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Abstract

In this work a non linear model is going to be used which
develops data distributed over an identified value which
is used as nonce (IV). The key to be considered in the
model is a combination of three values K, p & Cp which
vary with the data developed. Thus by properly consid-
ering a combination of key values which are non linear in
nature, data is derived from the developed model. This
set of values is considered as a sub key for one round.
A time stamp is considered which identifies the number
of rounds of the given model. The process is repeated
for different time stamp rounds in the encryption mecha-
nism. Thus the model involves an identified value which
is used as nonce (IV), a considered non linear set of values
which are used as key and different timings as time stamp
rounds which are very important parameters in symmetric
data encryption schemes. This Model supports not only
security but also timeliness of encryption mechanism and
also acknowledgement support between the participating
parties.
Keywords: Cubic spline interpolation, encryption decryp-
tion mechanism, key & sub key generation, non linear
model, time stamp and nonce, tridiogonal matrix algo-
rithm

1 Introduction

Historically, encryption schemes were the first central area
of interest in cryptography [1, 2, 3, 4, 5, 6, 7, 8, 16]. They
deal with providing means to enable private communica-
tion over an insecure channel. A sender wishes to transmit
information to a receiver over an insecure channel that is a
channel which may be tapped by an adversary. Thus, the
information to be communicated, which we call the plain-
text, must be transformed (encrypted)to a cipher text,
a form not legible by anybody other than the intended
receiver. The latter must be given some way to decrypt

the cipher text, i.e. retrieve the original message, while
this must not be possible for an adversary. This is where
keys come into play; the receiver is considered to have
a key at his disposal, enabling him to recover the actual
message, a fact that distinguishes him from any adver-
sary. An encryption scheme consists of three algorithms:
The encryption algorithm transforms plaintexts into ci-
pher texts while the decryption algorithm converts cipher
texts back into plaintexts. A third algorithm, called the
key generator, creates pairs of keys: an encryption key,
input to the encryption algorithm, and a related decryp-
tion key needed to decrypt. This work mainly deals with
the algorithm which generates sub keys which provides
sufficient strength to the encryption mechanism.

Partial differential equations to model multiscale phe-
nomena are ubiquitous in industrial applications and their
numerical solution is an outstanding challenge within the
field of scientific computing [10, 11, 12]. The approach
is to process the mathematical model at the level of
the equations, before discretization, either removing non-
essential small scales when possible, or exploiting spe-
cial features of the small scales such as self-similarity
or scale separation to formulate more tractable compu-
tational problems. Types of data,

1) Static:
Each data item is considered free from any temporal
reference and the inferences that can be derived from
this data are also free of any temporal aspects.

2) Sequence:
In this category of data, though there may not be any
explicit reference to time, there exists a sort of qual-
itative temporal relationship between data items.

3) Time Stamped:
Here we can not only say that a transaction occurred
before another but also the exact temporal distance
between the data elements. Also with the events be-
ing uniformly spaced on the time scale.
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4) Fully Temporal:
In this category, the validity of the data elements is
time dependent. The inferences are necessarily tem-
poral in such cases.

2 Numerical Data Analysis

The following are the steps to generate a numerical
method for data analysis [13, 15].

2.1 Discritization Methods

The numerical solution of data flow and other related pro-
cess can begin when the laws governing these processes
have been express differential equations. The individual
differential equations that we shall encounter express a
certain conservation principle. Each equation employs a
certain quantity as its dependent variable and implies that
there must be a balance among various factors that influ-
ence the variable.

The numerical solution of a differential equation con-
sists of a set of numbers from which the distribution of
the dependent variable can be constructed. In this sense
a numerical method is akin to a laboratory experiment
in which a set of experimental readings enable us to es-
tablish the distribution of the measured quantity in the
domain under investigation

Let us suppose that we decide to represent the variation
of φ by a polynomial in x:

φ = a0 + a1x + a2x
2 + . . . + anxn,

and employ a numerical method to find the finite number
of coefficients a1, a2, . . ., an. This will enable us to eval-
uate φ, at any location x by substituting the value of x
and the values of a’s in the above equation.

Thus a numerical method treats as its basic unknowns
the values of the dependent variable at a finite number of
location called the grid points in the calculation domain.
This method includes the task of providing a set of alge-
braic equations for these unknowns and of prescribing an
algorithm for solving the equations.

A discretization equation is an algebraic equation con-
necting the values of f for a group of grid points. Such
an equation is derived from the differential equation gov-
erning f and thus expresses the same physical information
as the differential information. That is only a few grid
points participate in the given differential equation is a
consequence of the piecewise nature of the profile chosen.
The value of f at a grid point there by influence the dis-
tribution of f only in its immediate neighborhood. As the
number of grid points becomes large, the solutions of dis-
critization equations are expected to approach the exact
solution of the corresponding differential equations.

2.2 Control Volume Formulation

The basic idea of the control volume formulation is easy
to understand and lends itself to direct physical interpre-

tation. The calculated domain is divided into a number
of non overlapping control volumes such that there is one
control volume surrounding each grid point. The differen-
tial equation is integrated over each control volume piece-
wise profiles expressing the variation a, f between grid
points are used to evaluate the required integrals.

The most attractive feature of the control volume for-
mulation is that the resulting solution would imply that
the integral conservation of quantities such as mass, mo-
mentum and energy is exactly satisfied over any group
of control volumes and of course over the whole calcula-
tion domain. This characteristic exists for any number of
grid points, not just in a limiting sense when the number
of grid points becomes large. Thus even the course grid
solution exhibits exact integral balances.

2.3 Steady One Dimensional Data Flow

Steady state one-dimensional equation is given by
∂./∂x(k.∂T/∂x) + s = 0.0, where k & s are constants.
To derive the discretisation equation we shall employ the
grid point cluster. We focus attention on grid point P ,
which has grid points E, W as neighbors. For one di-
mensional problem under consideration we shall assume
a unit thickness in y and z directions. Thus the volume
of control volume is delx ∗ 1 ∗ 1.

Thus if we integrate the above equation over the control
volume, we get:

(K.∂.T/.∂X)e − (K..∂.T/.∂X)w + .

∫
S.∂.X = 0.0.

If we evaluate the derivatives. ∂T/∂X in the above equa-
tion from piece wise linear profile, the resulting equation
will be Ke(Te − Tp)/(∂X)e − Kw(Tp − Tw)/(∂X)w +
S ∗ delx = 0.0, where S is average value of s over control
volume.

This leads to discretisation equation:

apTp = aeTe + awTw + b,where ae = Ke/∂Xe

aw = Kw/dXw

ap = ae + aw − sp.delX

b = se.delX.

2.4 Grid Spacing

For the grid points it is not necessary that the distances
(dX)e and (dX)w be equal. Indeed, the use of non uni-
form grid spacing is often desirable, for it enables us to
deploy more efficiently. Infact we shall obtain an accurate
solution only when the grid is sufficiently fine. But there
is no need to employ a fine grid in regions where the de-
pendent variable T changes slowly with X. On the other
hand, a fine grid is required where the T X variation is
steep. The number of grid points needed for the given
accuracy and the way they should be distributed in the
calculation domain are the matters that depend on the
nature of problem to be solved.
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2.5 Solution of Linear Algebraic Equa-
tions

The solution of the discretization equations for the one-
dimensional situation can be obtained by the standard
Gaussian elimination method. Because of the particularly
simple form of equations, the elimination process leads to
a delightfully convenient algorithm.

For convenience in presenting the algorithm, it is nec-
essary to use somewhat different nomenclature. Suppose
the grid points are numbered 1, 2, 3, . . . , ni where 1 and
ni denoting boundary points.

The discretisation equation can be written as:
AiTi +ViTi+1+CiTi−1 = Di, For I = 1, 2, 3, . . . , ni. Thus
the data value T is related to neighboring data values Ti+1

and Ti−1. For the given problem C1 = 0 and Bn = 0;
These conditions imply that T1 is known in terms of

T2. The equation for I = 2, is a relation between T1, T2
& T3. But since T1 can be expressed in terms of T2, this
relation reduces to a relation between T2 and T3. This
process of substitution can be continued until Tn−1 can be
formally expressed as Tn. But since Tn is known we can
obtain Tn−1. This enables us to begin back substitution
process in which Tn−2, Tn−3, . . . , T3, T2 can be obtained.

For this tridiogonal system, it is easy to modify the
Gaussian elimination procedures to take advantage of ze-
ros in the matrix of coefficients.

Referring to the tridiogonal matrix of coefficients
above, the system is put into a upper triangular form
by computing new Ai.

Ai = Ai− (Ci− 1/Ai) ∗Bi, where i = 2, 3, . . . , ni

Di = Di− (Ci− 1/Ai) ∗Di.

2.6 Non Linear Model

In the work presented in “A new Model based encryp-
tion mechanism with time stamp and acknowledgement
support”, accepted and to be published in “International
Journal of Network Security” in Nov 2010, the key used
is constant which presents a linear case. In the present
problem the key is considered a combination of three val-
ues which vary with the data generated.

A non linear problem can also be solved using Numer-
ical method.

1) Initially the values of data at all grid points are
guessed.

2) From theses guessed data values, coefficients of all
grid points are calculated.

3) These linear set of algebraic equations are solved to
get new values of data.

4) With these as better guesses, the procedure is re-
turned to Step 2.

This process is continued until further iterations cease
to produce any significant change in the values of Data.

From the initial guessed values, the coefficients A[I], B[I],
C[I], D[I] are calculated. Using these coefficients of grid
points, the data is calculated. Let the new data gener-
ated is D[I]. Then D[I] is compared with initial guessed
data. This procedure is repeated till the difference be-
tween present data and earlier data is less than say, 10−3.
The procedure is repeated for next delt. Finally the data
distribution is obtained for all grid points for different
times.

3 Mathematical Modeling of the
Problem

The approach to time series analysis was the establish-
ment of a mathematical model describing the observed
system. Depending on the appropriation of the problem
a linear or nonlinear model will be developed. This model
can be useful to generate data at different times to map
it with plain text to generate cipher text.

3.1 Linear & Non Linear Data Flow
Problem

The initialization vector (IV) considered in the problem
is:
When t = 0, T (I) = Y (I) = 300, where I = 1, 2, ldots, M .

Dividing the problem area into M number of points,
and for simplicity by assuming data of the first and M th

grid points are considered to be known and constant.
For the grid points 2, M − 1, the coefficients can be

represented by considering the conservation equation [10].

α/∂.x(Tn+1
I+1 − Tn+1

I ) + /∂x(Tn+1
I − Tn+1

I−1 )

= (∂x)/∂t(Tn+1
I − Tn

I ),

where TI represents data value for the considered grid
point for the preceding delt, Tn+1

I+1 &Tn+1
I represents data

values for the preceding and succeeding grid points for the
current delt.

Considering α which is a key for the given model, the
coefficients are obtained for each state (grid point) in
terms of A(I) refers to data value of the corresponding
grid point, C(I) and B(I) refers to data values of preced-
ing and succeeding grid points for the current delt, D(I)
refers to data value of the considered grid point in the
preceding delt.

A(I) = 1 + 2αdelt/(delx) ∗ ∗2.

B(I) = −αdelt/(delx) ∗ ∗2.

C(I) = −αdelt/(delx) ∗ ∗2.

D(I) = Tn
I .

Where α is the key considered which is a constant value.
By considering α as a function of 3 values b, Cp & K which
are related as a ratio of K to bCp, the model generated is
a linear model.



International Journal of Network Security, Vol.14, No.1, PP.27–32, Jan. 2012 30

By varying K as a function of data generated by the
model, the model can be considered to be non linear in
nature. For the grid points 2, M − 1, the coefficients can
be represented by considering the conservation equation
[16],

K/∂.x(Tn+1
I+1 − Tn+1

I )−K/∂x(Tn+1
I − Tn+1

I−1 )

= ((bCp∂x)/∂t) ∗ Tn+1
I − Tn

I ),

where Tn
I represents data value for the considered grid

point for the preceding delt, Tn+1
I+1 & Tn+1

I represents data
values for the preceding and succeeding grid points for the
current delt.

Tn+1
I+1 [bCp∂x)/∂t + 2 ∗K/∂x] + Tn+1

I−1 [−L/∂x]
= Tn

I (bCp∂x)/∂t).

Considering key as a ratio of three variables K, b, Cp

for the given model, the coefficients are obtained for each
state (grid point) in terms of A(I) refers to data value
of the corresponding grid point, C(I) and B(I) refers to
data values of preceding and succeeding grid points for the
current delt, D(I) refers to data value of the considered
grid point in the preceding delt.

A(I) = bCp∂x/∂t + 2 ∗K/∂x

B(I) = −K/∂x

C(I) = −K/∂x

D(I) = Tn
I ((bCp∂x)/∂t).

3.2 Procedure for Generating Data from
Coefficients by Tridiogonal Method

Using the coefficients of grid points, and by using the trid-
iogonal matrix algorithm, the data distribution is calcu-
lated. The grid points are numbered 1, 2, 3, . . . ,M , with
points 1 and M denoting extreme states.

The discretization equation can be written as:

AiTi + BiTi+1 + CiTi−1 = Di.

For I = 1, 2, 3, . . . ,M . Thus the data Ti is related
to neighboring data values Ti+1 and Ti−1. For the given
problem C1 = 0 and BM = 0 as T1 & TM represent
boundary states.

These conditions imply that T1 is known in terms of
T2. The equation for I = 2, is a relation between T1, T2
& T3. But since T1 can be expressed in terms of T2, this
relation reduces to a relation between T2 and T3. This
process of substitution can be continued until TM−1 can
be formally expressed as TM . But since TM is known
we can obtain TM −1.This enables us to begin back sub-
stitution process in which TM − 2, TM − 3, . . ., T3, T2
can be obtained. This process is continued until further
iterations cease to produce any significant change in the
values of T ’s. Finally the data distribution is obtained for
all grid points for different times by considering a suitable
which is used as key.

Relationship between data values and a constant say
K as Table 1

Table 1: Relationship between data values and a constant

SNO Data Values K
1. 300 140
2. 600 98
3. 900 82.3
4. 1200 69.3
5. 1500 59.5
6. 1800 58.3
7. 2100 58.3
8. 2400 58.3
9. 2700 58.3
10. 3000 58.3

4 Results

By Properly choosing random values for b = 20, Cp = 1.4,
delt = 2, delx = 2, for a total time stamp of 6 units.
Different data values obtained are

For delt = 2, time = 2;
31 6 7 4 31 9 11 13 30 22 29 20 24 0 12 10 17 11 0 1.

For delt = 2, time = 4;
8 21 4 3 5 11 10 13 5 31 22 4 15 14 28 25 29 22 15 1
3 33 2 6 22 12 10 11 29 1 26 21 3 32 0 4 12 8 1 30.

For delt = 2, time = 6;
31 6 7 4 31 9 11 13 30 22 29 20 24 0 12 10 17 11 0 1;
3 26 31 17 16 22 11 18 0 23 21 11 30 6 14 13 3 1 3 7;
3 11 20 23 5 31 9 18 0 21 31 17 12 18 6 11 0 9 30 1.

Thus by using a non linear key, for one time stamp
value, a sequences can be generated which is used as sub
key. This sub key can be mapped to plain text to generate
cipher text for one time stamp round. The procedure is
repeated for different time stamp rounds where the cipher
text generated in the earlier round will be the input for
current round. The output of the final round time stamp
will be used as Cipher text.

4.1 Encryption

The encryption algorithm is shown in Table 2.
The process is repeated for different time stamps and

the output of final round time stamp will be the cipher
text generated.

4.2 Decryption

The reverse of the process used for encryption will gener-
ate plain text from the cipher text. The total time stamp
used, Nonce value considered and parts of key like p &



International Journal of Network Security, Vol.14, No.1, PP.27–32, Jan. 2012 31

Table 2: Encryption mechanism

Plain Text a S K s
Conversion to
alpha numeric 10 28 20 28
value
Sub key 30 6 7 4
Total 41 34 27 32
Mod 36 05 34 27 32
Cipher Text 05 Y R w

Cp needs to be properly shared between the participating
parties for the success of this mechanism.

5 Security Analysis

1) As Space and time values are dynamic in nature, the
number of rounds the algorithms considers and the
length of sub key generated in Encryption Process are
variable. This provides sufficient strength to the al-
gorithm against Differential and Linear Crypto Anal-
ysis.

2) Because of dynamic nature of Space and Time vari-
ants, no specific representation between plain text
and cipher text pairs is possible in this model. The
model is free from Known Plain text and Cipher Text
attacks.

3) The Model considers a key which is a combination of
three values which are non linear in nature, a time
stamp which is dynamic and a nonce value which
is variable, any pattern representation between plain
text and cipher text is not possible. Thus this algo-
rithm is free from known statistical attacks and other
modes of crypto analytical attacks.

Thus this algorithm provides sufficient strength against
crypto Analysis.

6 Comparisons

Some advantages of our algorithm are listed as follows:

1) The algorithm is free from Differential and Linear
Crypto Analysis.

2) The computing power needed to generate cipher text
for one block of data is minimal when compared to
standard algorithms like DES & Rc4.

3) The model provides sufficient strength to algorithm
against crypto analysis in real time environment.

Table 3 showed a comparative study of developed
model with DES & RC4 in terms of computational over-
head, data overhead, complexity and security analysis

7 Conclusion & Future Work

This encryption mechanism uses a Initialization Vector
(nonce value), Time Stamp & a non linear Key to gen-
erate distributed sequences which are used as sub-keys.
Since the time stamp, nonce value and key are variable
in nature, the model provides sufficient security against
crypto analysis. The model is free from cipher text attack,
known plain text & cipher text attacks. The model is also
free from known statistical attacks, linear and differential
crypto analytical attacks.

In the given model past & present time stamps have
been used to generate data. By properly guessing future
time stamps, the model can be made still stronger.
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