
International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 98

Inverse Cookie-based Virtual Password

Authentication Protocol

Sandeep Kumar Sood, Anil K. Sarje, and Kuldip Singh

(Corresponding author: Sandeep K. Sood)

Department of Electronics & Computer Engineering, Indian Institute of Technology

Roorkee, India (Email: san1198@gmail.com; {ssooddec, sarjefec, ksconfcn}@iitr.ernet.in)

(Received Mar. 23, 2010; revised and accepted Arp. 24, 2010)

Abstract

Password is the most commonly used authentication tech-
nique to authenticate the users on the web. Password
based authentication protocols are susceptible to dictio-
nary attacks by means of automated programs because
most of the user chosen passwords are limited to the user’s
personal domain. In this paper, we propose an inverse
cookie based virtual password authentication protocol
that preserves the advantages of basic password authenti-
cation and simultaneously increasing the efforts required
for online dictionary attacks. The Web server stores the
cookie on the client’s computer when the client has not
submitted correct identity and password for its authenti-
cation to the Web server. The legitimate client can easily
authenticate itself to the Web server from any computer
irrespective of whether that computer contains cookie or
not. However, the computational efforts required from
the attacker during login on to the Web server increases
with each login failure. The client generated virtual pass-
word is different for the same user in different sessions of
Secure Socket Layer (SSL) protocol. The concept used
in this paper is to combine traditional password authen-
tication with a challenge that is easy to answer by the
legitimate client and the computational cost of authenti-
cation increases for the attacker with each login failure.
Therefore, even the automated programs can not launch
online dictionary attacks on the proposed protocol. This
protocol provides better protection against different types
of attacks launched by the attacker. The proposed pro-
tocol is easy to implement and it removes some of the
deficiencies of previously suggested password based au-
thentication protocols.

Keywords: Cookies, hyper text transfer protocol, online
dictionary attacks, secure socket layer, virtual password

1 Introduction

Hyper Text Transfer Protocol (HTTP) that provides in-
teraction between the Web browser and the Web server
is stateless because the HTTP server treats each request

independent of any previous request from the same client.
The HTTP server does not maintain the correlation of the
user visits from the same browser between successive ses-
sions. The users are always strange to the Web server if
the Web server does not maintain the state and continuity
of the user [11]. Statelessness on the Web makes it difficult
to carry out online financial transactions in e-commerce.
The merchant Web server can not remember the users on
the Web server without a state mechanism. Therefore,
the Web server uses cookies to maintain the state and
connection of the user with the Web server. Cookie tech-
nology is the most innovative feature that made the Web
stateful. A number of the Web applications built on the
top of HTTP needs to be stateful and require cookies to
maintain the user’s state.

The Web server creates a cookie that contains the state
information of a client and stores it on the client computer
from where the request originated. The Web server uses
cookies to authenticate HTTP requests from the same
client and to maintain persistent client state. Cookie
enabled server can maintain information related to the
client that can be used by the server during subsequent
login request from the same client. The client’s browser
attaches the cookie with each subsequent request made
by the client to the same Web server. The Web server
retrieves the user’s information from this cookie. The de-
fault parameters of HTTP cookie are cookie name, value,
expiration date, URL path for which the cookie is valid,
domain name and a flag to indicate whether the cookie
had been sent using the SSL protocol. Secure cookies are
required so that they can not be forged and all of their
contents are not readable [9, 11]. These secure cookies
use different cryptographic primitives such as message di-
gest, message authentication code, digital signature and
encryption.

Cookies strengthen the connections between the legiti-
mate client and the genuine Web server across the Web. It
helps the Web server to keep track of the user’s movement
and his behavior on the visited Web server. Therefore, the
Web server can obtain significant information about the
long term habits of their clients. There is no notification

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 99

mechanism to alert the users when the cookies are being
placed on their computer. The users are not aware of
what information about them is being stored in the cook-
ies. Cookies can persist for many years like google search
engine routinely sets an expiration date in the year 2038
for its cookies. Third party cookies can be used by the
online business organizations to create detailed records on
the user’s Web browsing habits. Cookies can be used in
conjunction with passwords to provide different levels of
authentication to the users.

Password is the most commonly used authentication
technique to authenticate the users on the Web. Short
and easily memorable passwords are susceptible to dif-
ferent attacks such as dictionary, phishing, stolen veri-
fier, man-in-the-middle and insider attacks. On the other
hand, the users find it difficult to memorize long and com-
plex passwords. The concept of virtual password helps to
defend the password authentication protocols from differ-
ent types of attacks. Virtual password is a dynamic pass-
word that will be different for each new session between
the same client and the server. The virtual password in-
volves some computation on the client side to generate
different password corresponding to the same user in dif-
ferent login sessions based on a single password shared
between the client and the server [8].

The online dictionary attacks are one of the major con-
cerns in password based authentication protocols. A solu-
tion is required in which it is not possible for the attacker
to launch online dictionary attack on password based au-
thentication protocol. The aim of this paper is to provide
a virtual password based authentication solution using
cookies for the user’s authentication. The main feature
of the proposed protocol is that the legitimate client can
easily login on to the Web server. The computational
complexity of this authentication protocol increases with
each login failure for the attacker. The protocol proposed
in this paper is very effective and suitable to the business
organizations such as online banks and online credit card
organizations because the complexity of computation on
the client side increases with each login failure so that the
attacker can not impersonate as a legitimate user.

This paper is organized as follows. In Section 2, we ex-
plore the literature on the cookies and virtual password
based authentication protocols. In Section 3, we present
our proposed inverse cookies based virtual password au-
thentication protocol. Section 4 discusses the security
analysis of the proposed protocol. Section 5 concludes
the paper.

2 Related Work

Cookies are obscure to the users and are completely
controlled by the Web server. Therefore, cookies are
good choice for a single sign-on (SSO) solution. In
1999, Samar [13] suggested SSO using HTTP cookies
for Web based environment. He suggested three ap-
proaches namely centralized cookie server, decentralized

cookie server and centralized login server to provide SSO
for Web applications. The client can choose any of the
three SSO solutions depending upon the requirements of
Web application in terms of deployment, performance and
management.

In 2000, Park and Sandhu [11] suggested address based
(IP Cookie), password based (Pswd Cookie) and digital
signature based (Sign Cookie) secure cookies for the user
authentication. They suggested different set of inter de-
pendent cookies such as name cookie, life cookie, pass-
word cookie and seal cookie. The role server issues one or
more cookies by storing it on the client’s computer. As
the client connects to the Web server, the relevant cook-
ies are transmitted to the Web server. Any of the Web
servers that accept these cookies verifies the cookie and
provides the access of resources depending upon the role
of the cookie. These secure cookies are used for user au-
thentication especially in e-commerce transactions on the
Web.

In 2001, Fu et al. [3] designed a secure cookie based
client authentication framework in conjunction with Se-
cure Socket Layer (SSL) protocol based on informal sur-
vey of commercial protocols. They claimed that their
protocol is secure against different attacks launched by
the attacker. In 2005, Liu et al. [9] analyzed and found
that Fu et al.’s protocol is susceptible to cookie replay,
volume attacks and does not provide high-level confiden-
tiality. Therefore, they proposed a cookie based authen-
tication protocol that provides confidentiality, integrity
and protection from replay attacks. Their scheme does
not involve any database lookup or public key cryptogra-
phy. It also does not require changes in Internet cookie
specification and can be easily deployed on an existing
Web server.

In 2002, Xu et al. [18] presented a cookie based au-
thentication protocol in which the server stores credit
card information of each client in their respective cookie.
They exploited the concept of secure distributed storage
by storing some sensitive information in the HTTP cookie
in encrypted form. The Web server stores the One Time
Pad (OTP) keys in its local database and encrypt/decrypt
the cookies using these keys. This protocol can not han-
dle multiple simultaneous requests with the same cookie.
Moreover, the server has the overhead of encryption and
decryption for verifying each cookie and also has to do
database lookups.

In 2002, Pinkas and Sander [12] suggested Reverse Tur-
ing Tests (RTT) for authentication so that human user
can easily pass out the test but it is very difficult for
the automated program to pass out the test. Pinkas and
Sander assumed that the users login from the limited set
of computers containing activated cookies. The user is
asked to pass RTT during login from a new computer
or after entering a wrong password from a trusted com-
puter. In 2004, Stubblebine and Oorschot [15] observed
that RTT based protocols are vulnerable to RTT relay
attacks. To counter these kinds of RTT relay attacks,
Stubblebine and Oorschot [15] developed a protocol based

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 100

on the user’s login history and suggesting modifications
to Pinkas and Sander’s RTT based protocol so that only
trustworthy machines are used to store cookies.

In 2005, Blundo et al. [1] proposed encrypted cookies
based Web authentication protocol. The main weakness
of this cookie based protocol is that the server has to do
database lookups for verifying each received cookie. In
2005, Wang et al. [16] presented cookies based password
authentication protocol that uses cryptographic puzzles
to prevent online dictionary attacks. Their scheme in-
creases the computational burden for an attacker and im-
posing negligible load on the legitimate clients as well as
on the authentication server.

In 2006, Juels et al. [5] suggested the use of cache cook-
ies for the user identification and authentication that uses
the browser cache files to identify the browser. These
cookies are easy to deploy because it does not require in-
stallation of any software on the client side. Then they ex-
tended the concept to active cookie scheme, which stores
the user’s identification and a fixed IP address of the
server. During the client’s visits to the server, the server
will redirect the client request to the fixed IP address so as
to defeat phishing and pharming attack. In 2006, Goyal
et al. [4] proposed an authentication protocol that pre-
vents online dictionary attacks and is easy to implement
without any infrastructure changes. This protocol uses
challenge response mechanism and one way hash func-
tions to thwart online dictionary attacks. The legitimate
user can easily login on to the Web server and the compu-
tational efforts increases for the attacker trying thousands
of authentication requests in an attempt to launch online
dictionary attack. In 2007, Karlof et al. [6] proposed the
cookies based Locked Same Origin Policy (LSOP) that
enforces access control for the SSL Web objects based on
the server’s public key. Later on, LSOP is found to be
susceptible to phishing attack.

In 2008, Lei et al. [8] proposed a virtual password con-
cept based on the randomized linear functions involving
human computing to secure the user’s password in on-
line transaction. They analyzed that their scheme de-
fends against phishing, key logger and shoulder surfing at-
tacks. In 2008, Wu et al. [17] proposed SSO anti-phishing
technique based on encrypted cookie that defeats phish-
ing and pharming attacks. It encrypts the sensitive data
with the server’s public key and stores this cookie on the
user’s computer. This Encrypted Cookie Scheme (ECS)
has advantage that the user can ignore SSL indicator in
online transaction procedure. Microsoft’s Passport initia-
tive (Window Live ID) [10] is a cookie based password
management system. This service authenticates the user
to different Web sites that are under the control of this
centralized system. The main limitations of this approach
are that the users have to trust the centralized server and
it requires Web administration changes on those sites that
use this system for its authentication [7].

In 2009, Sood et al. [14] proposed a cookie based sin-
gle password anti-phishing protocol that is secure against
different possible attacks. In this protocol, the client ma-

chine’s browser generates a dynamic identity and a dy-
namic password for each login request to the server. The
dynamic identity and dynamic password will be different
for the same client in different sessions of the SSL proto-
col. The proposed protocol makes financial transactions
more secure on the Web as it is practical and efficient.
The client can use a single password for different online
accounts and that password can not be detected by any
of the malicious server or the attacker. The protocol is
equally secure for security ignorant users, who are not
very conversant with the browser’s security indicators.

3 Proposed Protocol

A HTTP cookie contains information related to the user
such as user name, domain name and token for authenti-
cation. It is designed and created by the Web server and
stored on the user’s computer to keep track of the client
state. The cookie is transferred back from the client’s
computer to the Web server in succeeding login request
by the client. The cookies are server controlled hence
the design and contents of a cookie are decided by the
Web server without requiring any infrastructure changes
on the client side. The Web server decides various fields
required in the cookie depending upon the information
that the Web server wants to keep related to their clients.

The proposed scheme provides inverse cookies based
virtual password authentication protocol for online pass-
word management. The legitimate client can easily login
on to the Web server using his identity and password.
An attacker can not launch online dictionary attacks be-
cause computational efforts on the client side increases
with each login failure. The proposed protocol runs on
top of the SSL protocol [2] and comprises four phases as
follows. The notations used in this section are listed in
Table 1.

We present two authentication protocols. Each pro-
tocol has four phases. These two protocols have same
registration phase and password change phase and they
differ in login and authentication phase. Protocol 1 does
not use cookies for the user’s authentication whereas Pro-
tocol 2 makes use of cookies. The user Ui has to follow
the Protocol 1 if the user Ui’s computer does not contain
cookie else the user Ui has to follow Protocol 2.

3.1 Protocol 1

This protocol is shown in Figure 1 and its various phases
are described below.

3.1.1 Registration Phase

A new user has to register to the Web server S to be-
come a legal client C. The user Ui submits his identity
IDi and password Pi to the Web server S over a secure
communication channel established using SSL protocol.

Step 1: Ui → S : IDi, Pi

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 101

Table 1: Notations

Ui ith User
S Server

IDi Unique Identification of User Ui

Pi Password of User Ui

URL Destination Web Site
OTP One Time Password of Server for Each Client
H() One-Way Hash Function

MAX TRUST Maximun Trust Assigned to User Ui

MIN TRUST Minimun Trust Assigned to User Ui

CUR TRUST Current Trust Value of User Ui

TRUST BITS To be Computed by User Ui or Guessed by Attacker
SK Private Key of Server
PK Public Key of Server
SS Session Key of SSL Protocol
⊕ XOR Operation
| Concatenation

The Web server S chooses random OTP for each
client and stores IDi, Ai = Pi ⊕ SK ⊕ OTP ,
MIN TRUST , MAX TRUST and CUR TRUST

in its database. The Web server S can assign ran-
dom trust values to different clients depending upon
its trust management policies. The Web server S

can decide the fixed MAX TRUST value that rep-
resents the maximum trust, fixed MIN TRUST

value that represents the minimum trust and vari-
able CUR TRUST value that represents the cur-
rent trust value assigned to the user Ui. Initially,
the Web server S sets CUR TRUST value equal to
MIN TRUST value. Suppose the Web server S de-
cides MIN TRUST to be 0, MAX TRUST to be 50
and hence initial CUR TRUST value will be 0. The
CUR TRUST value stored in the database of Web
server S is incremented by one after each successful
login attempt by the user Ui on the Web server S

and decremented by one on login failure. Once the
CUR TRUST value stored on the Web server be-
comes equal to MAX TRUST , it is not incremented
further even after successful login by the user Ui. Af-
ter successive login failures, the CUR TRUST value
may become less than MIN TRUST value.

The web server S chooses a random value Ns, com-
putes CK = H(Ns|URL|PK) and Ti = OTP ⊕
H(SK). The web server S chooses the value of Ns in
such a way so that the value of CK must be unique
for each client. The web server S stores CK and
Ti corresponding to the user Ui’s identity IDi in its
database and stores CK as cookie information on the
client’s or the attacker’s computer when the user Ui

or the attacker fails to authenticate itself to the web
server S.

Step 2: S → Ui or Attacker: CK

The Web server S does not stores cookie information
on the client’s computer when the user Ui authenti-
cates itself to the Web server successfully.

3.1.2 Login Phase

The user Ui establishes a connection with the Web server
S using the SSL protocol. In the SSL protocol, the Web
server S authenticates itself to the user Ui with its public
key certificate. Then the user Ui generates a new SSL
session key (SS), encrypts it using the public key PK of
the Web server S as (SS)PK and sends it to the Web
server S. The Web server S decrypts the SSL session
key SS from (SS)PK using its private key SK. Then
all the subsequent messages of this protocol are trans-
mitted in insecure communication channel like Internet
without using SSL protocol. The user Ui submits his
identity IDi and password Pi to the Web browser. If
the user Ui’s computer does not contain cookie CK then
the user Ui’s Web browser chooses random nonce value
Nr, computes Bi = Nr ⊕ H(Pi), Ci = IDi ⊕ SS and
Di = H(IDi|SS|Pi|Nr). The Web browser of user Ui

submits Bi, Ci and Di to the Web server S as shown in
Figure 1.

3.1.3 Authentication Phase

The Web server S computes IDi from Ci as IDi =
Ci ⊕ SS and recognizes the user Ui from its identity
IDi. After that, the Web server S computes OTP as
OTP = Ti ⊕ H(SK) because the Web server S knows
its private key SK. Then the Web server S com-
putes Pi as Pi = Ai ⊕ SK ⊕ OTP and Nr from Bi

as Nr = Bi ⊕ H(Pi). Afterwards, the Web server S

computes D′

i
= H(IDi|SS|Pi|Nr) and verifies it with

the received value of Di. If both values are equal, the
Web server S proceeds to the next step. Otherwise, the

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 102

Fig. 1. Protocol 1: Virtual password authentication protocol without cookie.

Figure 1: Virtual password authentication protocol without cookie

login request from the user Ui is rejected. The Web
server S chooses random nonce value Ni and computes
Ei = Ni ⊕ H(Pi), Fi = H(Ni|Nr|SS) and sends Ei and
Fi to the Web browser of user Ui. The Web browser
computes Ni from Ei as Ni = Ei ⊕ H(Pi) because the
Web browser knows password Pi of the user Ui. Then the
web browser computes F ′

i
= H(Ni|Nr|SS) and verifies

the computed value of F ′

i
with the received value of Fi

to validate that the messages are sent by the legitimate
server S and not tampered during transmission. Hence
the mutual authentication between the user Ui and the
Web server S is achieved as shown in Figure 1. After-
wards, the Web server S checks CUR TRUST value in
its database corresponding to the user identity IDi. If
CUR TRUST value stored in its database is more than
or equal to MIN TRUST but less than MAX TRUST

then the Web server increases the CUR TRUST value by
one (CUR TRUST = CUR TRUST + 1) after success-
ful authentication. If CUR TRUST value stored in its
database is less than MIN TRUST then the Web server
resets the CUR TRUST value equal to MIN TRUST

value after successful authentication. After successful au-
thentication, the user Ui and the Web server S agree on
the common session key as SK = H(SS|IDi|Nr|Pi|Ni).
Afterwards, all the subsequent messages between the user
Ui and the Web server S are XORed with the session key.
Therefore, either the user Ui or the Web server S can re-
trieve the original message because both of them know
the common session key. If the user Ui fails to authen-
ticate itself to the Web server S then the Web server S

decreases the CUR TRUST value by one (CUR TRUST

= CUR TRUST - 1) and stores the cookie CK on the
client’s computer.

3.1.4 Password Change Protocol

The legitimate user Ui authenticates itself to the Web
server S using the protocol 1 or protocol 2. Once the
mutual authentication between the user Ui and the Web
server S is achieved, the user Ui submits Yi = SS ⊕ Pi ⊕
Pnew

i
and Xi = H(IDi|Pi|SS|Pnew

i
) to the Web server

S. The Web server S retrieves Pnew

i
from Yi as Pnew

i

= Yi ⊕ SS ⊕ Pi, computes X∗

i
= H(IDi|Pi|SS|Pnew

i
)

and verifies the computed value of X∗

i
with the received

value of Xi to validate that the messages are sent by the
legitimate user Ui and not tampered during transmission.
Afterwards, the Web server S updates the value of Ai =
Pi ⊕ SK ⊕ OTP and Ti = OTP ⊕ H(SK) stored in its
database with Anew

i
= Pnew

i
⊕SK⊕OTPnew and T new

i
=

OTPnew ⊕ H(SK) and the password gets changed.

3.2 Protocol 2

This protocol is shown in Figure 2 and Figure 3 and its
various phases are described below.

3.2.1 Registration Phase

The registration phase is same as in Protocol 1. (See
Section 3.1)

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 103

Fig. 2. Protocol 2: (Case 1) Virtual password authentication protocol with Cookie.

Figure 2: Protocol 2: (Case 1) Virtual password authentication protocol with cookie

3.2.2 Login Phase

The user Ui agrees on SSL session key SS with the Web
server S using the SSL protocol as shown in login phase
of Protocol 1 in Section 3.1. Then all the subsequent mes-
sages of this protocol are transmitted in the open without
using SSL protocol. The user Ui submits his identity IDi

and password Pi to the Web browser. If the user Ui’s com-
puter contains cookie CK then the user Ui’s Web browser
computes dynamic identity and password verifier informa-
tion Ki = H(IDi|URL|PK|Pi|SS|CK) and submits Ki

and CK to the Web server S as shown in Figure 2 and
Figure 3.

3.2.3 Authentication Phase

The Web server S recognizes the user Ui from the received
cookie CK and extracts MIN TRUST , CUR TRUST

corresponding to cookie CK from its database and
compares these values.

Case 1:

If CUR TRUST value is more than or equal to
MIN TRUST value then the Web server S computes
OTP as OTP = Ti ⊕ H(SK) because the Web server
S knows its private key SK. Then the Web server S

computes Pi as Pi = Ai ⊕ SK ⊕ OTP and computes
the dynamic identity and password verifier information

Ki’ = H(IDi|URL|PK|Pi|SS|CK) and verifies it with
the received value of Ki. If both values are equal, the
Web server S proceeds to the next step. Otherwise, the
login request from the user Ui is rejected. Then the
Web server S chooses a random value of Nk, computes
Mi = Nk ⊕ H(IDi|SS|Pi), Qi = H(IDi|Nk|Pi|SS) and
sends Mi and Qi to the Web browser of user Ui. The Web
browser of user Ui computes Nk = Mi ⊕ H(IDi|SS|Pi),
Q′

i
= H(IDi|Nk|Pi|SS) and verifies the computed value

of Qi’ with the received value of Qi to validate that the
messages are sent by the legitimate Web server S and
not tampered during transmission. This equivalency au-
thenticates the legitimacy of the user Ui and the Web
server S and the login request is accepted else the con-
nection is interrupted. Hence the mutual authentication
between the client and the server is achieved as shown
in Figure 2. If the CUR TRUST value stored in the
database of Web server S is less than MAX TRUST

value then the CUR TRUST value is incremented by
one (CUR TRUST = CUR TRUST + 1) after success-
ful login attempt by the user Ui on the Web server S.
Finally after successful authentication, the user Ui and
the Web server S agree on the common session key as
SK = H(SS|Pi|Nk|CK|IDi) and the server S removes
the cookie CK from the client’s computer. Afterwards,
all the subsequent messages between the user Ui and the
Web server S are XORed with the session key. Therefore,

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 104

either the user Ui or the Web server S can retrieve the
original message because both of them know this com-
mon session key. If the user Ui fails to authenticate
itself to the Web server S then the Web server S de-
creases the CUR TRUST value by one (CUR TRUST

= CUR TRUST - 1).

Case 2:

If CUR TRUST value is less than MIN TRUST

value then the Web server S computes OTP as OTP =
Ti ⊕ H(SK) because the web server S knows its pri-
vate key SK. Then the Web server S computes
Pi as Pi = Ai ⊕ SK ⊕ OTP and computes the dy-
namic identity and password verifier information K ′

i
=

H(IDi|URL|PK|Pi|SS|CK) and verifies it with the re-
ceived value of Ki. If both values are equal, the Web
server S proceeds to the next step. Otherwise, the lo-
gin request from the user Ui is rejected. Then the Web
server S computes Nd = MIN TRUST −CUR TRUST

and chooses random TRUST BITS value having bits
equal to the value of Nd. Suppose the value of Nd is
2 then the number of bits in TRUST BITS value will
be 2. Then the Web server S computes Zi = Nd ⊕
IDi ⊕ SS ⊕ H(Pi), Ri = Nd ⊕ TRUST BITS, Vi =
H(IDi|Nd|Pi|SS|TRUST BITS) and sends Zi, Ri and
Vi to the Web browser of user Ui. The Web browser of le-
gitimate user Ui can compute the value of Nd as Nd = Zi⊕
IDi ⊕ SS ⊕ H(Pi), TRUST BITS as TRUST BITS =
Ri⊕Nd and V ∗

i
= H(IDi|Nd|Pi|SS|TRUST BITS) and

verifies the computed value of V ∗

i
with the received value

of Vi.

Hence the mutual authentication between the user
Ui and the Web server S is achieved as shown in Fig-
ure 3. Finally after successful authentication, the user Ui

and the Web server S agree on the common session key
as SK = H(SS|IDi|Nd|CK|TRUST BITS|Pi) and the
server S removes the cookie CK from the client’s com-
puter. Afterwards, all the subsequent messages between
the user Ui and the Web server S are XORed with the ses-
sion key. Therefore, either the user Ui or the Web server
S can retrieve the original message because both of them
know the common session key. Then the Web server S

resets the CUR TRUST value equal to MIN TRUST

value after successful authentication.

If the user Ui fails to authenticate itself to the
Web server S then the Web server S decreases
the CUR TRUST value by one (CUR TRUST =
CUR TRUST - 1). On the other hand, the attacker
has to guess the value of SS, IDi, Nd, TRUST BITS

and Pi to compute the common session key as SK =
H(SS|IDi|Nd|CK|TRUST BITS|Pi). The computa-
tional efforts required by the attacker to find the
TRUST BITS value increases exponentially with each
login failure because the number of bits in TRUST BITS

increases by one after each login failure as shown in Fig-
ure 4.

3.2.4 Password Change Phase

The password change phase is same as in Protocol 1 (See
Section 3.1).

4 Security Analysis

The security of messages in online transaction inside com-
munication channel is managed with SSL protocol. The
proposed inverse cookies based virtual password authenti-
cation protocol uses SSL protocol to establish SSL session
key (SS) and then all the succeeding messages are com-
municated without SSL protocol. This protocol provides
good protection especially against online dictionary at-
tacks. A good password authentication protocol should
provide protection from different feasible attacks.

1) Online dictionary attack:

In this type of attack, the attacker pretends to
be legitimate client and attempts to login on to
the server by guessing different words as pass-
word from a dictionary. In the proposed protocol,
the attacker has to generate {Bi = Nr ⊕ H(Pi),
Ci = IDi ⊕ SS and Di = H(IDi|SS|Pi|Nr)}
or Ki = H(IDi|URL|PK|Pi|SS|CK) correspond-
ing to the user Ui, which is different for each
new SSL session. With each failed login attempt,
the difficulty of guessing TRUST BITS value in-
creases because number of bits increases by one in
TRUST BITS value after each login failure and
sooner the guessing of TRUST BITS value will
go out of the scope of the attacker as shown in
Figure 3 (case 2). Moreover, the attacker has to
guess IDi, Nd, TRUST BITS, Pi and SS cor-
rectly at the same time to compute the session
key SK = H(SS|IDi|Nd|CK|TRUST BITS|Pi) as
shown in Figure 3. The legitimate user Ui can eas-
ily login on to the Web server S, whatever may be
the CUR TRUST value. Therefore, the proposed
scheme is secure against online dictionary attack.

2) Offline dictionary attack:

In offline dictionary attack, the attacker can record
messages and attempts to guess the user’s identity
and password from the recorded messages. The
attacker obtains some identity and password ver-
ification information such as {Bi = Nr ⊕ H(Pi),
Ci = IDi ⊕ SS and Di = H(IDi|SS|Pi|Nr)} or
{Ki = H(IDi|URL|PK|Pi|SS|CK)} or {Ei = Ni ⊕
H(Pi) and Fi = H(Ni|Nr|SS)} or {Mi = Nk ⊕
H(IDi|SS|Pi) and Qi = H(IDi|Nk|Pi|SS)} or {Zi =
Nd ⊕ IDi ⊕ SS ⊕ H(Pi), Ri = Nd ⊕ TRUST BITS

and Vi = H(IDi|Nd|Pi|SS|TRUST BITS)}. The
attacker can not compute IDi and Pi from these
recorded messages. Therefore, the proposed proto-
col is secure against offline dictionary attack.

3) Eavesdropping attack:

In this type of attack, the attacker first listens to

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 105

Fig. 3. Protocol 2: (Case 2) Virtual password authentication protocol with Cookie.

Figure 3: Protocol 2: (Case 2) Virtual password authentication protocol with Cookie

Figure 4: Relationship between processing time versus number of login failures (for attacker)

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 106

all the communications between the client and the
server and then tries to find out the client’s iden-
tity IDi and password Pi. The client’s browser
uses random nonce value Nr and SSL session key
SS for the generation of dynamic identity and pass-
word verifier information {Bi = Nr ⊕ H(Pi), Ci =
IDi ⊕ SS and Di = H(IDi|SS|Pi|Nr)} or Ki =
H(IDi|URL|PK|Pi|SS|CK) corresponding to the
user Ui, which is different for each new SSL ses-
sion. Also, the eavesdropper can not compute the
user Ui’s identity IDi and password Pi from any of
the recorded message. Therefore, the proposed pro-
tocol is secure against eavesdropping attack.

4) Denial of service attack:

In a specific type of denial of service attack, the server
is cheated by the attacker to update the password
verifier information with some false password veri-
fication information so that the legitimate user can
not login successfully in subsequent login request to
the server. The user Ui can change his password af-
ter the client and the server authenticate each other
using the protocol shown in Figure 1 or Figure 2 or
Figure 3. Therefore, the proposed protocol is secure
against the user specific denial of service attack.

5) Phishing attack:

In this type of attack, the attacker sends spoofed e-
mails to different users from a Web site that is un-
der the control of the attacker. Victim enters his
valid login credentials into the fraudulent Web site
that allows the attacker to transfer funds from the
victim’s account or cause other damages. The pro-
posed protocol generates a new dynamic identity and
password verifier information {Bi = Nr ⊕ H(Pi),
Ci = IDi ⊕ SS and Di = H(IDi|SS|Pi|Nr)} or
Ki = H(IDi|URL|PK|Pi|SS|CK) corresponding to
the user Ui, which is different for each new SSL
session. The fraudulent server can ignore dynamic
identity and password verifier information but can
not produce valid credentials {Ei = Ni ⊕ H(Pi) and
Fi = H(Ni|Nr|SS)} or {Mi = Nk ⊕ H(IDi|SS|Pi)
and Qi = H(IDi|Nk|Pi|SS)} or {Zi = Nd ⊕
IDi ⊕ SS ⊕ H(Pi), Ri = Nd ⊕ TRUST BITS and
Vi = H(IDi|Nd|Pi|SS|TRUST BITS)} meant for
the user Ui because it does not have any such cre-
dentials. Therefore, the proposed protocol is secure
against phishing attack.

6) Pharming attack:

Pharming is a technique that fools the user by con-
necting his machine to a fake Web site even when
the user submits correct domain name in to the
Web browser. This technique exploits vulnerabili-
ties in the DNS servers to distribute the fake ad-
dress information by DNS spoofing attack. Like
phishing attack, the attacker sets up a capture site
to collect identity and password verifier informa-
tion. The attacker can cause the DNS caching

server to return false information and direct the
user to a malicious site. Malicious site can not im-
personate as valid server because it can not gen-
erate valid credentials {Ei = Ni ⊕ H(Pi) and
Fi = H(Ni|Nr|SS)} or {Mi = Nk ⊕ H(IDi|SS|Pi)
and Qi = H(IDi|Nk|Pi|SS)} or {Zi = Nd ⊕
IDi ⊕ SS ⊕ H(Pi), Ri = Nd ⊕ TRUST BITS and
Vi = H(IDi|Nd|Pi|SS|TRUST BITS)} meant for
the user Ui, which are unique for each new session.
Therefore, the attacker can not launch pharming at-
tack on the proposed protocol.

7) Man-in-the-middle attack:

In this type of attack, the attacker intercepts the
messages sent between the client and the server and
replay these intercepted messages with in the valid
time frame window. The attacker can act as the
client to the server or vice-versa with recorded mes-
sages. In the proposed protocol, the attacker can in-
tercept the login request message {Bi = Nr ⊕H(Pi),
Ci = IDi ⊕ SS and Di = H(IDi|SS|Pi|Nr)} or
Ki = H(IDi|URL|PK|Pi|SS|CK) corresponding to
the user Ui, which is sent by a user Ui to the server
S. Then he starts a new session with the server S

by sending a login request by replaying the login
request message with in the valid time frame win-
dow. The attacker can authenticate itself to server S

as well as to legitimate user Ui but can not com-
pute the session key SK = H(SS|IDi|Nr|Pi|Ni)
or SK = H(SS|Pi|Nk|CK|IDi) or SK =
H(SS|IDi|Nd|CK|TRUST BITS|Pi) because the
attacker does not know the value of IDi, Pi, SS, Nk,
Ni, Nr, Nd and TRUST BITS. Therefore, the pro-
posed protocol is secure against man-in-the-middle
attack.

8) Replay attack:

In this type of attack, the attacker first listens to
the communication between the client and the server,
then tries to imitate the user to login on to the server
by resending the captured messages. Replaying a
message of one SSL session into another SSL session
is useless because each SSL session generates a dif-
ferent dynamic identity and password verifier infor-
mation corresponding to the same client because the
session key SS is different for each new SSL session
and hence messages can not be replayed successfully
in any other SSL session. Moreover, the attacker can
not compute the session key. Therefore, the proposed
protocol is secure against message replay attack.

9) Leak of verifier attack:

In this type of attack, the attacker may be able
to steal verification table from the server. In
case the password verifier information IDi, Ai =
Pi ⊕ SK ⊕ OTP , MIN TRUST , MAX TRUST ,
CUR TRUST , CK = H(Ns|URL|PK) and Ti =
OTP ⊕H(SK) is stolen by breaking into the server’s
database, the attacker does not have sufficient infor-

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 107

mation to calculate the user’s identity IDi and pass-
word Pi because the attacker has to guess SK and
OTP correctly at the same time. It is not possible to
guess SK and OTP correctly at the same time in real
polynomial time. Therefore, the proposed protocol is
secure against leak of verifier attack.

10) Message modification or insertion attack:

In this type of attack, the attacker modifies or in-
serts some messages on the communication channel
with the hope of discovering the client’s password or
gaining unauthorized access. Modifying or inserting
messages in the proposed protocol can result in au-
thentication failure between the client and the server
but can not allow the attacker to gain any informa-
tion about the client’s password or gain unauthorized
access. Therefore, the proposed protocol is secure
against message modification or insertion attack.

11) Brute force attack:

To launch brute force attack, an attacker first ob-
tains some password verification information such
as {Bi = Nr ⊕ H(Pi), Ci = IDi ⊕ SS and Di =
H(IDi|SS|Pi|Nr)} from Figure 1 protocol or {Ki =
H(IDi|URL|PK|Pi|SS|CK)} from Figure 2 or Fig-
ure 3 protocol. Even after recording these messages,
the attacker has to guess out minimum two parame-
ters out of IDi, Pi, Nr and SS correctly at the same
time. It is not possible to guess out two parameters
correctly at the same time in real polynomial time.
Therefore, the proposed protocol is secure against
brute force attack.

5 Conclusion

Password based authentication protocols are susceptible
to dictionary attacks. Password theft is growing signif-
icantly and frightening the confidence of customer in e-
commerce. Transaction authorization method based on
out of band channels like SMS messages are introduced
by banks to thwart dictionary and phishing attacks but
it requires two separate communication channels for the
user’s authentication. We have specified and analyzed an
inverse cookie based virtual password authentication pro-
tocol which is very effective to thwart online dictionary
attacks because the computation cost of login on to the
Web server increases exponentially with each login failure
for an attacker. The proposed protocol is simple and fast
if the user is using valid identity and correct password for
its authentication. This protocol is practical and efficient
because only one-way hash functions and XOR operations
are used in its implementation. Security analysis proved
that the proposed protocol is secure and practical. Fu-
ture scope in this work is to find out a solution so that
the attacker can not delete the cookie from his computer
so that computational cost of authentication increases for
the attacker as shown in Figures 3 and 4.

References

[1] C. Blundo, S. Cimato, and R. D. Prisco, “A
lightweight approach to authenticated Web caching,”
Proceedings of IEEE International Symposium on
Applications, and the Internet (SAINT’2005), pp.
157-163, Feb. 2005.

[2] A. O. Freier, P. Karlton, and P. C. Kocher, SSL Pro-
tocol Version 3.0, Internet Draft, IETF, Nov. 1996.

[3] K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos, and
Don’ts of client authentication on the web,” Proceed-
ings of 10th USENIX Security Symposium, pp. 1-16,
Aug. 2001.

[4] V. Goyal, V. Kumar, M. Singh, A. Abraham, and S.
Sanyal, “A new protocol to counter online dictionary
attacks,” Computers & Security, vol. 25, no. 2, pp.
114-120, Mar. 2006.

[5] A. Juels, M. Jakobsson, and T. N. Jagatic, “Cache
cookies for browser authentication,” Proceedings of
IEEE Symposium on Security and Privacy, pp. 301-
305, May 2006.

[6] C. Karlof, U. Shankar, J. D. Tygar, and D. Wag-
ner, “Dynamic pharming attacks, and the locked
same origin policies for Web browsers,” Proceedings
of ACM Conference on Computer, and Communica-
tions Security, pp. 58-71, Nov. 2007.

[7] D. P. Kormann and A. D. Rubin, “Risks of the pass-
port single sign-on protocol,” Computer Networks,
vol. 33, no. 1, pp. 51-58, June 2000.

[8] M. Lei, Y. Xiao, S. V. Vrbsky, and C. C. Li, “Virtual
password using random linear functions for on-line
services, ATM machines, and pervasive computing,”
Computer Communications, vol. 31, no. 18, pp. 4367-
4375, Dec. 2008.

[9] A. X. Liu, J. M. Kovacs, C. T. Huang, and M. G.
Gouda, “A secure cookie protocol,” Proceedings of
14th IEEE International Conference on Computer
Communications and Networks, pp. 333-338, Oct.
2005.

[10] Microsoft Passport. (http://www.passport.net/)
[11] J. S. Park and R. Sandhu, “Secure cookies on the

Web,” IEEE Internet Computing, vol. 4, no. 4, pp.
36-44, Aug. 2000.

[12] B. Pinkas and T. Sander, “Securing passwords
against dictionary attacks,” Proceedings of 9th ACM
Conference on Computer and Communication Secu-
rity, pp. 161-170, Nov. 2002.

[13] V. Samar, “Single sign-on using cookies for Web
applications,” Proceedings of 8th Workshop on En-
abling Technologies on Infrastructure for Collabora-
tive Enterprises, pp. 158-163, June 1999.

[14] S. K. Sood, A. K. Sarje, and K. Singh, “Dynamic
identity based single password anti-phishing proto-
col,” Security and Communication Networks, Ac-
cepted, Oct. 2009.

[15] S. G. Stubblebine and P. C. V. Oorschot, “Address-
ing online dictionary attacks with login histories, and
humans in the loop”, Financial Cryptography, LNCS
3110, pp. 39-53, Springer-Verlag, Jan. 2004.

International Journal of Network Security, Vol.13, No.2, PP.98–108, Sept. 2011 108

[16] P. Wang, Y. Kim, V. Kher, and T. Kwon,
“Strengthening password based authentication pro-
tocols against online dictionary attacks,” Proceed-
ings of ACNS’2005, LNCS 3531, pp. 17-32, Springer-
Verlag, May 2005.

[17] Y. Wu, H. Yao, and F. Bao, “Minimizing SSO ef-
fort in verifying SSL anti-phishing indicators,” Pro-
ceedings of 23rd International Information Security
Conference, vol. 278, pp. 47-61, Sep. 2008.

[18] D. Xu, C. Lu, and A. D. Santos, “Protecting Web us-
age of credit cards using one-time pad cookie encryp-
tion,” Proceedings of 18th Annual Computer Security
Applications Conference, pp. 51-58, Dec. 2002.

Sandeep K. Sood received his M.Tech (Computer Sci-
ence & Engineering) in 1999 from the Guru Jambheshwar
University Hisar (Haryana), India. He is currently pursu-
ing Ph.D in the Department of Electronics and Computer
Engineering at Indian Institute of Technology Roorkee,
India. His research interests include Authentication Pro-
tocols, Computer and Network Security, Cryptography
and Computer Networks.

Anil K. Sarje received his M.E (Computer Science) in
1972 and Ph.D (Computer Science) in 1976 from Indian
Institute of Science, Banglore, India. He is currently
Professor in the Department of Electronics and Computer
Engineering at Indian Institute of Technology Roorkee,
India. His research interests include Network Security,
Distributed Systems, Computer Networks and Real Time
Systems.

Kuldip Singh received his M.E (Computer Science) in
1970 and Ph.D (Computer Science) in 1987 from Univer-
sity of Roorkee, Uttrakhand, India. He is currently Pro-
fessor in the Department of Electronics and Computer
Engineering at Indian Institute of Technology Roorkee,
India. His research interests include Computer Network-
ing, Parallel Processing, Continuing Education and Hu-
man Resource Development.

