
International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 61

Batch Verification and Finding Invalid Signatures

in a Group Signature Scheme

Kitae Kim1,3, Ikkwon Yie1, Seongan Lim2, and Daehun Nyang3

(Corresponding author: Kitae Kim)

Department of Mathematics, Inha University1

253, Yonghyun dong, Nam gu, Incheon, 402-751, Korea (Email: ktkim@inha.ac.kr)

Department of Mathematics, Ewha Womans University, Korea2

ISRL, Graduate School of Information Technology and Telecommunications, Inha University, Incheon, Korea3

(Received May 20, 2009; revised and accepted Mar. 24, 2010)

Abstract

Batch cryptography has been developed into two main
branches - batch verification and batch identification.
Batch verification is a method to determine whether a
set of signatures contains invalid signatures, and batch
identification is a method to find bad signatures if a set
of signatures contains invalid signatures. Recently, some
significant developments appeared in such field, especially
by Ferrara et al. [10] and Law et al. [15], respectively.
However, no batch identification method for group signa-
ture have been suggested. In this paper, by exploiting
earlier works on standard signature schemes, we propose
methods of batch verification and batch identification of
a group signature scheme.

Keywords: Batch identification, batch verification, group
signature

1 Introduction

Currently, digital signatures have been adapted in many
industrial applications such as electronic payment system,
electronic voting system and so on. Some of the applica-
tions require multiple signatures to be verified faster than
individual verification of the signatures. For instance, in
electronic payment system, typically customers interact
with a banking server, and then the banking server must
verify a large number of signatures. Concerning verifica-
tion of multiple signatures there are mainly two questions:
given signature/message pairs, without checking the va-
lidity of individual signatures, (1) determine efficiently
whether an instance contains invalid signatures; (2) iden-
tify efficiently invalid signatures, if any, in an instance.

A batch verification of signature scheme provides a so-
lution of the first question. A batch verification algorithm
(or a batch verifier) of signatures is defined as follows. A
batch verifier of signatures is a probabilistic algorithm
that takes as input a security parameter ℓ and a batch in-

stance (signature/message pairs), satisfying (1) if all the
members of an instance are valid then it returns true,
(2) if there are invalid signatures then the probability
that it returns true is at most 2−ℓ. A batch verification
method verifies multiple signatures altogether at once and
reduces verification time compared with individual veri-
fication. The concept of batch cryptography was intro-
duced by Fiat in 1984 for an RSA-type signature [11],
and the first efficient batch verifier was proposed by Nac-
cache, Raihi, Vaudenay, and Raphaeli in 1994 for DSA-
type signatures [19]. Since then several batch verification
methods have been proposed for DSA-type, RSA-type,
and Pairing based systems. In particular, Ferrara, Green,
Hohenberger, and Pedersen [10] proposed a first batch
verifier for a (short) group signature scheme.

To the second question, a few methods have been pro-
posed to identify bad signatures efficiently. In 2000, Pas-
tuszak, Michalek, Pieprzyk, and Seberry [22] proposed
a divide and conquer verifier, which splits an instance
into sub-instances and applies the generic test to each
sub-instance recursively until all bad signatures are iden-
tified. Later, Lee, Cho, Choi, and Cho [16] proposed new
method for identifying bad signatures efficiently in RSA-
type batch signatures. Stanek showed that this method
was flawed and proposed an improved method to repair
his attack [23]. In 2006, Law and Matt [15] proposed new
methods, quick binary and exponentiation method, for
finding invalid signatures in some pairing based signature
schemes in which the verification algorithm has a spe-
cial form, specifically for Cha-Cheon signature scheme [8].
Their method shares the basic idea with Lee et al.’s
method [16], and the authors did not consider in group
signature schemes.

Recently, Ferrara et al. [10] presented a general frame-
work of batch verification of pairing based signature
schemes including a group signature scheme, specifically
Boneh-Boyen-Shacham short group signature scheme
(BBS for short) [4], and investigated an implemental re-
sult of finding invalid signatures in Boneh-Lysyanskaya-

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 62

Shachaum short signature scheme (BLS for short) [5],
which is not a group signature scheme. Especially, to find
invalid signatures in batches of BLS signature scheme,
the authors employed the Patuszak et al.’s divide-and-
conquer approach [22]. Though the authors suggested a
batch verifier for BBS group signature scheme, they did
not considered how can one construct batch identifica-
tion algorithms for group signature schemes. Indeed, we
can exploit the divide-and-conquer method to find invalid
signatures in obvious way.

On the other hand, as noted in [10], Law et al.’s meth-
ods [15] can be applied to BLS short signature scheme
because the verification algorithm of BLS short signa-
ture has almost the same form with those of the signature
schemes in [15] in the sense that given signature is valid
if and only if two pairings are equal. However, as well as
BBS group signature scheme, Delerablee-Pointcheval (dy-
namic) group signature scheme (namely XSGS scheme) [9]
has slightly different verification algorithm - there is an
extra non-pairing multiplication.

In this paper, by exploiting Ferrara et al.’s general
framework [10], we construct a batch verification of
Delerablee-Pointcheval group signature scheme [9], for
which no batch verifier has been considered so far. Fur-
thermore, we propose a batch identification method for
XSGS by exploiting Law et al.’s method [15]. Our batch
identification method can be directly applied to BBS
group signature scheme (Ferrara et el.’s batch verifier
for BBS group signature scheme) due to the similarity
of BBS group signature and XSGS scheme. To the best
of our knowledge, no batch identification methods have
been suggested in group signature schemes.

2 Preliminaries

2.1 Batch Verification

Batch verification of digital signatures was introduced by
Naccache et al. [19] to verify multiple signatures in DSA
signature scheme. The definition of batch verification and
the weaker notion, say screening, were formalized by Bel-
lare et al. [3]. The following definition is due to Camenisch
et al. [7] in which they extended the definition of Bellare
et al. to deal with multiple signers.

Definition 1 (Batch verification of signatures). Let
ℓ be the security parameter. Suppose that (pk1, sk1),
· · · , (pkn, skn) are generated independently according to
Gen(1ℓ). Then we call probabilistic Batch a batch verifi-
cation when following conditions hold:

• If Verify(pkti
,mi, σi) = 1 for all i ∈ [1, n], then

Batch((pkt1 ,m1, σ1), . . ., (pktn
,mn, σn))=1.

• If Verify(pkti
,mi, σi) = 0 for any i ∈ [1, n], then

Batch((pkt1 ,m1, σ1), . . ., (pktn
,mn, σn))=0 except

with probability negligible in k, taken over the ran-
domness of Batch.

2.2 Review of Extremely Short Group

Signature Scheme

Delerabee and Pointcheval [9] proposed a dynamic group
signature scheme (XSGS) that provides the strongest se-
curity level in the random oracle model - full anonymity,
full traceability, and non-frameability, while BBS group
signature scheme is proved in a weaker security model,
say full-cpa-anonymity and full-traceability.

2.2.1 Bilinear Pairing

The XSGS scheme uses bilinear pairing on cyclic groups,
which can be described briefly as follows: For two addi-
tive cyclic groups G1 and G2, and a multiplicative cyclic
group GT of order p, we assume that there is an efficiently
computable function e : G1 × G2 → GT , with following
properties:

• Bilinear: for all A,B ∈ G and a, b ∈ Zp,
e(aA, bB) = e(A,B)ab.

• Non-degeneracy: For two non-identity elements A ∈
G1 and B ∈ G2, e(A,B) is a generator of the group
GT .

2.2.2 Delerablee-Pointcheval’s Group Signature
Scheme (XSGS)

XSGS scheme [9] is composed of algorithms and protocols.
We briefly review their scheme.

Setup(1ℓ): The input is a security parameter ℓ. Let
G1,G2 and GT be groups of prime order p in bilinear
pairing e : G1 × G2 → GT . We assume that we have a
computable isomorphism ψ : G2 → G1. Note that choice
of all parameters depend on the input security parameter.

• GM (issuer) does the following:

1) Generate prime p, pairing group G1,G2,GT , e,
and a hash H : {0, 1}∗ → Zp.

2) Select a generator G2 ∈ G2 at random, and set
G1 ← ψ(G2).

3) Select K ∈ G1 and W ∈ G2.

4) Choose γ ∈ Z∗

p at random, and set ik = γ.

• Opener does the following:

1) Choose ξ1, ξ2 ∈ Zp at random.

2) Set H = ξ1K and G = ξ2K.

The group public key (or public parameters) gpk of
the system, the group manager’s secret key ik, and the
opener’s secret key ok are then given by

gpk = (G1,K,H,G,G2,W)

ik = γ which is the group manager’s issuing key

ok = (ξ1, ξ2) which is the opener’s opening key.

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 63

reg: GM manages this registration table, meaning the user is a group member.

Ext-Commit(y): extractable commitment (c is commitment of y).

NIZKPEqDL(c,C,H): proof of equality of DL of C in base H with the committed val. in c.

NIZKPoKDL(B,D): proof of knowledge of DL of B in base D.

gmsk: some secret information used in Ext-Commit, NIZKPEqDL, and NIZKPoKDL.

User (upk, usk) GM (ik = γ, gmsk)

y ∈ Zp, C = yH

U =

(
c = Ext-Commit(y)
NIZKPEqDL(c, C,H)

)
C,U−→ Verify C ∈ G1, Checks U

x ∈ Zp, A = (1
γ+x

)(G1 + C)

B = e(G1 + C,G2)/e(A,W)

D = e(A,G2)

V = NIZKPoKDL(B,D)
A,V←−

B = e(G1 + C,G2)/e(A,W)

D = e(A,G2)

Verifies A ∈ G1, Checks V

S = Signusk(A)
S−→ Check S w.r.t (upk, A)
x←− Adds (upk, A, x, S) in reg.

Checks (x+ γ)A
?
= G2 + yH

ie., e(A,G2)
x · e(A,W) · e(H,G2)

−y ?
= e(G1, G2)

Figure 1: A user performs the protocol with the key issuer

The public key, gpk, also implicitly include λ, κ,m, and
a description of (p,G1,G2, GT , e).

Join Protocol. We assume that there is a PKI environ-
ment, and the PKI is separated from the group environ-
ment. The certification authority will be assumed fully
trusted (the only one).

We also assume that each user Ui, before joining the
group, obtains a personal public key upk[i] and the asso-
ciated secret key usk[i] in the PKI.

To get a membership certificate, a user performs the
protocol with the key issuer (namely, Issuer or GM) shown
in Figure 1.

At the end of the protocol, the user becomes a
group member and obtains a membership certificate,
which is the group signing key gsk= (A, x, y). That is,
gsk=membership certificate = (A, x, y). We note that (1)
(A, x) is known to GM and user, (2) y is known to the
user only.

Sign(gpk,gsk[i],M). A signer who possesses a certifi-
cate (group signing key) gsk[i] = (A, x, y) to sign on a
message M ∈ {0, 1}∗ as follows:

1) Compute (T1, T2, T3, T4) as follows:

a. Choose α, β.

b. Set (T1, T2, T3, T4) = (αK,A+αH, βK,A+βG).

2) Select rα, rβ , rx, rz = Z
∗

p at random.

3) Compute

R1 = rαK,
R2 = e(T2, G2)

rx · e(H,W)−rα · e(H,G2)
−rz ,

R3 = rβK,
R4 = rαH − rβG.

4) Compute c = H(M,T1, T2, T3, T4, R1, R2, R3, R4).

5) Compute

sα = rα + cα mod p, sβ = rβ + cβ mod p,
sx = rx + cx mod p, sz = rz + cz mod p.

The signature on message M is σ = (T1, T2, T3, T4, c,
sα, sβ , sx, sz).

Verify(gpk,M,σ). To verify a signature σ = (T1, T2,
T3, T4, c, sα, sβ, sx, sz) signed on message M , one per-
forms the following:

1) Compute

R1 = sαK − cT1,

R2 = e(T2, G2)
sx · e(H,W)−sα

·e(H,G2)
−sz ·

(
e(G1, G2)

e(T2,W)

)−c

,

R3 = sβK − cT3,

R4 = sαH − sβG− c(T2 − T4).

2) Check c
?
= H(M,T1, T2, T3, T4, R1, R2, R3, R4).

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 64

Open(gpk,ok, (M,σ)). To trace the actual signer
of a given signature σ, the open manager OM does the
following:

1) Recover A: using the opening key ok= (ξ1, ξ2),

T2 − ξ1T1 = (A+ αH)− ξ1αK = A+ αH − αH = A,

T4 − ξ2T3 = (A+ βH)− ξ2βK = A+ βH − βH = A.

2) Find the actual signer, using the read-access to the
registration table reg.

3) Provide a publicly verifiable proof τ that

• he did well in the step 1 - which is a simple proof
of equality of discrete logarithms in G1.

• the designated user has not be framed, using the
corresponding S = Signusk(A) in reg.

3 A Batch Verification Method

for XSGS Scheme

Now we describe the batch verification of XSGS Scheme.
First of all, we observe that the XSGS scheme was de-
rived from a signature of knowledge on the underlying
zero-knowledge protocol of knowledge. To shorten the
lengths of the signature, the authors slightly modified the
signature of knowledge instead of using the (standard)
signature of knowledge. In order to efficiently batch the
verification, we modify the signature and the verification
algorithms without comprise the security of the scheme.
We note that the technique in this section is almost the
same as Ferrara et al.’s method used for batch BBS group
signature scheme.

New-Sign(gpk,gsk[i],M).

A signer who possesses a certificate gsk[i] = (A, x, y)
to sign on a message M ∈ {0, 1}∗ as follows:

1) Compute (T1, T2, T3, T4) from DELG(A):

a. Choose α, β.

b. Set (T1, T2, T3, T4) = (αK,A+αH, βK,A+
βG).

2) Select rα, rβ , rx, rz ∈ Z∗

p at random.

3) Compute

R1 = rαK,
R2 = e(T2, G2)

rx · e(H,W)−rα · e(H,G2)
−rz ,

R3 = rβK,
R4 = rαH − rβG.

4) Compute c = H(M,T1, T2, T3, T4, R1, R2, R3,
R4).

5) Compute

sα = rα + cα mod p, sβ = rβ + cβ mod p,
sx = rx + cx mod p, sz = rz + cz mod p.

The signature is σ = (T1, T2, T3, T4, R1, R2, R3, R4,
sα, sβ , sx, sz).

New-Verify(gpk,M,σ). To verify a signature σ of a
message M with σ=(T1, T2, T3, T4, R1, R2, R3, R4,
sα, sβ , sx, sz), one performs the following:

1) Compute c = H(M , T1, T2, T3, T4, R1, R2, R3,
R4).

2) Check that

R1
?
= sαK − cT1,

R3
?
= sβK − cT3,

R4
?
= sαH − sβG− c(T2 − T4).

3) Check

e(T2, G2)
sx · e(H,W)−sα · e(H,G2)

−sz

?
= R2 ·

(
e(G1, G2)

e(T2,W)

)c

.

As previously mentioned, these modified algorithms
are from direct application of Fiat-Shamir transformation
on the zero-knowledge proof of knowledge in [9]. The se-
curity proofs are the same as in the paper, because XSGS
scheme was, in fact, proved in this setting using the fact
that Ri can derived from Ti, c and sα, sβ , sx, sz. Thus,
we conclude this modified version is also a secure group
signature scheme.

3.1 A Batch Verifier of XSGS Scheme

Let gpk = (G1,G2, GT , e, ψ,G1,K,H = ξ1K,G =
ξ2K,G2,W = γG2) be the group public key, and let σj be
the j’th signature on message Mj for each j = 1, . . . , N ,
where σj = (Tj,1, Tj,2, Tj,3, Tj,4, Rj,1, Rj,2, Rj,3, Rj,4,
sj,α, sj,β , sj,x, sj,z). Then to batch the signatures, our
XSGS Batch does the following:

1) Compute for all j = 1, . . . , N

cj = H(M,Tj,1, Tj,2, Tj,3, Tj,4, Rj,1, Rj,2, Rj,3, Rj,4).

2) Check, for each j = 1, . . . , N , whether the following
non-pairing equations are satisfied or not:

sj,αK
?
= Rj,1 + cjTj,1,

sj,βK
?
= Rj,3 + cjTj,3,

sj,αH − sj,βG
?
= Rj,4 + cj(Tj,2 − Tj,4).

If the equations are satisfied then go to next; Other-
wise, return 0 and exit.

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 65

3) Choose a random vector (δ1, . . . , δℓ) of ℓb bit elements
from Zp.

4) Check that

N∏

j=1

R
δj

j,2
?
= e




N∑

j=1

δj (sj,αTj,2 − sj,zH−cjG1) , G2





· e




N∑

j=1

δj (−sj,αH + cjTj,2) ,W





If this is satisfied then return 1 and exit. Otherwise,
return 0 and exit.

Theorem 1. For security level ℓb, the above algorithm
is a batch verifier for the XSGS group signature scheme,
where the probability of accepting an invalid signature is
2ℓb .

Proof. Since the algorithm XSGS Batch performs the first
three non-pairing tests in GT separately, it suffice to con-
sider for the pairing test.

Now, suppose that is N valid signatures corresponding
messages Mj to be batched where σj = (Tj,1, Tj,2, Tj,3,
Tj,4, Rj,1, Rj,2, Rj,3, Rj,4, sj,α, sj,β , sj,x, sj,z). Then

e(Tj,2, G2)
sj,x · e(H,W)−sj,α · e(H,G2)

−sj,z

= Rj,2 ·
(
e(G1, G2)

e(Tj,2,W)

)cj

,

and so for any random vector (δ1, . . . , δN) of ℓb bit ele-
ments from Zq, we get

(
e(Tj,2, G2)

sj,x · e(H,W)−sj,α · e(H,G2)
−sj,z

)δj

=

(
Rj,2 ·

(
e(G1, G2)

e(Tj,2,W)

)cj
)δj

.

That is,

R
δj

j,2 =
(
e(Tj,2, G2)

sj,x · e(H,W)−sj,α · e(H,G2)
−sj,z

)δj

· e(Tj,2,W)
cjδj · e(G1, G2)

−cjδj

Then we combine and simplify as

e (δj (sj,αTj,2 − sj,zH−cjG1) , G2)

·e (δj (−sj,αH + cjTj,2) ,W) = R
δj

j,2.

Multiplying every N equations, we finally have

N∏

j=1

R
δj

j,2 = e




N∑

j=1

δj (sj,αTj,2 − sj,zH−cjG1) , G2





· e




N∑

j=1

δj (−sj,αH + cjTj,2) ,W





Thus XSGS Batch = 1 if input signatures are all valid.

Now, we show that XSGS Batch = 1 implies that
there is no invalid signature in the input signatures
except with negligible probability. Suppose that σj =
(Tj,1, Tj,2, Tj,3, Tj,4, Rj,1, Rj,2, Rj,3, Rj,4, sj,α, sj,β, sj,x, sj,z)
are N signatures such that XSGS Batch = 1. Then

N∏

j=1

R
δj

j,2 = e




N∑

j=1

δj (sj,αTj,2 − sj,zH−cjG1) , G2





· e




N∑

j=1

δj (−sj,αH + cjTj,2) ,W





It can be rewritten as

N∏

j=1

(
E1 ·E2 · R−1

j,2︸ ︷︷ ︸

)δj

= 1.

E1 = e (sj,αTj,2 − sj,zH−cjG1, G2) ;

E2 = e (−sj,αH + cjTj,2,W) .

In the above equation, the braced element can
be expressed as e(G1, G2)

βj since it is in GT , and

so
∏N

j=1 e(G1, G2)
βjδj = 1. On the other hand,

since e(G1, G2) is a generator of GT , we have

e(G1, G2)
∑

N
j=1

βjδj = 1 and
∑N

j=1 βjδj ≡ 0 (mod p).
Now assume that there is at least one invalid signature,

say σ1. Then, β1 6= 0 because, if not then

e (s1,αT1,2 − s1,zH−c1G1, G2)·e (−s1,αH + c1T1,2,W)·R−1
1,2,

and this means

e(T2, G2)
s1,x · e(H,W)−s1,α · e(H,G2)

−s1,z

= R1,2 ·
(
e(G1, G2)

e(T2,W)

)c1

.

That is, σ1 is a valid signature, which leads to a con-
tradiction.

Now since β1 6≡ 1 (mod p), β1γ1 ≡ 1 (mod p) for some
γ1. Hence we have an equation

δ1 ≡ −γ1

N∑

j=2

βjδj (mod p).

Let E be an event that occurs if New-Verify(σ1) = 0

but XSGS Batch(σ1, . . . , σN) = 1, and let X̂1 be denote
the set of all vectors< δ2, . . . , δN > consisted with the last
N − 1 values of ∆ in XSGS Batch. Then Pr[E|∆1] = 2ℓb

for each ∆1 ∈ X̂1. So we have

Pr[E] 6
∑

∆1∈X̂1

Pr[E|∆1] Pr[∆1]

=

2ℓb (N−1)∑

i=1

2ℓb2−ℓb(N−1)

= 2−ℓb .

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 66

4 Finding Invalid Signatures in

XSGS Scheme

In this section, we show how to find invalid signatures
in XSGS group signature when batch instance contains
bad signatures. The technique we use is due to Law and
Matt [15], or Lee et al. [16]. While Lee et al.’s method is
to find bad signatures in RSA signature scheme, Law and
Matt’s methods are to find invalid signatures in pairing
based standard signature schemes in which the verifica-
tions are of the form e(Xi, P) = e(Yi, R). Our method
can be thought of slight extension of the Law et al.’s ex-
ponentiation method [15].

Suppose that we have an instance of N signatures σj

on messages Mj where σj = (Tj,1, Tj,2, Tj,3, Tj,4, Rj,1,
Rj,2, Rj,3, Rj,4, sj,α, sj,β, sj,x, sj,z), j = 1,. . ., N , and
that the instance contains w invalid ones. To find the
invalid signatures, we first compute, for each j = 1, . . .,N ,
cj ← H (Mj , Tj,1, Tj,2, Tj,3, Tj,4, Rj,1, Rj,2, Rj,3, Rj,4).
We then verify the validity of the non-pairing equations:

sj,αK
?
= Rj,1 + cjTj,1, sj,βK

?
= Rj,3 + cjTj,3, sj,αH − sj,βG

?
= Rj,4 + cj(Tj,2 − Tj,4).

All j for which the equation is not satisfied indicate
the positions of invalid signatures. Now, excluding the
bad ones, we assume that there is no such index, i.e.,
for all j = 1, . . . , N the signatures hold the non-pairing
equations. Let j1, . . . , jw denote the indexes of the invalid
signature and I be the set {jt | t = 1, . . . , w}. We will
find the set I consisting of bad signatures. For each j =
1, . . . , N , we choose δj ∈ Z∗

p and set

Xj ← δj (sj,αTj,2 − sj,zH−cjG1) ,

Yj ← δj (−sj,αH + cjTj,2) ,

Zj ← R
δj

j,3.

We define Ak :=
∏N

j=1 e(j
kXj , U) · e(jkYj , V) · Zjk

j for
each k = 0, . . ., w. If A0 = 1 then this means there is
no bad signatures, i.e. w = 0. Otherwise, the instance
should have invalid signature(s) and w > 1. Also for each
k = 0, . . . , w,

Ak =
N∏

j=1

(e(Xj, U) · e(Yj , V) · Zj)
jk

=
∏

j∈I

(e(Xj , U) · e(Yj , V) · Zj)
jk

.

By Newton formula [17],

Aw = Af1

w−1 · A · · ·A
(−1)w−2fw−1

1 · A(−1)w−1fw

0 , (1)

where fi = fi(j1, . . . , jw) is ith elementary symmetric
polynomial over field Zp in w variables j1, . . . , jw. Thus,
if we compute f1, . . . , fw (without knowing the positions

of bad ones) for which Equation (1) holds then we have
found the positions of invalid signatures. If no match is
found, then there are more bad signatures than w in the
batch instance.

Algorithm. (Batch Identifier)

1) Compute cj ←H(Mj , Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3,
Rj,4) for each j.

2) For j = 1 to N do

a. Check the following non-pairing equations
EQ(j):

sj,αK,
?
= Rj,1 + cjTj,1,

sj,βK,
?
= Rj,3 + cjTj,3,

sj,αH − sj,βG
?
= Rj,4 + cj(Tj,2 − Tj,4).

b. If EQT(j) fails then return j. (In this step,
we will discard the invalid signatures. So, in
what follows, we assume that the input signa-
tures pass this step.)

3) Choose a random vector (δ1, . . . , δℓ) of ℓb bit elements
from Zp.

4) For j = 1 to N do

a. Compute Xj ← δj (sj,αTj,2 − sj,zH−cjG1),

b. Compute Yj ← δj (−sj,αH + cjTj,2),

c. Compute Zj ← R
δj

j,3.

5) Compute U ← −G2 and V ← −W .

6) Compute A0 ← e(
∑N

j=1Xj , U) · e(
∑N

j=1 Yj , V) ·
∏N

j=1 Zj .

7) If A0 = 1 then output “valid instance”, and exit.

8) Set k ← 1.

9) While k < N do

a. Compute

Ak = e(

N∑

j=1

jkXj , U) · e(
N∑

j=1

jkYj , V) ·
N∏

j=1

Zjk

j

b. Find j1, . . . , jk such that

Ak =

k∏

t=1

A
(−1)t−1ft

k−t ,

where ft is ith elementary symmetric polyno-
mial in j1, . . ., jk

c. If such j1, . . ., jk exist then output j1, . . ., jk.
as the position of invalid signatures and exit.

d. Otherwise, set k ← k + 1.

10) Output“all the input signatures are invalid” and exit.

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 67

4.1 Efficiency Analysis

Following earlier batch identification methods [15, 16, 22],
we assume that the number of invalid signatures w is
small. The analysis in this subsection is similar to that of
Law and Matt [15].

As well as our method, Individual test and Quick Bi-
nary test cannot avoid the non-pairing computations of
Step 2. Also note that all of the compared methods will
be launched when initial batch verification fails and Step
1-6 are batch verification steps. So, to simplify the cost
comparison, we don’t count the cost of non-pairing equa-
tion tests and Steps 1-6, and assume that w is the number
of invalid signatures contained in the batch instance (of
course w is unknown).

In Step 9, we first need to compute
∑N

j=1 j
kXj and

∑N
j=1 j

kYj . By Law and Matt’s method [15], due to

Solinas, we know that
∑N

j=1 j
kXj(k = 1, . . . , w) can

be computed during w(N − 1) addition in G1, and so∑N
j=1 j

kXj and
∑N

j=1 j
kYj(k = 1, . . . , w) can be com-

puted in 2w(N − 1) addition in G1. Similarly, we can

compute
∏N

j=1 Z
jk

j (k = 1, . . . , w) in w(N − 1) multiplica-
tions in G2 which we will see in theorem 2 below. Ad-
ditionally, to compute Ak (k = 1, . . . , w) we require 2w
pairings and 2w multiplication in GT .

Using Shanks’ Baby-step Giant-step and Law et al.’s
method, the step 9-(b) (for all iteration up to w) can be
done during 2

√
N or 8

(w−1)!N
w−1 +O(Nw−2) multiplica-

tions in GT according to w = 1 or w > 2, respectively.
For w > 2, we require w − 1 inverses in GT additionally.
(The computation 9-(b) is exactly the same with Law et
al.’s algorithm).

Theorem 2.
∏N

j=1 Z
jk

j (k = 1, . . . , w) in w(N − 1) mul-
tiplications in G2.

Proof. First, by Stirling formula, we know that for j =
1, . . . , N .

jk =
k∑

i=1

Sk,i (j)i =
k∑

i=1

(−1)k−ii! Sk,i

(
j + i− 1

i

)

where Sk,i is the Stirling number of the second kind,
(j)i = j · (j − 1) · · · (j − i + 1), and k > 1 is an inte-
ger. Thus, we have

N∏

j=1

Zjk

j =

N∏

j=1

Z

∑k
i=1

(−1)k−ii! Sk,i



 i+ j − 1
i





j

=

N∏

j=1

k∏

i=1

Z



 i+ j − 1
i



((−1)k−ii!Sk,i)

j

=

k∏

i=1




N∏

j=1

Z



 i+ j − 1
i





i




(−1)k−ii!Sk,i

Letting Ui =
∏N

j=1 Z



 i+ j + 1
i





j , we have

N∏

j=1

Zjk

k =
k∏

i=1

U
(−1)k−ii! Sk,i

i

In order to compute Ui, consider

Ui =

N∏

j=1

Z
(i+j−1

i)
j = Z

(i

i)
1 · Z(i+1

i)
2 · · ·Z(N+i−1

i)
N

= Z
(i

i)
1 ·

Z
(i

i−1)
2 · Z(i−1

i−1)
2 ·

...
...

Z
(N+i−2

N−1)
N · Z(N+i−3

N−1)
N · Z(Z+i−4

N−1)
N · · ·Z(N−1

N−1)
N

= Z
(N−1

N−1)
N ·

(
Z

(N−1

N−1)
N−1 · Z

(N
N−1)

N

)
· · ·

(
Z

(i

i)
1 · Z(i

i−1)
2 · · ·Z(N+i−2

N−1)
N

)

Thus, by defining U0 =
∏N

j=1 Zj, we can compute these
w values U1, . . . , Uw as follows.

1) For j from 1 to N do

Vj ← Zj

2) For k = 0 to w

For j from N − 1 down to 1 do

Vj ← Vj · Vj+1

j ← j − 1

Uk ← V1

k ← k + 1

The computations for k = 0 can be ignored because
the values were already computed during Step 6 of the
Batch Identifier. So the cost of this algorithm is w(N−1)
multiplications in GT .

Finally, we compute prodk :=
∏N

j=1 Z
jk

j for k = 1, · · · ,
w as follows.

1) prod1 ← U1; s0 ← 0; s1 ← 1; s2 = · · · sw ← 0

2) For k = 2 to w

prodk ← 1

For m = k down to 1 do

sm ← sm−1 +msm

prodk ←
(
U

(−1)k−msm
m · prodm

)m

m← m− 1

k← k + 1

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 68

Note that this second part does not depend on N , but
only on the number w of invalid signatures contained in
batch. Also note that the algorithm runs with only O(w2)
operations. Since, as most batch verifier or batch iden-
tifier, we assume that N is large and w is small, we can
ignore the cost O(w2) operation. Therefore, we conclude

that the cost of computing
∏N

j=1 Z
jk

j (k = 1, . . . , w) is
approximately w(N − 1) multiplications in GT .

Thus, we have approximate cost of the algorithm to
find w invalid signatures in a batch of N signature -
2w(N − 1) addition in G1, 2w pairings, N exponentia-
tions in GT , w − 1 inverses in GT , and N + 1 + 2

√
N

multiplications in GT if w = 1 or w(N +1)+ 8
(w−1)!N

w−1

multiplications if w > 2.

Table 1 summarizes cost comparison of our method
with other batch identification methods where we use our
batch verifier as the underlying batch verification algo-
rithm of Quick binary.

The notions mult and mult-exp denote multiplications
and multi-exponentiations, respectively. In the Individual
test, to reduce the number of pairings, we use the equation

e(T2, sxG2 − cW) · e(H,W)−sα
· e(H,G2)

−sz
· e(G1, G2)

−c

?
= R2.

By cashing the e(H,W), e(H,G2) and e(G1, G2), one can
verify the equation during 1 multi-exponentiation with
two exponents in G2, 1 multi-exponentiation in GT , 1
pairing, and 1 multiplications in GT . We note that this
property is mentioned in the paper [9]. Table 1 shows our
method reduces the pairing computations significantly.

To evaluate concrete performance, we compare the
timings under the following settings [2, 10, 15]. Let p
be a prime of 160 bits. We assume that E be a non-
supersingular elliptic curve defined over Fp with embed-
ding degree 6 for which Tate pairing is constructed (ie.,
MNT-curve or Class A curve [12, 15]). Then from Barreto
et al. [2] and Avanzi [1], we first estimate each 1-operation
in terms of the number of multiplications of Fp as sum-
marized in Table 2.

Table 2: The number of multiplications in Fp

pairing add in G1 multi-add in G2

9120m 11m 9253m

mult in GT multi-exp in GT inv in GT

15m 1839m 44m

In Table 2, m denote the number of multiplications in
the prime field Fp and the notions mult, multi-exp, and
inv denote multiplications, multi-exponentiations, and in-
verses, respectively. For the multi-exponentiation, we use
the Joint Sparse Form like Matt et al. did.

Plugging Table 2 to Table 1, we can approximate tim-
ing results in Figure 2. From the results, we can observe
that our extended method shows better performance than

0 50 100
0

0.5

1

1.5

2

2.5
x 10

6

of signatures

#
 o

f
m

u
lti

p
lic

a
tio

n
s

in
 F

p

w = 1

Individual
Quick binary
Ours

0 50 100
0

0.5

1

1.5

2

2.5
x 10

6

of signatures

#
 o

f
m

u
lti

p
lic

a
tio

n
s

in
 F

p

w = 2

Individual
Quick binary
Ours

0 50 100
0

0.5

1

1.5

2

2.5
x 10

6

of signatures

#
 o

f
m

u
lti

p
lic

a
tio

n
s

in
 F

p

w = 3

Individual
Quick binary
Ours

Figure 2: Cost comparison to other methods

Individual test and Quick Binary in case when the under-
lying batch verifier is the XSGS Batch proposed in the
previous section.

In practical situations and literatures, a set of signa-
tures to be batched contain very small number of invalid
signatures. By shuffling and then partitioning into several
blocks, we may assume that the number of signatures are
not too large (e.g., 1024) and that the number of bad sig-
natures contained in each partition is at most very small
(e.g., 0, 1 or 2).

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
x 10

5

of signatures

of

 m
ul

tip
lic

at
io

ns
 in

 F
p

w=1

Quick binary

Ours

0 200 400 600 800 1000 1200
0

1

2

3

4
x 10

5

of signatures

of

 m
ul

tip
lic

at
io

ns
 in

 F
p

w=2

Quick binary

Ours

Figure 3: Comparison to Quick Binary method

Figure 3 shows the performance comparison between
Quick binary and our method in terms of the number
of multiplications when the number of signatures is less
than or equal 1024 and the number of invalid signatures
contained in is 1 or 2, respectively. From the results,
we can conclude that our method is reduces considerably
the computational cost compared with Individual test and
Quick binary.

5 Conclusion

In group oriented signature schemes, there are a large
number of signatures to be verified. For such signature

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 69

Table 1: Comparison to other methods
Individual Quick Binary Our Method

pairing N 2w log2 N 2w

addition in G1 - - 2w(N − 1)

mult in GT N w log2 N w(N + 1) + 2
√

N if w = 1
w(N + 1) + 8

(w−1)!
Nw−1 if w > 2

multi-add in G2 N - -

multi-exp in GT N - -

inverse in GT - - w − 1

schemes, designing batch verification methods and finding
invalid signatures (when batch test fails) are important
issues.

In this paper, by exploiting Ferrera et al.’s batch veri-
fier of short signature scheme, we have proposed a batch
verification scheme of an extremely short dynamic group
signature scheme. In addition, by extending a batch iden-
tifier of Law et al. designed for special types of signa-
ture scheme (not for group signature schemes), we pre-
sented an batch identification method of the extremely
short group signature scheme.

Acknowledgements

This work was supported by Priority Research Centers
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Sci-
ence and Technology (2009-0093827).

References

[1] R. Avanzi, “On the complexity of certain multi-
exponentiation techniques in cryptography,” In Jour-
nal of Cryptology, vol. 18, no. 4, Spinger-Verlag, pp.
357-373, 2005.

[2] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Ef-
ficient algorithms for pairing-based cryptosystems,”
Crypto’02, LNCS 2442, Springer-Verlag, pp. 354-
368, 2002.

[3] M. Bellare, J. Garay, and T. Rabin, “Fast batch veri-
fication for modular exponentiation and digital signa-
tures,” Eurocrypt’98, LNCS 1403, Springer-Verlag,
pp. 236-250, 1998.

[4] D.Boneh, X.Boyen, and H.Shacham, “Short group
signatures,” Crpyto’04, LNCS 3152, pp. 41-55, 2004.

[5] D. Boneh, B. Lynn, and H. Shacham, “Short signa-
tures from the Weil pairing,” Asiacrypt’2001, LNCS
2248, pp. 514-532, 2001.

[6] C.Boyd, and C. Pavlovski, “Attacking and repair-
ing batch verification schemes,” Asiacrypt’00, LNCS
1976, Springer-Verlag, pp. 58-71, 2000.

[7] J. Camenisch, S. Hohenberger, and M. Peder-
sen, “Batch verification of short signatures,” Euro-
crypt’07, LNCS 4515, Springer-Verlag, pp. 246-263,
2007.

[8] J. Cha, and J. Cheon, “An identity-based signa-
ture from gap diffie-hellman groups,” PKC’03, LNCS
2567, Springer-Verlag, pp. 18-30, 2003.

[9] C. Delerablee, and D. Pointcheval, “Dynamic fully
anonymous short group signatures,” VietCrypt 2006,
LNCS 4341, Springer-Verlag, pp. 193-210, 2006.

[10] A. Ferrara, M. Green, S. Hohenberger, M. Pedersen,
“On the Practicality of Short Signature Batch Ver-
ification,” CT-RSA 2009. (http://eprint.arcr.org/
2008/015)

[11] A. Fiat, “Batch RSA,” Crypto’89, LNCS 435,
Springer-Verlag, pp. 175-185, 1989.

[12] R. Granger, D. Page, and N.P. Smart, “High security
pairing-based cryptography revisited,” ANTS VII,
LNCS 4075, Springer-Verlag, pp. 480-494, 2006.

[13] R. Gennaro, H. Krawczyk, and T. Rabin, “RSA-
based undeniable signatures,” Crypto’97, LNCS
1294, Springer-Verlag, pp. 132-149, 1997.

[14] M. S. Hwang, C. C. Lee, and Y. L. Tang, “Two sim-
ple batch verifying multiple digital signatures,” Pro-
ceedings of Information and Communications Secu-
rity, LNCS 2229, Springer-Verlag, pp. 233-237, 2001.

[15] L. Law, and B. Matt, “Finding invalid signatures
in pairing-based bathes,” Cryptography and Coding
2007, LNCS 4887, Springer-Verlag, pp. 34-53, 2007.

[16] S. Lee, S. Cho, J. Choi, and Y. Cho, “Efficient identi-
fication of bad signatures in RSA-Type batch signa-
ture,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences,
vol. E89-A, no. 1, pp. 74-80, 2006.

[17] Lidl, and Niderriter, Finite Fields, Encyclotopedia of
Mathematics and its Applications, Cambridge Uni-
versity Press, Cambridge, UK, 2nd ed., 1997.

[18] B. Matt, “Identification of multiple invalid signa-
tures in pairing-based batched signatures,” Advances
in Cryptology - PKC 2009, LNCS, Springer-Verlag,
2009.

[19] Naccache, M’Raihi, Vaudenay, and Raphaeli, “Can
DSA be improved? complexity trade-offs with the
digital signature standard,” In EUROCRYPT’94,
LNCS 0950, pp. 77-85, 1994.

[20] L. Nguyen, and R. Safavi-Naini, Efficient and prov-
ably secure trapdoor-free group signature schemes
from bilinear pairings, Asiacrypt’ 2004, LNCS 3329,
Springer-Verlag, pp. 372-386, 2004.

International Journal of Network Security, Vol.13, No.2, PP.61–70, Sept. 2011 70

[21] H. Park, S. Lim, I. Yie, K. Kim, and J. Song, “Strong
unforgeability in group signature schemes”, Com-
puter Standards & Interfaces, vol. 31, pp. 856-862,
Elsevier, 2009.

[22] J. Pastuszak, D. Michalek, J. Pieprzyk, and J. Se-
berry, “Identification of bad signatures in batches”,
PKC 2000, LNCS 1751, Springer-Verlag, pp. 28-45,
2004.

[23] M. Stanek, “Attacking LCCC batch verification of
RSA signatures”, International Journal of Network
Security, vol. 6, no. 3, pp. 255-257, 2008.

Kitae Kim received the B.S. degree in Mathematics
from Konyang University, and the M.S and the Ph.D
degrees in Mathematics from Inha University, Korea.
He is a postdoctoral researcher at Graduate School of
Information Technology and Telecommunications in Inha
University. His current research interests include alge-
braic/algorithmic number theory, elliptic curves, privacy
enhanced signatures and homomorphic encryption.

Ikkwon, Yie recieved the B.S. and M.S. degrees in
Mathematics from the Seoul National University, Seoul,
Korea, and the Ph.D. degree in Mathematics from
the Purdue University. He is currently a professor of
Department of Mathematics in Inha University. His
main research interests include Galois theory and Digital
signatures.

Seongan Lim received her B.S. degree in Mathematics
from the Dongguk University, Korea, in 1985. In 1987,
she received her M.S. degree in Mathematics from the
Seoul National University, Korea. In 1995, she received
her PhD degree in Mathematics from Purdue Univer-
sity, USA. She is a research professor of Department
of Mathematics in Ewha Womans University, Korea.
Her current research interests include cryptography, fast
computer arithmetic, computer algorithms, mathematics.

Daehun Nyang received his BS degree in electronic en-
gineering from Korea Advanced Institute of Science and
Technology (KAIST) in 1994, the MS and the PhD de-
grees in computer science from YONSEI University, Ko-
rea, in 1996 and 2000, respectively. From 2000 to 2003,
he had worked for Electronics and Telecommunications
Research Institute (ETRI) as a senior researcher. Since
2003, he has been with INHA University, Korea, where he
is currently a professor in Graduate School of Information
Technology and Telecommunications. His research inter-
ests include cryptography and network security including
WPAN, WLAN, MANET, RFID, and WSN.

