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Abstract

Based on the anonymity that digital signatures provide to
users and messages, digital signatures can be classified as
hidden, weak, interactive, or strong blind signatures. The
hidden blind signature hides the signed message from the
signer’s vision during his interaction with an honest re-
quester. Later on, after revealing the message the signer
can easily link the message-signature pair. The hidden
blind signature application deals with message anonymity
only and cannot be done through a strong blind signa-
ture; the notary service is one example of a hidden blind
signature. In this paper we propose a hidden blind sig-
nature scheme that utilizes bilinear pairing over elliptic
curves. The proposed scheme requires smaller key sizes
for the same level of security compared to schemes not
utilizing bilinear pairings. The proposed scheme allows
the signer to add information in the signed message. The
requester cannot modify either this information or the
signed message. This added information stamps the sig-
nature with a certain date and place which we see as an
essential requirement in applications such as notary ser-
vice (testament application) and patent time proof. In
notary service, there is no conflict of interest between the
signer and the requester of the signature. There is no need
to have a trusted party to authenticate the temporal or
spatial information. Instead, the signature requester will
embed this information into the message body which is
hidden from the signer. After issuing the signature by
the signer, the requester can verify that the signature has
the designated date and place. This is under the assump-
tion that the signer has to perform the signing process on
the same day and that she is free to sign at any time that
day. This date-stamping is very important in case the
signers’ signature key is stolen or compromised. The pro-
posed scheme is proved to be secure against an existential
adaptive chosen message attack.

0A preliminary version of this paper was presented at the first
international workshop on Communications Security & Information
Assurance (CSIA), Ankara, Turkey, 2010.

1 Introduction

In traditional paper-based signing, the validation of doc-
uments can be ensured as long as they are kept in sealed
envelopes. The concept of blind signatures, as first in-
troduced by Chaum [8, 9], was a breakthrough in achiev-
ing the digitalization of services. It is a digital signature
form that maps paper-based systems to an electronic ver-
sion that lends anonymity to the message (blindness) and
gives anonymity to the user (unlinkability). Blind sig-
natures are the core of applications such as e-coins and
e-voting. Many blind signatures that satisfy anonymity
and unlinkability have been proposed [3, 31, 33]. Blind
signatures are publicly verified by any third party and
meet the requirements of privacy-oriented protocols that
have a conflict of interest between the signer and mes-
sage’s author as in electronic money and electronic elec-
tion protocols.

Chaum’s scheme has three active parties: the mes-
sage’s author, who requests the signature on the message,
the signer, and the verifier who ensures that the signa-
ture does belong to the signer. The scheme starts with
the requester (author) blinding the message then sends
this blind message to a singer who signs it and sends the
signed blind message back to the requester. Then, the
requester unblinds the message. The result is a digital
signature of the original message. As we see, a blind sig-
nature is composed of four ordered algorithms: blinding,
signing, unblinding, and verifying. In Chaum’s scheme
the resultant message-signature pair is unlinkable and is
classified as a strong blind signature in [15, 16, 17]. In
the unblinding algorithm, the requester modifies the sig-
nature and produces version that is unlinkable to the one
generated by the signer. Hence, the signer has no way to
resume this link again even after revealing the message.
Some applicators find this unlinkability undesirable but at
the same time, they are interested in blinding messages.
Our hidden blind signature scheme enables the signer to
insert a piece of temporal or spatial information in the sig-
nature and prevents the requester from modifying either
this piece of information or the signature. All this is done
without disclosing the message. Horster et al.’s classifi-
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cation in [16, 17] defines hidden signatures into message
hidden signatures and s-hidden signatures where s is the
signature parameter. Similarly, our protocol is a message
hidden signature protocol. In short, we use “hidden sig-
nature” instead of “message hidden signature.” At the
abstract level, hidden signatures reform the terminology
of blind signature so that it blinds the signer during the
signing process, not the signature.

Horster et al. [15, 16, 17] classified the blind signature
into four classes depending on the anonymity strength
given by the signature: the hidden, the weak blind, the
interactive and the strong blind signatures.

In hidden blind signatures, the signer does not know
the message to be signed but he knows the signature pa-
rameters. The signer has the chance to store these param-
eters and can recognize the signature later by comparing
them with a given signature.

In weak blind signatures, the signer does not know ei-
ther the message to be signed or the signature parameters.
But, after revealing the message, he can easily link his sig-
nature to that message. The reason behind the signer’s
ability to recognize the message-signature pair is the ex-
istence of a relationship between the blinded signature
parameters and the unblinded parameters.

Interactive blind signatures are similar to weak blind
signatures in their generation, except that interactive
blind signatures use interactive proof to demonstrate the
knowledge of a signature, so the signer does not have the
ability to link the blinded and the unblinded signature pa-
rameters. Hence, the signer cannot link a given message
to his stored parameters.

Finally, the strong blind signature grants full
anonymity and the signer cannot link his stored param-
eters and the public signature parameters. The strong
blind signature causes a risk of misuse, for example in
money laundering, blackmailing or asking ransom.

This paper proposes a hidden signature scheme. The
proposed scheme is motivated by the work of [16, 7] and it
utilizes the bilinear pairing cryptosystems from the Gap-
Diffie-Hellman groups.

The organization of the rest of the paper is as follows:
the next section is a brief survey about related works and
bilinear pairing cryptosystems. In Section 3, some com-
putational preliminaries are presented. Section 4 presents
a description of the proposed scheme. An analysis of the
scheme is presented in Section 5.

2 Related Work

Camenisch et al. [7] proposed the first blind signatures
based on the discrete logarithm problem. Subsequently,
in 1995, Harn [18] proved that unlinkability (untraceabil-
ity) cannot be achieved in Camenisch et al.’s scheme.
But, according to Horster et al. [15, 17], Camenisch et
al.’s scheme could be classified as a hidden signature.
Also, Horster et al. in [16, 17] introduced a hidden sig-
nature protocol that is based on the ideas of the tes-

timonial scheme [19] and the Meta-ElGamal signature
scheme [20]. The proposed hidden signature scheme, in
this paper, utilizes bilinear pairing. Since Joux’s work
[21], bilinear pairings, especially modified Weil and Tate
pairings, have been a practical and efficient means for
cryptographic protocols [4, 5]. This attracted cryptogra-
phers to use bilinear pairings in public key cryptography
and exploded the field of pairing-based cryptography over
the past few years. Basically, bilinear pairing is a map-
ping between two functional cryptographic groups which
allows for new cryptographic schemes to take place. The
resultant scheme is based on problem reduction in one
group to a different easier problem in the other group.
In the literature, the first group is called a Gap Group.
In a Gap Group, the Computational Diffie-Hellman prob-
lem is hard and the Decisional Diffie-Hellman problem is
easy. The word easy means that, the pairing reduces the
Decisional Diffie-Hellman problem to an easy problem in
the second group. On the other hand, the Computational
Diffie-Hellman problem remains hard [6]. Understanding
the Weil and Tate pairings requires complex mathematics.
Fortunately, cryptographers can deal with it abstractly,
through group structure and mapping properties. The lit-
erature proposes many interesting schemes based purely
on abstract bilinear maps. In the next section we intro-
duce the mathematical background of bilinear maps.

3 Preliminary

Bilinear maps are the tool of pairing based cryptography,
which is a hot topic that started with an identity-based
encryption scheme by Boneh and Franklin in 2001 [4].
An abstract understanding of this tool requires knowledge
of Gap Diffie-Hellman groups and bilinear groups. Gap
Diffie-Hellman groups created from disjointing Computa-
tional and Decisional Diffie-Hellman problems. Bilinear
groups are based on the existence of a bilinear map. Sim-
ply, a bilinear map is a function with certain properties.

Let G be an additive cyclic group of prime order p, and
P is its generator. In this group, the well-known Diffie-
Hellman problems carry on as follows [4, 5, 27].

3.1 Diffie-Hellman Problems

Computational Diffie-Hellman (CDH). Given P ,
aP , Q ∈ G, compute aQ ∈ G.

Decisional Diffie-Hellman (DDH). Given P , aP ,
Q, bQ ∈ G, decide whether a equals b. Quadruples
of this form (P, aP, Q, bQ) are named Diffie-Hellman
quadruples.

Inverse Computational Diffie-Hellman problem
(InvCDH). Given P, xP , outputs 1

x
P . The value 1

x
is

the multiplicative inverse of x ∈ Z∗

p .

Gap Diffie-Hellman Groups (GDH) are examples
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of gap problems presented in [26]. There are many
subgroups of group Z∗

q that have prime orders, and both
the CDH and DDH assumptions are believed to be held.
The subgroup G with the prime order p is one of these.
However, on certain elliptic-curve groups, the DDH
problem is easy to solve, whereas CDH is believed to
be hard [5]. Such groups are named Gap Diffie-Hellman
(GDH) groups. Hence, if G belongs to these specific
elliptic-curve groups, we call it a Gap Diffie-Hellman
group.

3.2 Elliptic Curve Cryptosystems

The theory of elliptic curve has been intensively studied
in the pure mathematics field for 160 years and it was
applied for factoring large integers in early 1980’s. In
1984, Miller and Koblitz independently found that the
group of points on an elliptic curve is a proper group
on which the discrete logarithm is intractable. These
groups are suitable for implementing El-Gamal type
cryptosystems by replacing the residue group of integers
in El-Gamal by these groups.

Elliptic Curve Groups. If Fq is a field and E is an el-
liptic curve then E(Fq) is a group. We read E(Fq), elliptic
curve E over field Fq which indicates the set of points on
E along with only one operation (addition) defined for
E(Fq). So it is impossible to multiply or divide elements
of E(Fq) [24]. Multiplication of a point P on an elliptic
curve by an integer n is the result of adding a point to
itself n times [24].

3.3 Bilinear Maps

Bilinear Groups. Until now, there have not been
known any implementable example of GDH groups
except bilinear maps, which have an additional structure.
A bilinear group is any group that possesses such a map
e, and on which CDH is hard.

Bilinear Maps. Assume that G is an additive group and
GT is a multiplicative group such that |G| = |GT | = |p|,
where p is a prime number. P is the generator of G.
Then, the map e : G × G → GT is a computable bilinear
map if it satisfies:

1) Computability: There is an efficient algorithm to
compute e(P, Q) for all P, Q ∈ G.

2) Bilinearity: for all P, Q ∈ G and a, b ∈ Z, we have
e(aP, bQ) = e(P, Q)ab.

3) Non-Degeneracy: e(P, P ) 6= 1. In other words, if P
is a generator of G, then e(P, P ) generates GT .

The work of Joux and Nguyen in [22] completed the
bilinear maps story by overcoming the last obstacle pre-
venting it from beeing a practical and efficient example of
GDH. They illustrated that a bilinear map e provides an

algorithm for solving DDH. For a tuple (P, aP, Q, bQ)
we have a = b modp ⇔ e (Q, aP ) = e (bQ, P ). As a
result, if a group G is a bilinear group then G is also a
GDH group. (The opposite does not have to be true.)

Bilinear Diffie-Hellman Problem. The group G is
a subgroup of the additive group of points of an elliptic
curveE (Fq). The group GT is a subgroup of the multi-
plicative group of finite field F ∗

q and |G| = |GT | = |p|,
where p is a prime number. Let e : G × G → GT be a
bilinear pairing on (G, GT ). The bilinear Diffie-Hellman
problem (BDHP) is the following: Given P, aP, bP, cP,
compute e(P, P )abc.

The hardness of the BDHP implies the hardness
of DHP in both G and GT . First, if the DHP in
G can be efficiently solved, then one could solve an
instance of the BDHP by computing abP and then
e(abP, cP ) = e(P, P )abc. Also, if the DHP in GT can
be efficiently solved, then the BDHP instance could
be solved by computing j = e(P, P ), jab = e(aP, bP ),
jc = e(P, cP ) and then jabc. Nothing else is known
about the intractability of the BDHP, and the problem
is generally assumed to be just as hard as the DHP in G
and GT [11, 12, 13].

The Modified Weil and Tate Pairings. Let G be
a subgroup, with prime order p, of the curve’s group of
points E (Fq). The modified Weil and Tate pairings yield
a bilinear map e : G × G → GT . The target group GT

is a subgroup of Fqk , where k is a security multiplier that
depends on the curve and on the group G [11, 12, 22].
DLP in G can be efficiently reduced to the DLP in GT .

Theorem 1. If there exists a bilinear map e : G × G →
GT , then the discrete log problem in G is no harder than
the discrete log problem in GT .

Proof. Given P ∈ G and Q = xP ∈ G, we can compute
i = e(P, P ) ∈ GT , j = e(P, Q) = e(P, xP ) = e(P, P )x ∈
GT . Thus, logP Q = logi j. So, it is clear that we can
reduce the Discrete Log Problem in G to the Discrete
Log Problem in GT by using a discrete log solver for GT

to obtain x. This is called the MOV reduction [25].

4 Proposed Scheme

The proposed hidden digital signature scheme consists of
three parties, the Requester (R), the Signer (S), and the
Verifier (V). It is based on two protocols, the signing pro-
tocol and the verification protocol. The signing protocol
runs two algorithms, the first one being the blinding algo-
rithm, where is executed by R (the author of the message)
and the other is the signing algorithm, executed in three
steps by S. We assume that there is a trusted authority
who establishes and manages the setup of the public key
cryptosystem.

To implement our scheme we first need a security pa-
rameter that defines the level of bit strength that the
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signature will provide. We then need to define groups G
and GT and a pairing e : G×G → GT . To do this we pick
an elliptic curve E(Fq) with embedding degree k, where
q is a prime power and it is the order of the finite field
Fq. Also, p is a prime such that p|#E(Fq) where #E(Fq)
is the order of the group E(Fq), which is the number of
points on an elliptic curve E over a field F, including the
point at infinity. Moreover, the discrete log problem in
Z∗

p is intractable.
We then randomly pick a point P ∈ E(Fq), P is a

point of order p in E(Fq) and is called p-torsion point of
the curve E. Let P be the generator of the group G and
e(P, P ) the generator of the group GT , which are cyclic
groups of order p. G is a cyclic subgroup of E(Fq) and
GT is a cyclic subgroup of F ∗

qk . We need cryptographic

hash functions H : {0, 1}∗ → G and h : {0, 1}∗ → Z∗

p , the
security analysis will treat H and h as random oracles.
Let M be the message and m = h(M). The signer’s secret
key is x ∈ Z∗

p and its public key is Q = xP ∈ G.

4.1 Signing Protocol

The signing protocol runs two algorithms, the blinding
algorithm by the requester R and the signing algorithm
by S.

4.1.1 Blinding Algorithm

The requester’s aim is to get the signer’s signature with-
out disclosing the message content. At the same time the
requester wants to make sure that the signer is the des-
ignated recipient of the blinded message. We can achieve
this through double blinding the message by putting two
locks on it. The first lock serves to blind the message from
the signer. The second one is designated to the signer; he
is the only one who can unlock it. These two locks can be
done in one single mathematical operation; the requester
will calculate r = mQ and send it to the signer. Actually,
the signer is the only one who can calculate m ·P by using
the multiplicative inverse of his secret key (the first lock),
r = m · Q = m · x · P . The resultant of this operation is
still blind with respect to the signer’s view and he needs
to solve a hard problem, the discrete logarithm problem,
to get m out of m · P .

4.1.2 Signing Algorithm

Step 1. The signer receivesr = m ·Q, and then he calcu-
lates r

′

as follows:

r
′

=
1

x
· r =

1

x
· m · Q = m · P.

Step 2. The signer generates the signature parameter
z =< nounce||date||place > and then calculates
H (z) .

Step 3. The signer generates the signature (s, z) such

thats =
(

H (z) + r
′

)

· 1
x

= H(z)+ r
′

x
.

4.2 Verification Protocol

After revealing the message M, the signature is publicly
verified by any verifier V using the bilinear pairing as
follows:

e(s, Q)
?
= e (H (z) + h (M) · P, P ) .

The correctness of the proposed scheme is proven by:

L.H.S = e(s, Q)

= e(
H(z) + r

′

x
, x · P )

= e(
H(z) + m · P

x
, x · P )

= e(H(z) + m · P, P )
1

x
·x

= e(H(z) + h(M) · P, P )

= R.H.S.

5 Security Analysis

In this section, we review the known attacks on a digital
signature scheme and the meaning of “breaking a signa-
ture scheme.” Also, we discuss the notation of security
of a blind digital signature scheme and a hidden digital
signature scheme. Moreover, we explain the underlying
cryptographic hard problem in the proposed scheme. This
explanation is in Subsection 5.2 and it relates the pro-
posed scheme to the Inverse computational Diffie-Hellman
problem. In Subsection 5.3, the security of the proposed
scheme is illustrated. This security analysis is twofold:
First, it analyzes the blindness aspect in the proposed
scheme. It then analyzes the non-forgeability aspect. We
consider these two aspects, because the former is the core
goal in the proposed scheme to hide the message and the
latter is a mandatory property in any digital signature
scheme. Also, in Subsection 5.3 we show the resistance of
the proposed scheme against digital signature notorious
attacks.

5.1 Security of Blind Signatures and Hid-

den Signatures

First, we illustrate some definitions from [14] that
comprehend the kinds of attacks and the meaning of
“breaking a signature scheme”. Then, we discuss the
notation of security of a blind digital signature scheme
and a hidden digital signature scheme.

Attacks on a Digital Signature Scheme. Attacks
are Key-Only Attacks and Message Attacks. In Key-Only
Attacks, the adversary knows only the real signer’s public
key. In Message Attacks, the adversary is able to inspect
some signatures corresponding to either a known or
chosen-message before his attempt to break the scheme.
Goldwasser, Micali, and Rivest [14] identified four
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q : prime power, the order of the finite field Fq

E (Fq) : elliptic curve has embedding degree k
p : prime, p |#E(Fq)
G : additive cyclic subgroup of E (Fq)
P : point on the elliptic curve and the group generator of G
GT : multiplicative cyclic subgroup of F ∗

q

e : pairing, e : G × G → GT

e(P, P) : the group generator of GT

Q : the signer′s public key, point on the elliptic curve Q = x · P ∈ G
H : cryptographic hash function H : {0, 1}

∗

→ G
h : cryptographic hash function h : {0, 1}

∗

→ Z∗

p

Requester R Signer S

M : message x : signer′s secret key x ∈ Z∗

p

Computes r= m · Q
r = m·Q
−→

r
′

= 1
x · r

= 1
x · m · Q

= 1
x · m · x · P

= m · P
z =< nounce||date||place >

s =
(

H(z) + r
′

)

· 1
x = H(z) + r

′

x

(s, z)
←−

[

s=H(z) + r
′

x , z

]

Figure 1: Signing protocol

Message Holder H V erifier V

(s, z) , M
(s, z), M
−→

e (s, Q)
?
= e (H (z) + m · P, P)

Figure 2: Verification protocol

kinds of message attacks grouped according to how the
messages are chosen, and whose signatures the adversary
sees. The following message attacks are listed in order
of increasing severity, with the adaptive chosen-message
attack being the most severe natural attack an adversary
can mount: Known Message Attacks, Generic Chosen
Message Attack, Directed Chosen Message Attack, and
Adaptive Chosen Message Attack.

Breaking a Signature Scheme. The adversary breaks
the signer S ’s signature scheme, if his attack allows him to
do any of the following with a non-negligible probability
(the kinds of “breaks” are listed in order of decreasing
severity):

A Total Break: Compute S ’s secret trap-door informa-
tion.

Universal Forgery: Find an efficient signing algorithm
functionally equivalent to S ’s signing algorithm

(based on possibly different but equivalent trap-door
information).

Selective Forgery: Forge a signature for a particular mes-
sage chosen a priori by the adversary.

Existential Forgery: Forge a signature for at least one
message. The adversary has no control over the mes-
sage whose signature he obtains, so it may be random
or nonsensical. Rompel showed that signatures se-
cured against existential adaptive chosen-message at-
tacks can be based on general one-way functions [32].
This is illustrated in Theorems 2 and 3.

Theorem 2. Under the assumption that one-way func-
tions exist, one-way hash functions also exist.

Theorem 3. Under the assumption that one-way func-
tions exist, there also exists a signature scheme which is
secure against existential forgery under adaptive chosen
message attacks.
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Proof. Refer to [32].

Security Notation of Blind and Hidden Signature
Schemes. In [23], Jules et al. show how the security and
blindness properties for blind digital signatures can be si-
multaneously defined and satisfied, assuming an arbitrary
one-way trapdoor permutation family. They formally de-
fined the notation of security of a blind digital signature
scheme. Briefly, a blind digital signature scheme is secure
if it satisfies both blindness and a non-forgeability prop-
erty, non-forgeability meaning that after getting l signa-
tures, it is infeasible for the adversary to compute l+1
signatures. Other formal definitions for blind digital sig-
natures appear in [28, 29, 30] where the non-forgeability
is called “one more” forgery. More definitions as (l, l+1)-
forgery and the strong “one more”-forgery are introduced
in [30]. In the context of blind signatures, the authors
of [28] see that the definitions of security against the
attacks, that we mentioned above, are no longer signif-
icant. In fact, they see that the existential forgery un-
der an adaptively chosen message is somehow the basis
for blind signatures. This is true in the case of strong
blind signatures due to the fact that the requester modi-
fies the signature in the unblinding phase and gets a dif-
ferent signed “message” than the one he received from the
signer. Fortunately, this not the case in the proposed hid-
den signature scheme. The requester cannot modify the
output of the signing protocol. Hence, we are still able to
analyze the security of our scheme through the definitions
in this section to achieve the non-forgeability property.

5.2 Inverse Computational Diffie-

Hellman Assumption Security

In the signing algorithm, Subsection 4.1, the signature
is constructed through calculating a point on the elliptic
curve E(Fq). In this arithmetic operation, the “s” part
of the signature is the resultant of multiplying the term
(H(z) + r

′

) by 1
x
. Note that (H(z) + r

′

) is a point on

the elliptic curve E(Fq) and the term (H(z)+r
′

)
x

is also a
point on the elliptic curve E(Fq). The only one who can
perform this operation is the signer, who is the owner of
the secret x. The construction of the signature is based
on the Inverse Computational Diffie-Hellman assumption
(InvCDH), which first appeared in [25]. To find the hard-
ness equivalence of this signature with respect to Com-
putational Diffie-Hellman assumption (CDH), first we re-
view CDH. As in Section 3, Computational Diffie-Hellman
is referred to as: on input P, aP, Q, outputs aQ.

An algorithm that solves the computational Diffie-
Hellman problem is a probabilistic polynomial Time Tur-
ing Machine, on input P, aP, Q, outputs aQ with non-
negligible probability. The Computational Diffie-Hellman
assumption means that there is no such a probabilistic
polynomial time Turing machine. This assumption is be-
lieved to be true for many cyclic groups, such as the prime
subgroup of the multiplicative group of finite fields [10].

In [1], Bao et al. study various computational and de-
cisional Diffie-Hellman problems by providing reductions
between them in a high granularity setting. They con-
sidered the variations of Diffie-Hellman problems defined
over some cyclic group with an explicit group structures.
One variant of these computational Diffie-Hellman prob-
lem is the Inverse Computational Diffie-Hellman assump-
tion. They showed that all variations of computational
Diffie-Hellman problems are equivalent to the classic com-
putational Diffie-Hellman problem if the order of an un-
derlying cyclic group is a large prime. Also, they showed
the same for variations of the decisional Diffie-Hellman
problem except for the square decisional Diffie-Hellman
problem, which did not prove or disprove the equivalence
and they left it as an open problem.

The Inverse Computational Diffie-Hellman problem
(InvCDH) is referred to as: P, xP , outputs 1

x
P . The

value 1
x

is the multiplicative inverse of x ∈ Z∗

p . An
algorithm that solves the inverse computational Diffie-
Hellman problem is a probabilistic polynomial Time Tur-
ing Machine, on input P, xP , outputs 1

x
P with non-

negligible probability. The Inverse computational Diffie-
Hellman assumption means that there is no such a prob-
abilistic polynomial Time Turing Machine.

Theorem 4. [1] All variations of the computational
Diffie-Hellman problem are equivalent to the classic com-
putational Diffie-Hellman problem if the order of an un-
derlying cyclic group is a large prime.

Proof. Refer to [1] Section 2.

To illustrate the importance of Theorem 4, let us ana-
lyze the following two attack scenarios and see how they
fail:

Attack 1. In this attack an adversary requests the signer
to sign a message m = 1. The signature will then be

s = (H(z)+P )
x

. He has to figure out P
x

given P, xP ,

because he aims to get H(z)
x

and according to Theo-
rem 4, this is hard.

Attack 2. In this attack an adversary sends r = P as
a blinded message to the signer so the resultant sig-

nature will be s =
(H(z) + P

x )
x

. This signature cannot
pass through the verification protocol because the ad-
versary cannot provide either P

x
or a message that is

equivalent to the secret 1
x
. From Theorem 4, this

attack cannot succeed.

5.3 Proposed Scheme Security Aspects

In this subsection we discuss the security aspects of our
proposed scheme. Our security analysis is twofold: first, it
analyzes the blindness aspect in the proposed scheme. It
then analyzes non-forgeability aspect. We consider these
two aspects, because the former is the core goal in the
proposed scheme to hide the message and the latter is a
mandatory property in any digital signature scheme.
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5.3.1 Blindness

“Blindness” means that the signer cannot know the con-
tent of the signed message as long as m is unrevealed by
the message’s owner, the requester of the signature. In
the proposed scheme, the blindness algorithm depends on
the hardness of the discrete logarithm problem in a group
defined over an elliptic curve and there is no known al-
gorithm that enables the efficient computation of discrete
logs in this setup. Hence, from the signer’s point of view,
calculating m from mP is a hard problem and it is equiv-
alent to solving a discrete logarithm problem in a group
defined over an elliptic curve.

On the other hand, the adversary cannot even guess
the mP , because he sees only mQ and to calculate m he
needs to perform a total break of the cryptosystem by
figuring out 1

x
to get mP . After this, the adversary has

to calculate m from mP which is a hard problem and is
equivalent to solving a discrete logarithm problem in a
group defined over an elliptic curve. As a result of this, m
remains secret even if the cryptosystem is totally broken
by compromising the secret key of the signer and the old
signatures are still valid as if the message was undisclosed.
In case of a total break of the cryptosystem, the signature
can be verified by comparing the signature parameter z
with the signer’s database.

5.3.2 Non-forgeability

Theorem 5. If s
′

is a random signature that has never
been signed by the signer, then the verifier will accept s

′

,
as a valid signature for H (z) + r

′

with probability 1/p.

Proof. Since any group of prime order is cyclic, it follows
that subgroup G is isomorphic to Zp.

The proposed scheme satisfies Theorem 4 and Theorem
5. Theorem 4 implies that the attacker cannot guess the
signer’s secret key from Q except with negligible proba-
bility equal to 1/p. Also, Theorem 5 implies that the at-
tacker cannot guess a random signature, s

′

, on H (z) + r
′

except with negligible probability equal to 1/p. Hence,
both Theorems 4 and 5 prevent key-only attacks from
succeeding. Moreover, Theorems 4 and 5 prevent a total
break of the proposed signature scheme.

Theorem 6. Given:

1) A message m1.

2) Its corresponded signature (s1, z1) that is signed by
the signer S, where z1 is the signer’s stamp on s1.

3) A chosen stamp z2, where z2 6= z1, by the adversary.

Then:
To find any random message m2, where m2 6= m1, that

satisfies s1 = (H(z2)+m2P )
x

is of a hardness equivalence to
that of DLP in a group defined over an elliptic curve.

Given a signature (s1,z1
) such that s1 = (H(z1)+m1P )

x
,

the forgeability of s1 is of a %hardness equivalence to that

of DLP in a group defined over an elliptic curve to find

any random m2 that satisfies s1 = (H(z2)+%m2P )
x

for a
chosen z2.

Proof. Assume that s1 = (H(z1)+m1P )
x

= (H(z2)+m2P )
x

,
hence(H(z1) + m1P ) = (H(z2) + m2P ) andm2P =
H(z1) − H(z2) + m1P .

Theorem 7. Given:

1) A message m1.

2) Its corresponding signature (s1, z1) that is signed by
the signer S, where z1 is the signer’s stamp on s1.

3) A chosen message m2, where m2 6= m1, by the ad-
versary.

Then:
To find any random stamp z2, where z2 6= z1, that satisfies

s1 = (H(z2) + m2P )
x

is of a hardness equivalence to that of
breaking a secure hash function algorithm.

Given a signature (s1, z1) such that s1 =
(H(z1)+ m1P )

x
, the forgeability of s1 is of a hardness

equivalence to that of breaking a secure hash func-
tion algorithm to find any random z2 that satisfies

s1 = (H(z2)+ m2P )
x

for a chosen m2.

Proof. Assume that s1 = (H(z1)+m1P )
x

= (H(z2)+m2P )
x

,
hence (H(z1) + m1P ) = (H(z2) + m2P ) and H(z2) =
m1P − m2P + H(z1) = (m1 + p − m2)P + H(z1).

According to Theorems 2, 3, and 7, the proposed
scheme is secure against an existential adaptive chosen
message attacks. The adaptive chosen message attack is
the most common type of attack in our application. To
illustrate the role of Theorem 7, let us analyze the two
following attack scenarios and see how they fail.

Attack 1. In this attack the requester aims to have a
signature on m2 using a legitimate signature s1 that

he has on m1. Given that s1 = (H(z1)+ m1P )
x

, the

requester calculates s2 = m2

m1

s1 = m2

m1

· H(z1)+m1P

x
=

m2

m1
H(z1)+m2P

x
, so the attack is reduced to find z2 such

that H (z2) = m2

m1

H (z1). From Theorem 7, this at-
tack cannot succeed.

Attack 2. In this attack the requester aims to use two
legitimate signatures, for which he knows the cor-
responding messages, to get a new signature on
the sum of these two ”hash” messages (the new
message is likely to be meaningless). Given that

s1 = (H(z1)+ m1P )
x

and s2 = (H(z2) + m2P )
x

, the re-

quester calculates sn = s1 + s2 = (H(z1)+ m1P )
x

+
(H(z2)+ m2P )

x
, so the attack is reduced to find zn such

that H (zn) = H (z1)+H (z1). From Theorem 7, this
attack cannot succeed.
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Theorem 8. Given a signature (s1, z1) such that s1 =
(H(z1)+ m1P )

x
, the hardness of finding certain m2 and z2

pair such that s1 = (H(z2) + m2P )
x

is hard enough as The-
orem 6 or Theorem 7.

Proof. Each of Theorems 6 and 7 has hardness degree
in finding random m2(or z2) given z2 (or m2) respec-
tively, adding more constraints on the randomness value
of m2(z2) but to be chosen in a certain way, does not re-
duce the problem hardness. Hence Theorems 6, 7, and
8 hold in the proposed scheme, the proposed scheme is
secure against the selective forgery attack.

6 Conclusion

If the signer has no interest in the message but the owner
(the requester of the signature) has a special interest in
the anonymity of the message, such as in notary services,
we refer to such an application as a service with no con-
flict of interest. This is because the contributing parties in
these applications are not interested in others’ messages.
Hence, a hidden signature can replace the strong blind sig-
nature in such an application. Also, the requester’s ability
to modify the signature might be an undesired property
in some applications. For example, when a notary signs
a client’s (the requester) last will without knowing the
content of it during the requester’s lifetime. Later, when
the lawyer reveals the message, the devisee or any entity
can verify that the testament was signed by the notary.
It will still be possible to check that the notary signed
the testament even if the signature scheme has been bro-
ken in the meantime. The notary just looks in his list of
signature parameters and compares the given signature
parameters with his stored ones. This kind of applica-
tion is also possible with weak blind signatures but not
with strong signature schemes, because in the strong blind
schemes the notary cannot find any relation between the
given and the stored parameters. Other applications of
hidden and weak blind signature schemes might be for
pseudonymous credentials or anonymous access control.

Moreover, the proposed scheme allows the signer to in-
sert a piece of temporal or spatial information in the sig-
nature that prevents the requester from modifying both
these pieces of information as well as the signature. All
of this is done without misusing the blindness property.
Moreover, utilizing bilinear pairing in the proposed pro-
tocol makes use of the benefits of elliptic curve systems
in terms of security and efficiency issues. The proposed
scheme is proven to be secure against the existential adap-
tive chosen message attack. The existential adaptive cho-
sen message attack is the natural and most severe attack
in testament applications.
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