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Abstract

Many identity based signature (IBS) schemes have been
proposed so far. However, most of the schemes are based
on bilinear pairings. Only a few IBS schemes are with-
out pairings. Up to now, there still remains a challenge
to construct a provably secure and efficient IBS scheme
without pairings. In this paper, we propose an efficient
IBS scheme based on cubic residues, and we prove that
our scheme is secure against adaptively chosen message
and ID attack.
Keywords: Cubic residues, forking lemma, identity-based
signature, provably secure

1 Introduction

Identity(ID)-based cryptography (IBC) is proposed by
Shamir [10] in 1984 to simplify key management proce-
dures of traditional certificate-based PKI. In IBC, an en-
tity’s public key is derived directly from its identity, such
as an e-mail address, or a social security number associ-
ated with a user. The private key is computed and issued
secretly to the user by a trusted third party called pri-
vate key generator (PKG). The main advantage of IBC is
that it drastically reduces the needs for certificates. The
first entire practical and secure identity-based encryption
scheme was presented by Boneh and Franklin [1] in 2001.
Since then, a rapid development of IBC has taken place.
Now, IBC has become a good alternative for certificate-
based public cryptosystems, especially when efficient key
management is required.

But now, most of the proposed identity-based schemes
are based on bilinear pairings, which are usually con-
sidered to be involved heavy computation. Very a few
identity-based signature (IBS) schemes are without pair-
ings. The first IBS scheme without pairings is proposed
by Shamir [10], which is based on RSA problem. In re-
cent years, Lee and Liao proposed an IBS scheme based on

discrete logarithm problem [6]. Qiu and Chen presented
an IBS scheme based on quadratic residues [9]. However,
these IBS schemes did not provide formal security proof.
In 2007, Chai et al. [3] proposed a new IBS scheme based
on quadratic residues. They proved that their scheme is
secure in the random oracle. But Chai et al.’s scheme is
not a truly identity-based signature scheme (the analysis
can be seen in Note 1 of Section 3).

In this paper, we propose an IBS scheme constructed
from cubic residue. If we select proper parameters, the
computational efficiency of constructing a cubic residue
is better than constructing a quadratic residue. Thus, we
choose cubic residue to construct the IBS scheme. Our
scheme is very efficient, and is chosen message and ID
secure in the random oracle, assuming the hardness of
factoring.

The rest of the paper is organized as follows. In Sec-
tion 2, we give a brief review of some concepts and related
lemma. In Section 3, we depict our scheme in detail, and
we discuss the scheme’s efficiency in Section 4. In Sec-
tion 5, we provide a formal security proof. Finally, a
conclusion is drawn in Section 6.

2 Concepts and Related Lemma

In this section, we introduce some concepts and related
lemma [11] about the cubic residues, which will be used
in our construction.

As is well known, the multiplicative Z∗p is a cyclic group
of order p − 1. For an integer t ≥ 1, let Zp,t be the
subgroup of elements in Z∗p whose order divides t: Zp,t =
{a ∈ Z∗p |at = 1}. We denote 3p = gcd(3, p− 1).

We consider the cubic map fp,3 on Z∗p . It can easily be
seen that the map fp,3 : Z∗p → (Z∗p )3 is surjective and for
x ∈ Z∗p , fp,3 = 1 if and only if x ∈ Zp,3 ⊂ Z∗p . Moreover,
we have (Z∗p )3 = ((Z∗p )3p)3/3p , and the order of (Z∗p )3p is
(p− 1)/3p, in particular, it is prime to 3/3p, thus it holds
that ((Z∗p )3p)3/3p = (Z∗p )3p . Hence, we have #Zp,3 =
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(p − 1)/#(Z∗p )3p = 3p, and from the uniqueness of the
subgroup of order 3p in Z∗p , letting ζp,3 be a primitive 3p-
th root of unity, we have Zp,3 = Zp,3p

=< ζp,3 >, that
is, the subgroup of cubic roots of unity is equal to that
of 3p-th roots of unity. Then due to above, we have the
following.

Lemma 1. For any x ∈ Z∗p , we have x
p−1
3p mod p ∈<

ζp,3 >, and x is a cubic residue if and only if x
p−1
3p

mod p = 1.

Next, we deal with a modulus N = pq,where p and
q are distinct odd prime numbers. If we choose p = 2
mod 3 and q = 4 mod 9 or q = 7 mod 9, then 3p =
1, 3q = 3. In this case, since any x must be a cubic residue
modulus p, x is a cubic residue modulus N if and only if
x is a cubic residue modulus q.

So when we construct a cubic residue x modulus q,
it must be a cubic residue modulus N . In quadratic
residues, when we construct a quadratic residue y mod-
ulus N , y should be a quadratic residue both modulus
p and modulus q. Hence, if we choose proper p and q,
it is easier to construct a cubic residue modulus N than
construct a quadratic residue modulus N .

3 ID-based Signature Scheme
Based on Cubic Residues

ID-based signature scheme is composed with 4 algorithms,
called Setup, Extract, Sign and Verify.

Setup. A security parameter is taken as input and re-
turns PP (public parameters) and MK (master-key)
of the trusted third party (PKG). The public parame-
ters PP will be publicly known, while the master-key
MK will be known only to the PKG.

Extract. The output from Setup (PP, MK) is taken
along with an arbitrary ID∈ {0, 1}∗ as input, and
returns a private key SID. Here ID is an arbitrary
string that will be used as a public key, and SID

is the corresponding private sign key. The Extract
phase extracts a private key from the given public
key.

Sign. A message M, a private key SID and PP are taken
as input. It returns a signature Sig.

Verify. A message M, a signature Sig, ID and PP are
taken as input. It returns valid or invalid.

Note 1. In ID-based signature scheme, the public key
can only be the signer’s ID, and can not involve any
other messages equivalent to the public keys in the
traditional Public Key Infrastructure. Otherwise,
the scheme is not a truly ID-based signature scheme.
For example, the public key of Chai’s scheme [3] not
only involves the signer’s ID, but also involves c1, c2.
Tags c1, c2 are equivalent to the public keys in the

traditional Public Key Infrastructure, which should
be certificated. Thus, Chai’s scheme is not a truly
ID-based signature scheme.

In this section, we depict our ID-based signature
scheme in detail.

Setup(k,l): Taking the security parameters (k, t),
this algorithm will be carried out by PKG as follows:

1) Generate randomly two same length distinct
prime numbers p and q, such that p ≡ 2 mod 3,
q ≡ 4 mod 9 or 7 mod 9, satisfying pq < 2k,
then compute N = pq.

2) Select a non-cubic residue a modulus q.

3) Compute η = [(q − 1) mod 9]/3, and λ = η
mod 2 + 1.

4) Compute β = q−1
3 , and ξ = aη·β mod q.

5) Select h1() : {0, 1}∗ → Z∗N , h2() : {0, 1}∗ →
{0, 1}t as two hash functions.

The master key of PKG is set to be MK = (p, q, β),
and the public parameters of PKG are
PP = (N,h1(), h2(), a, η, λ).

Extract(ID,MK,PP): Given ID, PKG computes
the corresponding private key SID as follows:

1) Compute ω = h1(ID)λ·β mod q.

2) Compute

c =
{ 0, ω = 1

1, ω = ξ
2, ω = ξ2

and compute H(ID) = ac · h1(ID) mod N .

Note 2. H(ID) is a cubic residue modulus N .

The proof of this note is as follows. In our scheme,
since q ≡ 4 mod 9)or7 mod 9), 3q = 3. Ac-
cording to Lemma 1, we can compute the value of
H(ID)

q−1
3q ≡ [ac · h1(ID)]

q−1
3 mod q.

In case of q = 4 mod 9, η = 2, λ = 1, ξ =
a2β mod q. If c = 0, then ω = h1(ID)β =

h1(ID)(
q−1
3 ) = 1 mod q. So H(ID)

q−1
3q ≡ 1

mod q. If c = 1, then ω = h1(ID)β = ξ. Since

a2β = ξ, aβ = ξ2, H(ID)
q−1
3q ≡ [a · h1(ID)]

q−1
3 ≡

a
q−1
3 · h1(ID)

q−1
3 = ξ3 = 1 mod q. If c = 2, then

ω = h1(ID)β = ξ2. Since a2β = ξ, H(ID)
q−1
3q ≡

[a2 · h1(ID)]
q−1
3 ≡ ξ3 = 1 mod q.

In case of q = 7 mod 9, η = 1, λ = 2, ξ =
aβ mod q. If c = 0, then ω = h1(ID)2β =

h1(ID)2(
q−1
3 ) = 1 mod q. So H(ID)

q−1
3q ≡ 1

mod q. If c = 1, then ω = h1(ID)2β = ξ, and

then h1(ID)β = ξ2. Since aβ = ξ, H(ID)
q−1
3q ≡

[a · h1(ID)]
q−1
3 ≡ a

q−1
3 · h1(ID)

q−1
3 = ξ3 = 1
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mod q. If c = 2, then ω = h1(ID)2β = ξ2, and
then h1(ID)β = ξ. Since aβ = ξ and a2β = ξ2,

H(ID)
q−1
3q ≡ [a2 · h1(ID)]

q−1
3 ≡ ξ3 = 1 mod q.

Thus H(ID) must be a cubic residue modulus q.

Since p ≡ 2 mod 3, 3p = 1, H(ID)
p−1
3p ≡ [ac ·

h1(ID)]p−1modp = 1 mod p. So H(ID) must be a
cubic residue modulus p, then H(ID) also must be a
cubic residue modulus N .

3). compute SID as cubic root of H(ID)−1.

SID = [H(ID)]
2η−1(p−1)(q−1)−3

9 mod N.

Note 3. In case of q ≡ 4 mod 9, η = 1, (p − 1)(q − 1)
mod 9 = 3. In case of q ≡ 7 mod 9, η = 2, 2(p −
1)(q − 1) mod 9 = 3. Thus 2η−1(p−1)(q−1)−3

9 must
be an integer.

The validity of step 3 is in the fact that
H(ID)(p−1)(q−1) ≡ 1 mod N by Euler theo-
rem. Consequently, 2η−1(p−1)(q−1)−3

9 ≡ [H(ID)−1]
1
3

mod N .

Note 4. S3
ID ·H(ID) ≡ 1 mod N .

Note 5. Our Extract algorithm also provide an efficient
way to compute a cubic root, given special parame-
ters.

At last, PKG returns secretly SID to the user with
ID.

Sign(M,SID,PP): To sign a message M , a user do
as follows:

1) Random select r ∈ Z∗N , compute R = r3

mod N .

2) Compute Z = r · Sh2(R,M)
ID mod N .

The return signature is Sig = (Z, R).

Verify(PP,Sig,ID): Given a signature Sig =
(Z, R) on a message M , a verifier should verify the
signature only by the signer’s ID:

1) Compute H1(ID) = h1(ID) mod N ,
H2(ID) = a · h1(ID) mod N and
H3(ID) = a2 · h1(ID) mod N .

2) Check wether Z3 · H
h2(R,M)
i (ID) = R (i ∈

{1, 2, 3}) holds. If (one of i ∈ {1, 2, 3}) holds,
output ”valid”, otherwise, output ”invalid”.

Note 6. Since Z3 · Hh2(R,M)(ID) = R · (S(ID)3 ·
H(ID))h2(R,M) = R mod N , the validity of our
scheme could be check by Step 2.

Note 7. There is only 1 modular exponentiation in the
Sign algorithm, so our scheme is very efficient.

4 Security Proof

In this section, we prove that the security of our scheme
is based on the hardness of factoring by using the Forking
Lemma introduced by Pointcheval and Stern [7, 8].

4.1 Factoring Composite by Taking Cu-
bic Roots

For simplicity, let N = pq, where p, q are large primes.
Let a be a cubic residue over N , and s1 and s2 be its two
cubic roots, satisfying s1 6= s2modN . Then, N could be
factored by executing Fac(a, s1, s2), which is depicted as
follows (confirming s3

1 ≡ s3
2 ≡ a mod N).

Fac(a, s1, s2): if s1 ≡ s2modN , then outputs ”failure”,
otherwise output GCD(s1 − s2, N) as the non-trivial di-
visor of N .

The function is justified by the followed facts. Since
x3 ≡ y3 ≡ a mod N ,we have (x− y)(x2 + xy + y2) ≡ 0
mod N , therefore (x − y)(x2 + xy + y2) = kpq for some
integer k. If x 6= y mod N , and x− y is not multiple of
N , then x− y contain non-trivial divisor of N .

Indeed, all the root pairs (s1, s2) satisfying s1 6= s2

mod N can lead to the factorization of N .
The security notion for signature schemes is the

standard notion of unforgeability under chosen-message
attack (UF-CMA) [5]. An appropriate extension of it
for ID-based signature schemes proposed by [2, 4], which
is defined as unforgeability under chosen message and
ID attack. Unforgeability under chosen message and
ID attack is defined as the following game between a
challenger B and an adversary A.

Setup: The challenger B takes a security parameter k
and runs the Setup algorithm of the IBS scheme. It gives
the adversary A the resulting public parameters PP. It
keeps the master-key MK to itself.

Queries: The adversary A adaptively makes a number
of different queries to the challenger B. Each query can
be one of the following.

• Extract Queries: The challenger B responds by run-
ning Extract algorithm to generate the private key
SID corresponding to the public key ID issued by A.
It sends SID to the adversary A.

• Signature Queries: The adversary A can ask for the
signature of any identity ID on any message M . The
challenger B responds by first running Extract algo-
rithm to obtain the private key SID of ID, and then
running Sign algorithm to obtain a signature, which
is forward to the adversary.

Forgery: The adversary outputs a message M∗, an iden-
tity ID∗ and a string Sig∗. The adversary succeeds if the
following conditions are satisfied:

1) Verify(PP,ID∗,M∗,Sig∗)=valid.



International Journal of Network Security, Vol.14, No.1, PP.33–38, Jan. 2012 36

2) The adversary has not made an extract query on
ID∗.

3) The adversary has not made a sign query on
(ID∗,M∗).

The advantage of an adversary A in the above game is
defined to be

AdvA = Pr[A succeeds]

where the probability is taken over all coin tosses made
by the challenger and the adversary. If the advantage
of A is negligible, then the ID-based signature scheme is
unforgeability under chosen message and ID attack.

4.2 Provably Secure Proof

The security notion for signature schemes is the stan-
dard notion of unforgeability under chosen-message at-
tack (UF-CMA) [5]. An appropriate extension of it for
ID-based signature schemes proposed by [2, 4], which is
defined as unforgeability under chosen message and ID
attack. In this section, we will prove our scheme is secure
based on the hardness of factoring problem, which should
use the Forking Lemma [7, 8] twice.

Theorem 1. If the factoring problem is (t′, ε′)-hard,
then our scheme is (t, qh2 , qsig, ε)-secure against existen-
tial forgery on the adaptively chosen message and ID at-
tack, which satisfying:

ε′ ≥ 6 · (ε− qsig(qh2 + qsig) · 2−k)2

π2(qh2 + 1)

−6 · 2−l · (ε− qsig(qh2 + qsig) · 2−k)
π2

,

t′ = 3t +O(k2l + k3),

where l and k are security parameters.

Proof. Suppose our scheme IBS − W is not secure,
namely, there exists an adversary A who can attack
IBS − W with non negligible advantage, then we will
show that it is possible to build an algorithm B to solve
factoring problem with non negligible probability. That
is, a contradiction against the assumption in the theorem,
so IBS −W is secure.

Now, we will show how to build an algorithm B that
on input of a given instance of factoring problem N =
pq (pq > 2k, k ≥ 1024bits) for some unknown p and q,
outputs p or q with non negligible probability.
B will simulate the interaction game with A as follows:
1. B chooses a non-cubic residue a modulus N , and

choose a secure parameter t ≥ 160, and sends (N, a) to
A as public parameters. B also maintain three lists: a
signature list and two hash query lists.

2. Then B responds to A’s queries as follows:
• h1-queries: To respond to A’s h1-queries, B main-

tains a list of tuples < ID, h1, s, c >, where ID is the

requested identity, h1 is B’s answer, c, s is the internal
parameter as explained below.

On a query on ID, B will return h1 as the answer if ID
already exists on the h1-list in the tuple < ID, h1, s, c >,
otherwise, B will choose a random number s ∈ Z∗N and
the tag c ∈ {0, 1, 2}, and return h1 = s3

ac mod N as the
answer, then adds the entry < ID, h1, s, c > to the h1-list.
• Extraction queries: Upon an extraction query on ID,

B will return SID = s, as well as c, as the answer if ID
already exists on the h1-list in the tuple < ID, h1, s, c >,
otherwise, B will add a new entry contain ID the same
way as handling h1-query, then return s as the answer,
and record c.
• Signature queries: Signature query on message M

with ID could be almost answered at random. Since B
controls h1-list, B first compute HID = ach1(ID), and
picks random Z and σ, if (R′ = Z3 · Hσ

ID, M) is in the
h2-list, B reports failure, otherwise, B returns (Z, R′) as
the signature on ID, and add (R′,M, σ) to the h2-list.

3. A outputs a forged signature (Z∗, R∗) on some mes-
sage M∗ and ID∗, which has not been queried on to the
signing oracle with M∗. It should be also pointed out that
ID∗ should not be queried on to extraction query oracle.

In order to factor N , we need to apply the Forking
Lemma twice, which means that B should reset A thrice
with the same random tape. Since B has recorded the
transcript in the first run, he can give the exact same
answers to all A’s queries before a h2 query is asked in
the next two runs. In the first run, as soon as A asks for
this h2 query, B gives σ∗ as the answer. In the second run,
when A asks for this h2 query, B choose a new number σ

′

as the answer. In the third run, B once again re-selects a
new number σ

′′
, which is different from σ∗ and σ

′
, as the

answer for A’s h2 query.
After three rounds, with the same random tape, A

gives thee forged signatures (Z∗, R∗), (Z ′, R∗), (Z ′′, R∗)
on the same message M∗ and ID∗. Then B searches three
h2-lists for (R∗,M∗) to acquire σ∗, σ′, σ′′.

If σ∗, σ′, σ′′ satisfying GCD(σ∗ − σ′, σ′ − σ′′) = 1, B
can get a1(σ∗−σ′) + a2(σ′−σ′′) = 1, for some special a1

and a2. Due to the same random tape, B can obtain

Z∗3·Hσ∗(ID∗) = Z
′3·Hσ′(ID∗) ⇒ (

Z ′

Z∗
)3 = Hσ∗−σ′(ID∗)

and

Z
′3·Hσ′(ID∗) = Z

′′3·Hσ′′(ID∗) ⇒ (
Z ′′

Z ′
)3 = Hσ′−σ′′(ID∗).

From above, B can deduce

H(ID∗) = [(
Z ′

Z∗
)a1 · (Z ′′

Z ′
)a2 ]3 mod N.

Then, B can get a cubic root of H(ID∗) easily from the
above equation. Finally, B search in the h1-list to get
anther cubic root of H(ID∗). Then B can use these two
different roots to factor N , which is introduced in Sec-
tion 4.1.
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Since B has to run A thrice, and takes some other
operations to factor N , such as exponentiations and GCD
operations, the time B used to factor N can be denoted
as t′ = 3t +O(k2l + k3).

ε′ denotes the probability of factoring N , ε denotes the
probability of A forging a signature in the real attack,
and ε∗ denotes the probability of A forging a signature in
a single run in simulation.

In the face of A’s signature querying, B chooses Z at
random, which may cause a collision against a value in
the h2-list. Since the h2-list is filled according to both
h2 and signature queries, the probability of collision is
(qh2 + qsig)/|Z∗N |. Thus in the simulation, the probability
of A forging a signature in a single run is derived from:

ε∗ = ε− (qh2 + qsig)/|Z∗N | ≥ ε− (qh2 + qsig)2−k.

εi denotes the probability of forgery based on i-th h2-
query in a single run. we can easily get:

ε∗ =
qh2+1∑

i=1

εi.

Given specific string m of length n, which determines
the random tape of A, let εi,m denote the the probability
of forgery based on i-th h2-query in a single run.. Hence,
we calculate:

2nεi =
∑

m∈{0,1}n

εi,m.

For a specific string m, the achievement of forgery in
three runs should satisfy two conditions:

1) the three answers (σ∗, σ′, σ′′) of hth h2 query in the
three runs should be different.

2) GCD(σ∗ − σ′, σ′ − σ′′) = 1.

So the probability of achievement of forgery in three
runs can be estimated as

6
π2
· εi,m(εi,m − 2−l).

Given two arbitrary number m and n, solving the prob-
ability that m and n are relatively prime can be seen in
Appendix A. Let Pi be the probability that a forgery was
based on the ith h2-query in three runs. Then we can
deduce:

Pi =
∑

m∈{0,1}n

2−n 6
π2
· εi,m(εi,m − 2−l)

= 2−n 6
π2

(
∑

m∈{0,1}n

ε2i,m − 2−l
∑

m∈{0,1}n

εi,m)

≥ 6 · 2−n(εi · 2n)2

π2 · (2n)
− 6 · 2−n · 2−l · εi · 2n

π2

=
6
π2
· ε2i −

6 · 2−l

π2
· εi.

Thus, the probability of A breaking IBS −W scheme
in real attack can be calculated as:

ε′ =
qh2+1∑

i=1

Pi ≥
qh2+1∑

i=1

6
π2
· ε2i −

qh2+1∑

i=1

6
π2
· 2−lεi

≥ 6ε∗2

π2 · (qh2 + 1)
− 6 · 2−l · ε∗

π2

≥ 6 · (ε− qsig(qh2 + qsig) · 2−k)2

π2(qh2 + 1)

−6 · 2−l · (ε− qsig(qh2 + qsig) · 2−k)
π2

.

Then, we complete our security proof.

5 Conclusion

In this paper, we first discuss the concepts and related
lemma in cubic residues. Then, we construct an efficient
Identity-based signature scheme from cubic residues. Fi-
nally, we prove that our scheme is secure in the random
oracle, by using the Forking Lemma twice.
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easy to prove that the reciprocal of this product equal
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∑
1/k2, (k = 1, ..., infinite), which is equal to π2/6,

thus, the probability equal to 6/π2.

Zhiwei Wang is a lecturer at Nanjing University of Posts
and Telecommunications. He received his Ph.D degree
from Beijing University of Posts and Telecommunications.
His research interests include: public key cryptography,
cryptographic protocol, and information security etc.. He
has published 20 scientific papers.
Licheng Wang is a lecturer at Beijing University of
Posts and Telecommunications. He received her Ph.D
degree from Shanghai Jiaotong University. His research
interests include: braidgroup cryptography, lattice based
cryptography etc.. He has published 20 scientific papers.

Shihui Zheng is a lecturer at Beijing University of
Posts and Telecommunications. She received her Ph.D
degree from Shandong University. Her research interests
include: public key cryptography, hash function etc.. She
has published 5 scientific papers.

Yixian Yang received his M.S. and Ph.D degrees from
Beijing University of Posts and Telecommunications.
Now, he is a professor at Beijing University of Posts and
Telecommunications. His research interests lie in coding
theory, cryptography etc.. He has published 300 scientific
papers.
Zhengming Hu is a professor at Beijing University of
Posts and Telecommunications. His research interests lie
in coding theory, cryptography etc.. He has published 50
scientific papers.


