be

used. The point scalar randomization and projective co-
ordinates are among the most famous of these counter-
measures.

Only few techniques are known for securing the other
category of the Pairing based cryptosystems, such as
the Boneh-Franklin’s encryption scheme [4], that uses a
secret point as secret information. These countermea-
sures include the techniques proposed by Page and Ver-
cauteren [14], Scott [16] and Kim et al. [13]. The study
of of these countermeasures shows that in despite of their
efficiency their costs are highly expensive.

In this paper, we propose a new countermeasure for
securing the eta pairing against side channel attacks on
elliptic curves defined over K = F2m . The proposed
countermeasure randomizes each value x handled during
the computation by using x + fi(r), where where fi is
a polynomial function, and r ∈ F2m is a random integer.
The overhead cost of the proposed countermeasure is only
(m + 1)/2 field multiplications.

2 Tate and Eta Pairing

Let E(Fq) be an elliptic curve defined over a field Fq. Let
l be a positive integer, co-prime to q, such that E(Fq)
contains a point of order l. In cryptographic imple-
mentations, l is usually taken to be a large prime such
that l/#E(Fq). Let k be the smallest integer satisfy-
ing l/qk − 1. This value k, is the embedding degree of
the curve with respect to l. The Tate pairing is defined
in terms of rational functions over points of an elliptic
curves evaluated in a divisor. Let P ∈ E(Fq)[l], then
l(P ) − l(O) is a principal divisor. So there is a rational
function fp ∈ Fqk(E) with div(fP ) = l(P ) − l(O). Let
Q ∈ E(Fqk)[l] be a point with coordinates in Fqk ; then
we construct a divisor D such that DQ ∼ (Q) − (O). D
should be chosen so that its support is disjoint from the
support of th divisor of fp. Now let µl be the subgroup
of l − th roots of unity in F∗q.
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The Tate pairing is defined as follow:

el : E(Fq)[l]× E(Fqk)[l] −→ µl

(P,Q) −→ fl,p(DQ)
qk−1

l .

Miller’s algorithm [12] provides a way to compute the
Tate pairing as well as Weil pairing.

To speed up the pairing computation on elliptic curve
of the form y2 = xp − x − d over Fpm where p ≥ 3,
Duursma and Lee [6] proposed to replace the group order
l by a value of the form N = hl which has a low Hamming
weight. When T = pmp + 1 the final exponentiation is
to the power pmp − 1 and it is computed efficiently by
using the Frobenius map. Since fhl,P = fh

l,P , the Tate

computation is done by fT,p(Q)
qk−1

T .
Barreto et al. [2] gave a further improvement on Du-

ursma and Lee for supersingular elliptic curves. Their
method is called eta pairing. A special choice of T allows
to halve the length of the main loop. In characteristic
two, we consider the supersingular elliptic curve E(F2m)
defined by y2 + y = x3 + x + b where b ∈ F2 and m is
odd. The order of E(F2m) is 2m ± 2(m+1)/2 + 1 and the
embedding degree is k = 4. According to [6] we use the
distortion map ψ(x, y) = (x + s2, y + sx + t). For some
integer T the eta pairing is defined to be

ηT (P, Q) = fT,p(ψ(Q)).

For an integer T such that T a+1 = LN for some a ∈ N
and L ∈ Z, T = q+cN for some c ∈ Z and M = (qk−1)/N
we have

(ηT (P, Q)M )
aT a−1

= (el(P, ψ(Q)))L
.

The particular choices T = ±2(m+1)/2 + 1, a = 2, c =
−1, and L = 2 give rise to the following relation

(ηT (P, Q)M )
2T

= (el(P, ψ(Q)))2

=⇒ (ηT (P, Q)M )
T

= (el(P, ψ(Q))).

The computation of the eta pairing requires first the
computation of the rational function corresponding to
2(m+1)/2P and ±P . Barreto et al. showed by induction
that:

[2i]P = φi(xp
(2i), yp

(2i)),

where φ(x, y) = (x+1, y+x) and a(i) = a2i

for every field
element a. Only the use of the Frobenius map is involved,
and thus no adding and doubling point operations are
needed for the computation of the eta pairing. On the
other hand, to obtain the same result as the Tate pairing,
a more exponentiation to the power of T is needed.

The field F24m has elements s, t such that s2 = s + 1
and t2 = t + s. If m ≡ 3 mod 8 and the field F24m is
represented the basis {1, s, t, st} the computation of the
eta pairing is done as Algorithm 1.

Algorithm 1 Computation of the eta pairing on E(F2m) :
y2 + y = x3 + x + b

Input: P = (xP , yP ), Q = (xQ, yQ)
Output: ηT (P, Q)
1. u ← xp + 1
2. f ← u(xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
3. for i = 1 to (m + 1)/2 do
4. u ← xp, xp ← √

xp, yp ← √
yp

5. g ← u(xP + xQ) + yP + yQ + xP + (u + xQ)s + t
6. f ← f.g
7. xQ ← xQ

2, yQ ← xQ
2

8. end for
9. return f (22m−1)(2m−2(m+1)/2+1)(2(m+1)/2+1)

3 Side Channel Attacks and Their
Countermeasures

The first side channel attack [11] against pairing based
cryptosystems was proposed by Page and Vercauteren [14]
in 2004. The attack is mounted on Tate pairing com- pu-
tation based on Duursma and Lee algorithm [6] on su-
persingular elliptic curves in characteristic three. Whe-
lan and Scott [16] showed that the side channel attacks
can also be mounted on Tate, Ate and Eta pairing. Kim
et al. [13] explained that the Eta pairing computation
on supersingular curves of characteristic 2 may succumb
to SPA, DPA and timing attacks. Recently, Whelan et
al. [19] validated successfully a CPA attack on Eta pair-
ing computation and provided a practical analysis that
show the correlation between the power consumption and
the secret input.

The main idea of the side channel attacks on pairing
based cryptosystems is the interaction between the known
and secret data used on the computation via finite fields
operation. Indeed, during the pairing computation a field
operation like y.r, where y is an unknown and fixed value
related with the y-coordinate of the secret point and r is a
known and variable value related with the known point, is
performed. Since a DPA attack can be mounted against
field multiplication then a SCA attack can successfully
mounted against pairing computation. However, for some
kind of pairing, like Eta pairing in characteristic two, a
more complicated operation is computed. The multipli-
cation a(b + r) where a and b are unknown is performed.
Kim et al. [13] claimed that the power analysis is harder
but feasible in this case.

As mentioned above, to prevent the side channel at-
tacks on pairing based cryptosystems many countermea-
sures have been proposed. In [16], Scoot suggested to
randomize all steps during the pairing computation by
multiplying all intermediates values by a random element
of Fq. Each used intermediate value x is then replaced by
r.x where r is a random element in the finite field. The
effect of this operation is removed by the final exponen-
tiation. Kim et al. [13] proposed to use the projective
coordinates (r.xQ; r.yQ; r) of the point Q instead of the
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affine coordinates (xQ; yQ), for a random integer r. Page
and Vercauteren [14] used bilinearity to randomize the
private data, i.e., el(P, Q) = el(sP, tP )

1
st where s and t

are random variables. Furthermore, the exponentiation
to the power 1

st can be removed by selecting s and t sat-
isfying st = 1 mod l, where l is the order of the underly-
ing elliptic curve for the pairing. They also presented the
method for blinding the input point by using the relation:
el(P,Q) = el(P, Q + R).el(P, R)−1.

We will assume that P = (xP ; yP ) is the secret input
and Q = (xQ; yQ) is the known data. As Suggested by
Whelan and Scott [17] and confirmed by practical anal-
ysis [19] there are two main points of attack on the eta
pairing algorithm. The first point attack lies on the com-
putation of u(xP +xQ+1) outside the loop and the second
one on the computation of the square root function √xp

inside the loop.

4 Proposed Countermeasure

In this section, we propose a new countermeasure that
aims to secure the computation of the eta pairing on el-
liptic curves E defined over finite field K = F2m . The
main idea of the proposed countermeasure is the use of
a randomized values x + fi(r), where where fi is a poly-
nomial function, and r ∈ F2m is a random integer. The
effect of these changes will be removed at the end of each
loop. Here under we give an algorithm that implements
this technique and show that the outputted result is the
correct value of the ηT . In the next section we study the
security and efficiency of the proposed countermeasure.

Algorithm 2 Secure computation of the eta pairing on
E(F2m) : y2 + y = x3 + x + b

Input: P = (xP , yP ), Q = (xQ, yQ)
Output: ηT (P, Q)
1.1 Generate a random integer r ∈ F2m

1.2 xP ← xP + r, yP ← yP + r, xQ ← xQ + r, yQ ←
yQ + r, b ← b + r, s ← s + r, t ← t + r,
1.3 u ← xp + 1
2.1 f ← u(xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
2.2 λ ← r + r2, v ← xP , xP ← xP + λ, yP ← yP + λ
3. for i = 1 to (m + 1)/2 do
4. u ← v, xP ← √

xP , yP ← √
yP , w ← r.(xP + u)

5. g ← u(xP + xQ) + yP + yQ + xP + (u + xQ)s + t + w
6. f ← f.g
7. xQ ← xQ

2 + λ, yQ ← yQ
2 + λ, v ← xP , xP ← xP +

λ, yP ← yP + λ
8. end for
9. return f (22m−1)(2m−2(m+1)/2+1)(2(m+1)/2+1)

4.1 Correctness of Algorithm 2

In this section, we prove that Algorithm 2 outputs the cor-
rect value of the eta pairing ηT (P,Q). This will be done

by induction. At each step, we will show that the pro-
posed algorithm outputs the same result as Algorithm 1,
which means that the effect of the randomized values will
be removed at the end of each loop. The final result out-
putted by Algorithms 1 and 2 will then be the same.

The main idea of our approach is to show that at each
step in Algorithm 2 and Algorithm 1 output the same
intermediates values f and g. To distinguish the value
used by each algorithm we will denote the values handled
by Algorithm 2 by X instead of x. For example, the
coordinates of P = (xP , yP ) will be noted P = (XP , YP )
and the value s by S. Only t will be replaced by T ′ instead
of T for avoiding a conflict of notation.

Since the characteristic of the field F2m is 2, i.e 2.r = 0
for every element r of F2m , it is easy to see that the result
computed by Algorithm 2 outside the main loop is the
same as in Algorithm 1. Indeed, Algorithm 2 performs

f = U(XP + XQ + 1) + YP + YQ + B + 1
+(U + XQ)S + T ′

= (u + r)(xP + r + xQ + r + 1) + yP + r + yQ + r

+b + r + 1 + (u + r + xQ + r)(s + r) + t + r

= u(xP + xQ + 1 + 2r) + 2r(xP + xQ + 1 + 2r) + yP

+yQ + 2r + 1 + b + (u + xP + 2r)s + t + 2r

= u(xP + xQ + 1) + yP + yQ + 1 + b

+(u + xQ+)s + t.

Now, we will show by induction that Algorithms 1 and
2 output the same result at the end of each loop. At the
beginning of the first loop we have

U ← xP + r,

XP ← √
xP + r,

YP ← √
yP + r,

XQ ← xQ + r,

YQ ← yQ + r.

Here under we explain how this holds for xP :

XP ←
√

xP + λ =
√

xP + r + r + r2 =
√

(xP + r)2

=
√

xP + r.

The computation of g by Algorithm 2 gives

g = (xP + r)(
√

xP + r + xQ + r) +
√

yP + r + yQ

+r +
√

xP + r + (xP + r + xQ + r)(s + r)
+t + r + r.(

√
xP + r + xP + r)

= xP (
√

xP + xQ) +
√

yP + yq +
√

xP

+(xP + xQ)s + t

Which prove that the inductions hypothesis holds.
By the same way, it is easy to see that at the end of
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the first loop we get

XQ ← xQ
2 + λ = xQ

2 + r,

YQ ← yQ
2 + r,

V ← √
xP + r,

XP ← √
xP + r2,

YP ← √
yP + r2.

By induction hypothesis, we suppose that Algorithms 1
and 2 output the same result at the i-th loop. At the end
of the i-th loop of Algorithm 1 we have

u ← xP
−(i−1);

xP ← xP
−(i),

xQ ← xQ
(i),

yQ ← yQ
(i),

where a−(i) denotes the 2i-th square root of a and a(i)

the 2i-th square of a. Thus, at the the i + 1-th loop
Algorithm 1 computes

g = x
−(i)
P (xP

−(i+1) + xQ
(i)) + yP

−(i+1) + yQ
(i)

+xP
−(i+1) + (xP

−(i) + xQ
(i))s + t

On the other hand, at the same loop of Algorithm 2,
we have

U ← xP
−(i) + r,

XP ← xP
−(i) + r2,

YP ← yP
−(i) + r2,

XQ ← xQ
(i) + r,

YQ ← yQ
(i) + r.

Thus, at the i + 1-th loop Algorithm 2 performs

g = (xP
−(i) + r)(xP

−(i+1) + r + xQ
(i) + r) + yP

−(i+1)

+r + yQ
(i) + r + xP

−(i+1) + r + (xP
−(i) + r

+xQ
(i) + r)(s + r) + r.(xP

−(i+1) + r

+xP
−(i) + r) + t + r

= xP
−(i)(xP

−(i+1) + xQ
(i)) + yP

−(i+1) + yQ
(i)

+xP
−(i+1) + (xP

−(i) + xQ
(i))s + t

Hence Algorithms 1 and 2 output the same result at the
i+1-th loop, which prove the correctness of our assertion.

4.2 Security and Efficiency

This section discusses the security of the proposed coun-
termeasure. As mentioned be- fore, there are two main
points of attack on the eta pairing algorithm. The first
point attacks lies on the computation of u(xP + xQ + 1)
outside the loop, and the second one on the computation
of the square root function

√
xP inside the loop. With the

pro- posed countermeasure, all the intermediate variables
used at each loop are randomized. Indeed, instead of

performing these vulnerable operations, Algorithm 2 per-
forms (u + r) ((xP + r) + (xQ + r) + 1) and

√
(xP + r2),

where r is a random integer. Thus, the attacks mounted
in [17, 19] would no longer be possible.

As mentioned in [17], to thwart the threat of the high
order side channel attacks a new random value must be
used at each loop. Minor changes are needed to make the
proposed algorithm fulfils this requirement. Indeed, we
have just to use two random integers r and β. The first
integer r will be used to randomize the values outside the
loop and the second one to randomize the values inside
the loop. The algorithm implementing this technique can
be found in the appendix.

Since we generate a new random value at each loop, all
intermediates variables used by this algorithm are ran-
domized with a new value at each step i, i.e αi + αi+1

where αi and αi+1 are respectively the random integers
generated at the i-th and i + 1-th loops (cf. appendix).
Thus the collected information from a previous step can
not be used in the next step. According to [17], the pro-
posed countermeasure can prevent the high order side
channel attacks.

With some field additions, the extra field operations
performed by Algorithm 2 than the eta pairing algorithm
are r2 outside the loop, and r.(xP + u) at each loop. If
the changes required to defeat high order attacks are im-
plemented the only difference that occurs is that the op-
eration r2 is performed inside the loop. Since addition
and squaring in F2m are relatively inexpensive compared
to multiplication we can ignore their cost. Thus, the total
cost of our countermeasure in the both cases is (m+1)/2
field multiplications.

The costs of the other countermeasures for securing
the eta pairing against side channel attack are already
evaluated in [13]. The following table gives a summary of
the cost of all known countermeasures.

In Table 1, where α is the cost of a final exponentia-
tion plus 1 extension field multiplication in F24m and 1
extension field inversion in F24m [13].

5 Conclusion

In this paper we have proposed a new countermeasure for
securing the Eta pairing ηT over binary fields F2m . The
proposed countermeasure prevents both SCA and high
order SCA and it’s overhead cost is only (m + 1)/2 field
multiplications.
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6 Appendix

The following algorithm implements the technique that
allows to secure the eta pairing against high order side
channel attacks.

Algorithm 3 Secure computation of the eta pairing on
E(F2m) : y2 + y = x3 + x + b

Input: P = (xP , yP ), Q = (xQ, yQ)
Output: ηT (P, Q)
1.1 Generate a random integer r ∈ F2m

1.2 x′P ← xP + r, y′P ← yP + r, x′Q ← x′Q + r, y′Q ←
yQ + r, b′ ← b + r, s′ ← s + r, t′ ← t + r
1.3 u′ ← x′p + 1
2.1 f ← u′(x′P +x′Q +1)+y′P +y′Q +b′+1+(u′+x′Q)s′+t′

3. for i = 1 to (m + 1)/2 do
4. Generate a random integer α ∈ F2m and set β ← 0
5. v ← xP + α, xP ← xP + α2, yP ← yP + α2, xQ ←
xQ + α, yQ ← yQ + α, b ← b + α, s ← s + α, t ← t + α
6. u ← v, xP ← √

xP , yP ← √
yP , w ← α.(xP + u)

7. g ← u(xP + xQ) + yP + yQ + xP + (u + xQ)s + t + w
8. f ← f.g
9. β ← β + α + α2, xQ ← xQ

2 + β, yQ ← xQ
2 + β, v ←

xP , xP ← xP + β, yP ← yP + β
10. end for
11. return f (22m−1)(2m−2(m+1)/2+1)(2(m+1)/2+1)

Proof. By the same as for Algorithm 2, we will prove that
the effect of the randomized values will be removed at the
end of each loop and then the outputted result will be the
correct value of ηT (P, Q).
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It is easy to see that that the result computed by Al-
gorithm 3 outside the main loop is the same as in Algo-
rithm 1, since the performed operations are the same as
for Algorithm 2. On the other hand, the computation of
g by Algorithm 3 gives

g = (xP + α)(
√

xP + α + xQ + α) +
√

yP + α + yQ

+α +
√

xP + α + (xP + α + xQ + α)(s + α)
+t + α + α.(

√
xP + α + xP + α

= xP (
√

xP + xQ) +
√

yP + yq +
√

xP

+(xP + xQ)s + t

Which prove that Algorithms 1 and 3 output the same
result at the first step.

By induction hypothesis, we suppose that Algorithms 1
and 3 output the same result at the i-th loop. AS men-
tioned before, at the end of the i+1-th loop of Algorithm 1
we have

g = xP
−(i)(xP

−(i+1) + xQ
(i)) + yP

−(i+1) + yQ
(i)

+xP
−(i+1) + (xP

−(i) + xQ
(i))s + t.

At the i + 1-th loop Algorithm 3 performs

g = (xP
−(i) + β′)(xP

−(i+1) + β′ + xQ
(i) + β′)

+yP
−(i+1) + β′ + yQ

(i) + β′ + xP
−(i+1) + β′

+(xP
−(i) + β′ + xQ

(i) + β′)(s + β′)

+β′.(xP
−(i+1) + β′ + xP

−(i) + β′) + t + β′

= xP
−(i)(xP

−(i+1) + xQ
(i)) + yP

−(i+1) + yQ
(i)

+xP
−(i+1) + (xP

−(i) + xQ
(i))s + t,

where β′ = αi + αi+1. The elements αi and αi+1 are
respectively the random integers generated at i-th and
i + 1-th step. Hence Algorithms 1 and 3 output the same
result at the i + 1-th loop, which complete the proof.
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