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Abstract

Using Russian digital signature (DS) standards as the un-
derlying scheme there are designed the blind DS protocols
that are the first known implementation of the blind DS
based on signature standards. There are also proposed
blind collective DS protocols based on the DS standards.
The last protocols are also the first implementation of the
blind multi-signature schemes using the signature verifi-
cation equations specified by DS standards.
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1 Introduction

The digital signature (DS) protocols are widely used in
information systems to solve different practical problems
of the messages authentication. A variety of the DS pro-
tocols has been proposed in the literature [4, 9, 19], in-
cluding multi-signature schemes [1, 7, 17]. A particular
type of the protocols, called blind signature schemes [2],
are especially interesting for application in the electronic
money systems and in the electronic voting systems. The
properties of the blind signatures are [17]:

1) The signer can not to read the document during pro-
cess of signature generation;

2) The signer can not correlate the signed document
with the act of signing.

The first property is provided by variety of DS algo-
rithms in which the signature generation procedure uses
the hash function value computed from the document to
be signed. Actually, some user U is able to compute the
hash value and to keep the document in secret. Then
he can submit the document for signing and get the DS
relating to the document. However the second property
is not satisfied with this mechanism, since the signer can
correlate the signature (if it is provided to him) with the
act of signing. To make such correlation it is enough to
keep records of every blind signature and hash function
value submitted for signing.

The problem of providing the second property is known
as anonymity (or untraceability) problem. To solve this
problem there are used specially designed DS algorithms.
There are known blind signature schemes based on diffi-
culty of the factorization problem [3] and on difficulty of
finding discrete logarithm [15]. Usually, the blind signa-
ture scheme is designed on the basis of some known DS al-
gorithm, for example the RSA algorithm [16] or Schnorr’s
DS algorithm [15, 18].

To provide the anonymity of the signature and hash
function value (or message submitted for signing) there
are used so called blinding factors. Prior to submit a
hash function value (or message M) for signing the user
U computes the hash function value H and multiplies H
(or M) by a random number (blinding factor). Then the
user submit the blinded hash function value (or blinded
document) for signing. The signer signs the blinded value
H (or M) producing the blinded signature that is deliv-
ered to user U. The user divides out the blinding factor
producing the valid signature to the original hash function
value (or directly to the original document).

For practical applications it is interesting to use the
blind signature schemes based on the DS algorithms spec-
ified by the DS standards. This paper is devoted to con-
struction of the blind signature protocol based on Russian
DS standards GOST R 34.10-94 and GOST R 34.10-2001.

In the second section there are proposed blind signa-
ture schemes based on these standards. The third section
presents the implementation of the blind collective signa-
ture schemes [14] using the DS standards. The length of
the blind collective DS does not depend on the number
of the signers sharing the signature. Section 4 presents
discussion on performance and security of the proposed
protocols. It is shown that using the blind collective DS
protocols requires performing the procedure on testing
the public key correctness. There are formulated several
reductionist security claims. An approach to give the ar-
guments to the claims is proposed. The fifth section con-
cludes the paper.
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2 Blind Signature Protocols

Based on Russian Standards

2.1 Using GOST R 34.10-94

The standard GOST R 34.10-94 [5] specifies the following
signature verification equation

r =
(

gs/hY −r/h mod p
)

mod q, (1)

where p a prime such that p − 1 contains a large prime
factor q; the value g is generator of the q order subgroup
in F

∗

p; Y is the public key computed as Y = gz mod p;
z is the secret key (F∗

p denotes the multiplicative group
of the finite field Fp). The signature generation to some
message M is described as follows.

1) Generate a random value k and compute the value
ρ = gk mod p. Then compute the value r = ρ mod q
which is the first element of the signature.

2) Using the hash function Fh specified by the standard
compute the hash value h from the message M .

3) Using the secret key compute the value

s = kh + zr mod q,

which is the second element of the signature.

Verification of the signature (r, s) to the message M is
performed as follows:

1) Compute the hash value h from the message M : h =
Fh(M).

2) Compute the value r∗ =
(

gs/hY −r/h mod p
)

mod q.

3) Compare values r∗ and r. If r∗ = r, then the signa-
ture is valid. Otherwise the signature is rejected.

The described DS algorithms can be put into the base
of some blind signature protocol using the blinding factors
δ, τ , Y µ mod p, and gǫ mod p, where the numbers 0 <
δ < q, 0 < τ < q, 0 < µ < q, and 0 < ǫ < q are selected
at random. The blinded signature generation procedure
is provided with the following blind signature protocol
based on the standard GOST R 34.10-94. Two persons
participate in the protocol, namely, the signer and the
user U having intention to get a blind signature to the
message M .

1) The signer generates the random value k, computes
the value ρ = gk mod p and sends ρ to the user U.

2) The user U computes the hash value h′ from the mes-
sage M : h′ = Fh(M). Then he generates random
values τ, µ, ǫ, δ ∈ {1, 2, · · · , q − 1} and computes the
blinded value h = τh′ and values

ρ′ = ρ1/δY µgǫ mod p, (2)

r′ = ρ′ mod q,

r = τδ(r′ + µh′) mod q. (3)

The value r′ is the first element of the signature to
message M .

3) The user U sends the values h and r to the signer.

4) The signer computes the value s = kh + zr mod q
and sends s to the user U.

5) The user U computes the second element s′ of the
signature to message M :

s′ =
(

τ−1δ−1s + ǫh′
)

mod q. (4)

The signature (r′, s′) is a valid signature to message M .

Correctness proof of the protocol. The element s
of the blinded signature computed at step 4 satisfies the
equation s = kh + zr mod q, therefore we have the con-
gruences

gs ≡ g(kh+zr) ≡ gkhgzr mod p

⇒ ρ ≡ gk ≡ gs/hg−zr/h mod p. (5)

Taking into account that from (4) we have the equality
r′ =

(

τ−1δ−1r − µh′
)

mod q the right part of the signa-
ture verification Equation (1) can be written as follows.

(

g
s′

h′ Y −
r′

h′ mod p
)

mod q

=

(

g
τ−1δ−1s+ǫh′

h′ Y −
τ−1δ−1r−µh′

h′ mod p

)

mod q

=
(

g
s

δτh′
+ǫY −

r
δτh′

+µ mod p
)

mod q

=
(

g
s

δh gǫY
r

δh Y µ mod p
)

mod q

=
(

(

g
s
h Y −

r
h

)1/δ
gǫY µ mod p

)

mod q

=
(

ρ1/δY µgǫ mod p
)

mod q

= ρ′ mod q

= r′.

The right part of the signature verification equation is
equal to the signature element r′, therefore the signature
is valid. Thus, the protocol performs correctly. The pro-
duced signature (r′, s′) is known for user U and unknown
for the signer.

The protocol provides anonymity of the user in the
case when the message M and signature (r′, s′) will be
disclosed to the signer. The disclosed signature and
document can be correlated with each tetrad (ρ, r, s, h)
recorded by the signer (it is supposed the signer records
in a file all tetrads (ρ, r, s, h) produced by each of the per-
formed blind DS procedures), since there exists a quadru-
ple of the values τ, µ, ǫ, δ ∈ {1, 2, · · · , q − 1} such that
Equations (2), (3), and (4) hold, for each of the tetrads
(ρ, r, s, h).

Indeed, it can be shown that with probability 1−q−1 ≈
1 for arbitrary of the mentioned correlations there exists
a unique quadruple (τ, µ, ǫ, δ) satisfying Equations (2)-
(4), therefore all of the correlations have the same prob-
ability. Actually, the value τ is defined by formula τ =
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H/H ′ mod q. The values µ, ǫ, δ can be computed from
Equations (2)-(4) as follows. Note that δ−1k + zµ + ǫ =
logg ρ′ = L, where L < q, since accordingly to the blind
signature protocol the value ρ′ is computed as an integer
power of g (see Formula (2)): ρ′ = gk/δgzµgǫ. The value ρ′

is computed as an intermediate value, while performing
the signature verification procedure. Thus, taking into
account the relation between r and r′, s and s′, we get
the following system of three linear congruences with un-
knowns µ, ǫ, δ−1:







δ−1k + zµ + ǫ ≡ L mod q
τ−1δ−1r − µh′ ≡ r′ mod q
τ−1δ−1s + ǫh′ ≡ s′ mod q.

With very low probability, equal to q−1 < 2160 the de-
terminant of this system is equal to zero, therefore prac-
tically in all cases this system has solution. This means
that arbitrary disclosed signature r′, s′ can be associated
with arbitrary tetrad (ρ, r, s, h) recorded by the signer
with the unique quadruple (τ, µ, ǫ, δ), where δ is computed

as δ =
(

δ−1
)

−1
mod q.

2.2 Using GOST R 34.10-2001

The standard GOST R 34.10-2001 [6] specifies a DS al-
gorithm based on elliptic curves (ECs) over finite field
(for details of the application of the ECs in cryptogra-
phy see [10, 12]). The specified EC is described by the
following equation

y2 = x3 + ax2 + b mod p, (6)

where p is a prime and coefficients a and b are selected so
that the EC order contains a large prime factor q. Points
of the EC are pairs of numbers x and y (0 < x < p,
0 < y < p) called abscissa and ordinate, which satisfy
Equation (6). The EC represents a commutative finite
group with the point addition operation as the group op-
eration. The multiplication of some EC point A by num-
ber m is defined as mA = A + A + · · · + A (m times).
The neutral element of the group of the EC points is
the point in infinity denoted O. On definition we have
A + O = O + A = A and mO = O.

The addition of the points A = (xA, yA) and B =
(xB , yB) is performed with the following formulas for
computing the abscissa xC and ordinate yC of the point
C = A + B:

xC = λ2 − xA − xB mod p

yC = λ(xA − xC) − yA mod p,

where

λ =

{

yB−yA

xB−xA
mod p, if A 6= B

3x2
A+a

2yA
mod p, if A = B.

Subtraction of the points B and A = (xA, yA) is defined
as follows B − A = B + (−A), where −A = (xA,−yA).

In GOST R 34.10-2001 the public key is some EC point
Q computed as follows Q = zG mod p, where z is the
secret key and G is the EC point having the order q. The
signature to some message M is generated as follows:

1) Generate a random value k, compute the point C =
kG and define r = xC . The value r is the first element
of the signature.

2) Using the hash function Fh specified by the standard
compute the hash value h from the message M : h =
Fh(M). Then it is computed value e = h mod q.

3) Using the secret key compute the value s = ke +
zr mod q, which is the second element of the signa-
ture.

Verification of the signature (r, s) to the message M is
performed as follows:

1) Compute the hash value h from the message M : h =
Fh(M). Then compute e = h mod q.

2) Compute the point C∗ =
(

e−1s mod q
)

G −
(

e−1r mod q
)

Q. Define r∗ = xC∗ , where xC∗ is the
abscissa of the point C∗.

3) Compare values r∗ and r. If r∗ = r, then the signa-
ture is valid. Otherwise the signature is rejected.

Using the described DS algorithms one can compose
a blind signature protocol like in the case of GOST R
34.10-94. In the case of the blind DS protocol based on
the standard GOST R 34.10-2001 there are also used the
blinding parameters δ, τ, µ, ǫ ∈ {1, 2, · · · , q − 1}, which
are generated at random. The blind signature protocol
based on the standard GOST R 34.10-2001 is described
as follows.

1) The signer generates the random value k, computes
the point C = kG and defines r = xC . The value r
is sent to the user U.

2) The user U computes the hash value h′ from the
message M : h′ = Fh(M) and then the value
e′ = h′ mod q. Then he generates random values
τ, µ, ǫ, δ ∈ {1, 2, · · · , q−1} and computes the blinded
value e = τe′, the point C′ = (δ−1 mod q)C + µQ +
ǫG, r′ = xC′ , and r = τδ(r′ + µh′) mod q (r′ is the
first element of the DS to message M .)

3) The user U sends the value r to the signer.

4) The signer computes the value s = ke+zr mod q and
sends s to the user U.

5) The user U computes the second element s′ of the
signature to message M :

s′ =
(

τ−1δ−1s + ǫh′
)

mod q.
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The signature (r′, s′) is a valid signature to message M .

Correctness proof of the protocol. The element s
of the blinded signature computed at step 4 satisfies the
equation s = ke+zr mod q, therefore we have the equality

sG = (ke + zr mod q)G = keG + zrG

⇒ C = kG = (se−1 mod q)G − (zre−1 mod q)G.

Taking into account that r′ =
(

τ−1δ−1r − µe′
)

mod q one
can write

C∗ =

(

s′

e′
mod q

)

G −

(

r′

e′
mod q

)

Q

=

(

τ−1δ−1s + ǫe′

e′
mod q

)

G

−

(

−
τ−1δ−1r − µe′

e′
mod q

)

Q

=

(

1

δ
mod q

)

((s

e
mod q

)

G −
(r

e
mod q

)

Q
)

+ǫG + µQ

=

(

1

δ
mod q

)

C + ǫG + µQ

= C′

⇒ r∗ = xC∗ = xC′ = r′.

Thus, the protocol performs correctly. The produced
signature (r′, s′) is known for user U and unknown for
the signer. The protocol provides anonymity of the user
in the case when the message M and signature (r′, s′)
will be disclosed to the signer. With the same probability
the disclosed signature and document can be associated
to each tetrad (C, r, s, h) recorded by the signer. This
fact can be demonstrated like in the case of the blind DS
protocol based on the GOST R 34.10-94.

3 Blind Collective Signature

Schemes from Russian DS Stan-

dards

3.1 Schemes Based on GOST R 34.10-94

To implement the blind collective DS protocol based on
standard GOST R 34.10-94 we have used the design of the
collective DS based on this standard, which was proposed
earlier in [13]. In that construction we have introduced
the blinding mechanism described above and get the fol-
lowing protocol.

The user U and m signers participate in the protocol.
The public keys of the signers are Yi = gzi mod p, where
i = 1, 2, · · · , m and zi is the secret key of the ith signer.
The user U has intention to get a blind signature to some
message M .

1) Each ith signer generates the random value ki,
computes the value ρi = gki mod p, where i =

1, 2, · · · , m. Then it is computed the common value
ρ =

∏m
i=1 ρi mod p = g

∑m
i=1

ki mod q mod p.

2) The value ρ is sent to the user U.

3) The user U computes the hash value h′ from the
message M : h′ = Fh(M). Then he generates ran-
dom values τ, µ, ǫ, δ ∈ {1, 2, · · · , q−1} and computes
the blinded values h = τh′, ρ′ = ρ1/δY µgǫ mod p,
r′ = ρ′ mod q, and r = τδ(r′ + µh′) mod q. (The
value r′ is the first element of the signature to mes-
sage M .)

4) The user U sends the values r and h to the signer.

5) Each ith signer computes the value si = kih +
zir mod q, where i = 1, 2, · · · , m. Then the signers
compute the common value s =

∑m
i=1 si mod q.

6) The value s is sent to the user U.

7) The user U computes the second element s′ of the
collective signature to message M :

s′ =
(

τ−1δ−1s + ǫh′
)

mod q.

The signature (r′, s′) is a valid signature to message
M . The collective signature verification is performed
with the verification Equation (1), where Y is the
collective public key computed as product of individual
public keys of all signers, i.e. Y =

∏m
i=1 Yi mod p.

Correctness proof of the protocol. Each share si

of the second element s of the blind collective signature,
which is computed at step 4 satisfies the equation si =
kih + zir mod q, therefore we have the congruences

gsi ≡ g(kih+zir) ≡ gkihgzir mod p

g
∑m

i=1
si ≡ gh

∑m
i=1

kigr

m
∑

i=1

zi mod p

ρ = g
∑m

i=1
ki mod p = gs/hY −r/h mod p,

where Y =
∏m

i=1 Yi mod p = g
∑m

i=1
zi mod p. Taking

into account the equality r′ =
(

τ−1δ−1r − µh′
)

mod q the
right part of the collective signature verification equation
can be written as follows

(

g
s′

h′ Y −
r′

h′ mod p
)

mod q

=

(

g
τ−1δ−1s+ǫh′

h′ Y −
τ−1δ−1r−µh′

h′ mod p

)

mod q

=
(

g
s

δτh′
+ǫY −

r
δτh′

+µ mod p
)

mod q

=
(

g
s

δh gǫY
r

δh Y µ mod p
)

mod q

=
(

(

g
s
h Y −

r
h

)1/δ
gǫY µ mod p

)

mod q

=
(

ρ1/δY µgǫ mod p
)

mod q

= ρ′ mod q

= r′.



International Journal of Network Security, Vol.13, No.1, PP.22–30, July 2011 26

The right part of the signature verification equation is
equal to the signature element r′, therefore the signature
is valid. Thus, the protocol performs correctly. The pro-
duced collective signature (r′, s′) is known for user U and
unknown for the signers.

The protocol provides anonymity of the user in the
case when the message M and signature (r′, s′) will be
disclosed to the signer. With the same probability the
disclosed signature (r′, s′) and document M can be corre-
lated with each tetrad (ρ, r, s, h) recorded by the signers
(it is supposed the signers record all tetrads (ρ, r, s, h) pro-
duced while performing the blind DS procedures). This
property of the protocol can be demonstrated like in the
case of the blind DS protocol described in Section 2.1.

3.2 Scheme Based on GOST R 34.10-

2001

Using GOST R 34.10 2001 the collective DS generation
is designed in the following way. Suppose m signers pos-
sessing public keys Qi = ziG, where zi is the secret key
of the ith signer (i = 1, 2, · · · , m) are to sign a document
M with a single signature. This task is solved by the
following protocol.

1) Each ith signer selects at random a value ki and com-
putes the EC point Ci = kiG, where G is the q order
point of the EC (q is a prime).

2) It is computed the common randomization point
C = C1 +C2 + · · ·+Cm and the randomization value
r = xC mod q. The value r is the first part of the
collective DS.

3) It is computed the hash value from the document
h = FH(M) and the value e = h mod q.

4) Each user computes his share in the composite DS
as follows si = (zir + kie) mod q, where di < q is the
secret key of the ith user, e = H mod q, H Is the
hash function value.

5) The second part of the collective signature is s =
∑m

i=1 si mod q. The full collective DS is (r, s).

The signature (r, s) is a valid collective signature to
message M . The verification of the signature (r, s) is per-
formed as follows.

1) Compute the collective public key as the point Q =
∑m

i=1 Qi.

2) Compute the EC point C∗ =
(

se−1 mod q
)

G −
(

re−1 mod q
)

Q.

3) Compute the value r∗ = xC∗ mod q and compare r∗

and r. If r∗ = r, then the collective DS is valid.

Combining this protocol with the blind signature pro-
tocol based on GOST R 34.10-2001 we have constructed
the following blind collective signature protocol.

1) Each ith signer selects at random a value ki and com-
putes the EC point Ci = kiG. Then they compute
the common randomization point C = C1+C2+· · ·+
Cm.

2) The point C is sent to the user U that is going to get
a blind signature to some message M .

3) The user U computes the hash value h′ from the
message M : h′ = Fh(M) and then the value
e′ = h′ mod q. Then he generates random values
τ, µ, ǫ, δ ∈ {1, 2, · · · , q − 1} and computes the value
e = τe′, the point C′ =

(

δ−1 mod q
)

C + µQ + ǫG,
r′ = xC′ , and r = τδ(r′ + µh′) mod q (r′ is the first
element of the DS to message M .)

4) The user U sends the value r to the signer.

5) The ith signer computes the value si = kie+zir mod
q, i = 1, 2, · · · , m.

6) The signers compute the second element s of the col-
lective blind signature as follows s =

∑m
i=1 si mod q.

The blind collective DS is (r, s).

7) The value (r, s) is sent to user U.

8) The user U computes the second element s′ of the
collective signature to message M :

s′ =
(

τ−1δ−1s + ǫh′
)

mod q.

The signature (r′, s′) is a valid collective signature to
message M .

Correctness proof of the blind collective DS pro-

tocol. Each share si of the second element of the blinded
collective signature s computed at step 4 satisfies the
equation si = kie+zir mod q, therefore we have the equal-
ity

siG = (kie + zir mod q)G = kieG + zirG

Ci = kiG = (sie
−1 mod q)G − (zire

−1 mod q)G

C =

m
∑

i=1

Ci =

(

1

e

m
∑

i=1

si mod q

)

G

−

(

r

e

m
∑

i=1

zi mod q

)

G

=
(

se−1 mod q
)

G −
(

re−1 mod q
)

Q.

Taking into account the equality r′ =
(

τ−1δ−1r − µe′
)

mod q the right part of the signa-
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ture verification equation can be written as follows.

(

s′

e′
mod q

)

G −

(

r′

e′
mod q

)

Q

=

(

τ−1δ−1s + ǫe′

e′
mod q

)

G

−

(

τ−1δ−1r − µe′

e′
mod q

)

Q

=

(

1

δ
mod q

)

((s

e
mod q

)

G −
(r

e
mod q

)

Q
)

+ǫG + µQ

=

(

1

δ
mod q

)

C + ǫG + µQ = C′

r∗ = xC∗ = xC′ = r′.

The right part of the signature verification equation
is equal to the signature element r′, therefore the signa-
ture is valid. Thus, the protocol performs correctly. The
produced signature (r′, s′) is known for the user U and un-
known for the signers. The protocol provides anonymity
of the user in the case when the message M and signa-
ture (r′, s′) will be disclosed to the signer. The disclosed
signature and document can be associated to each tetrad
(C, r, s, h) recorded by the signer. This fact can be demon-
strated like in the case of blind signature considered in
Section 2.1.

4 Discussion on Performance and

Security

Performance of the proposed crypto-schemes is defined
mainly by the signature generation and verification pro-
cedures specified by the used DS standards. To get higher
performance of the blind signature, collective signature,
and blind collective signature protocols it is efficient to
use the DS standards providing higher performance, for
example the USA standards DSA and ECDSA [8]. Un-
fortunately, majority of the official standards including
DSA and ECDSA do not allow developing such proto-
cols without modifying their specified signature genera-
tion and verification procedures. Trying different other
DS standards we have succeeded to design the protocols
based on the Russian signature standards GOST R 34.10-
94 and GOST R 34.10-2001 possessing sufficiently high
performance for variety of different practical applications.

The performance of the protocols can be roughly es-
timated taking into account only the exponentiation and
EC point multiplication operations. The signature verifi-
cation in the designed protocols takes two exponentiation
operations in the case of using GOST R 34.10-94 or two
EC point multiplication operations in the case of GOST
R 34.10-2001. The blind signature generation takes 4 op-
erations. The collective DS generation takes m operations
in the case of the DS shared by m signers. The blind col-
lective DS generation takes m + 3 operations in the case

of the DS shared by m signers. Table 1 presents compar-
ison of the computation complexity of the protocols and
the Russian DS standards in the case of 80-bit security.
(Note that the Russian standards specify the minimum se-
curity level equal to 80-bit security for GOST R 34.10-94
and to 128-bit security for GOST R 34.10-2001. Indeed,
the GOST R 34.10-94 specifies using 1024-bit modulus
and the GOST R 34.10-2001 specifies using the minimum
size of the ground field characteristic equal to 256 bits.
However to compare the performance it is reasonable to
consider the same security level for the both standards.)

The GOST R 34.10-2001 possesses higher performance
than GOST R 34.10-94. Indeed, the EC point multipli-
cation operation takes about 2400 multiplications modulo
160-bit prime against 240 exponentiation operations mod-
ulo 1024-bit prime, which have about the same difficulty
as 9600 multiplications modulo 160-bit prime. Therefore
in the case of 80-bit security the GOST R 34.10-2001 is
about 4 times faster than GOST R 34.10-94.

The designed blind, collective, and blind collective sig-
nature protocols are based on the standards GOST R
34.10-94 and GOST R 34.10-2001, therefore the security
of the protocol depends on the security of the standards
that relates to the DS schemes based on difficulty of find-
ing discrete logarithm. In accordance with [11, 15] among
this type of digital signatures there are DS schemes with
provable security. An example of such DS schemes is the
Schnorr’s signature algorithm [18]. The formal proof of
the security of such DS schemes uses the possibility to
force the forgery program (for details see [11, 15]) to use
the same value of the signature randomization parameter
ρ = gk mod p to produce two different signatures. This
possibility is connected with the computing the hash func-
tion value h from the message to which the parameter ρ
is concatenated: h = Fh(M, ρ). This design feature re-
quire generation of the value ρ before computing the hash
function. Therefore it appears possibility to change sud-
denly the hash function and get two different hash values
computed using the same value ρ : h = Fh(M, ρ) and
h′ = F ′

h(M, ρ) 6= h. (In the formal security proof it is
supposed that two copies of the forgery program are exe-
cuted on to different computers using the same sequence
of random bits that are used to make choices at various
points in the work of the programs).

However, like in the USA standards DSA and
ECDSA [8] in the standards GOST R 34.10-94 and GOST
R 34.10-2001 the hash fuction is evaluated only as a func-
tion of the massage M , i.e. h = Fh(M), and the value
h does not depend on the randomly generated parameter
ρ. Therefore the reductionist security argument in line
with [11, 15] is not possible, since the forgery program
cannot be forced to use the same value ρ while producing
two different signatures for M with different values h. At
present there is no known argument that shows the equiv-
alence of the ability to forge GOST R 34.10-94 or GOST
R 34.10-2001 with the discrete logarithm problem.

Nevertheless the GOST R 34.10-94 or GOST R 34.10-
2001 (like DSA and ECDSA) are official standards that
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Table 1: Comparison of the computation complexity (in multiplications modulo 160-bit prime) of the proposed
protocols and DS standards in the case of the 80-bit security.

DS scheme GOST R 34.10-94 GOST R 34.10-2001

DS generation DS verification DS generation DS verification
standard 2400 4800 600 1200

blind 9600 4800 2400 1200
collective 2400m 4800 600m 1200

blind collective 2400m + 7200 4800 600m + 1800 1200

have sufficiently wide practical application, their security
is based only on detailed security examination by the top
experts though.

In the case of collective DS protocol there is used mod-
ified verification equation. The modification consists in
using the collective public key instead of individual one.
This is a source of the following specific attack that is pos-
sible, if the certification authority does not perform the
correctness verification of the public keys. If an attacker
gets a certificate containing his public key Y ′ computed as
Y ′ = gzY −1

1 Y −1
2 , where Y1 and Y2 are the public keys of

some users, then for arbitrary messages he will be able to
generate the collective DS corresponding to the collective
public key Ycoll = Y ′Y1Y2 = gz. Indeed the collective DS
corresponding to this collective public key is generated
like individual DS, using the value z. This attack can
be easily extended to arbitrary number of signers. Such
attacks based on incorrect generation of public keys are
possible, if there are used no public key correctness ver-
ification procedures. Thus, in the collective DS protocol
we strongly need to provide correctness of the public key
structure. This problem has simple and natural solution
that consists in the following. Before to issue a digital
certificate notifying a public key of some user the certi-
fication authority has to request the user to sign some
message. If public key is correctly generated, then the
user will be able to generate a valid signature. If the user
does not generate such test signature, then he is consid-
ered as potential attacker.

Let us consider security of the proposed collective DS
protocol in the case of using public keys correctness of
which is approved. Suppose it is given a set of public
keys {Y1, Y2, · · · , Ym, · · · } authenticated by the certifica-
tion authority. To forge a collective signature means com-
puting a signature (r∗, s∗) satisfying the verification equa-
tion written for some collective public key.

Claim 1. Any successful attack breaking the collective DS
protocol based on the DS standard GOST R 34.10-94 also
breaks the GOST R 34.10-94.

Claim 2. Any successful attack breaking the collective DS
protocol based on the GOST R 34.10-2001 also breaks the
DS standard GOST R 34.10-2001.

Argument. The participants of the collective DS protocol
have significant more possibilities to attack the protocol
than outsiders. Therefore it is reasonable to consider the

following message forgery attack against the collective DS
protocol based on the standard GOST R 34.10-94 (con-
sideration of the collective DS protocol based on GOST
R 34.10-2001 is analogous).

Suppose it is given a message M and m − 1 signers
attempts to create a collective DS corresponding to m
signers owning the collective public key Y = Y ∗Ym mod
p, where Y ∗ =

∏m−1
i=1 Yi mod p, i.e. m − 1 users unite

their efforts to generate a pair of numbers (r∗, s∗) such
that equation

r∗ =
(

Y −r∗/hgs∗/h mod p
)

mod q

holds. Suppose that they are able to do this, i.e. the col-
lective forger (i.e. the considered m−1 signers) is able to
calculate a valid signature (r∗, s∗) corresponding to col-
lective public key Y = Y1Y2 · · ·Ym mod p. The collective
DS satisfies the following equations:

r∗ =
(

Y −r∗/hgs∗/h mod p
)

mod q

=
(

Y −r∗/h
m Y ∗−r∗/hgs∗/h mod p

)

mod q

=

(

Y −r∗/h
m g

−r∗
∑m−1

i=1
zi

h gs∗/h mod p

)

mod q

r∗ =

(

Y −r∗/h
m g

s∗−r∗
∑m−1

i=1
zi

h mod p

)

mod q.

The last expression represents the signature verification
equation specified by GOST R 34.10-94, which is writ-
ten for the individual signature (r∗, s∗∗) of the mth user,

where s∗∗ =
(

s∗ − r∗
∑m−1

i=1 zi

)

mod q. Thus, the pair of

numbers (r∗, s∗∗) is a forged signature of the mth user
to message M , i.e. an attack breaking the collective DS
scheme also breakes the Russian DS standard. �

Regarding to the blind collective protocols based on
the Russian signature standards there are hold the fol-
lowing reductionist security claims.

Claim 3. Any successful attack breaking the blind collec-
tive DS protocol based on the standard GOST R 34.10-94
also breaks the blind signature scheme based on the GOST
R 34.10-94.

Claim 4. Any successful attack breaking the blind collec-
tive DS protocol based on the standard GOST R 34.10-
2001 also breaks the blind signature scheme based on the
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GOST R 34.10-2001.

Using the analogy with the Claim 1 one can easily give
the argument to each of the last two reductionist security
claims that show the blind collective protocol is as secure
as the underlying blind signature scheme is secure.

A secure blind signature scheme satisfies both the
blindness and the non-forgebility properties. The blind-
ness property of the proposed blind signature and blind
colective signature protocols has been considered in Sec-
tions 2 and 3. Elaboration of the reductionist security ar-
gument for the non-forgebility property of these protocols
is an open problem approaches to which are not evident.
The argument technique [15] proposed for blind signature
schemes based on discrete logarithm problem uses essen-
tially peculiarity of computing the hash function value as
h = Fh(M, ρ), however the Russian DS standards are free
of such peculiarity.

Some informal illustrative justification of the reduc-
tionist security claim that blind signature based on the
GOST standards is as secure as these standards are se-
cure against forgery attacks is the following one. Suppose
there is known some attack on the blind signature, which
provides possibility to compute k+1 signatures from some
random k blind signatures. Then from 2k usual DS it is
possible to compute an additional signature. Indeed, from
Equation (6) written for some blind signature (r, s) and
some blinded hash function value h we have

r =
(

gk mod q
)

=
(

gs/hY −r/h mod q
)

mod p,

i.e. the blind signature satisfies the verification equation
therefore arbitrary two usual signatures (r, s) and (r′, s′)
can be considered as a pair of the blind signature (r, s) and
the signature (r′, s′) computed from the blind one (this
can be easily proved like proving anonimity of the blind
signature in Section 2.1). Thus, one can consider half
of the 2k usual DS as k blind signatures and apply the
supposed attack to generate an additional DS. The last
means that the underlying DS scheme does not provide
non-forgebility property, i.e. it is not secure. However we
believe that the standards GOST R 34.10-94 and GOST
R 34.10-2001 are secure DS algorithms.

5 Conclusion

Two novel items have been presented in the paper. For
the first time the blind signature schemes have been im-
plemented using the official DS standards as the underly-
ing algorithm. New multi-signature schemes called blind
collective DS protocols have been constructed on the base
of the Russian DS standards GOST R 34.10-94 and GOST
R 34.10-2001.

It is interesting to implement the mentioned DS
schemes using some other official DS standards [8], first
of all using the USA standards DSA and ECDSA. Our at-
tempts to use the USA signature standards as the under-
lying algorithms in the blind signature protocols were not

successful. Probably new ideas should be applied to de-
sign blind signature schemes based on DSA and ECDSA.
Authors invite readers to try some approaches to this
problem.

It seems that the blind collective DS protocols are
promising for application in the electronic money sys-
tems in which the electronic banknotes are issued by sev-
eral banks. Using DS standards as underlying signature
schemes of the blind DS protocols appears to be attractive
for practical applications.

Acknowledgments

The work supported by Russian Foundation for Basic Re-
search grant # 10-07-90403-Ukr a.

References

[1] A. Boldyreva, “Efficient threshold signature, mul-
tisignature and blind signature shemes based on the
gap-Diffie-Hellman-group signature sheme”, LNCS
2139, Springer-Verlag, pp. 31-46, 2003.

[2] D. Chaum, “Blind signature systems”, U. S. Patent
# 4-759-063, 19 July 1988.

[3] D. Chaum, “Security without identification: Trans-
action systems to make big brother obsolete”, Com-
munications of the ACM, vol. 28, no. 10, pp. 1030-
1044, 1985.

[4] S. S. M. Chow, “Multi-designated verifiers signatures
revisited”, International Journal of Network Secu-
rity, vol. 7. no. 3, pp. 348-357, 2008.

[5] Government Committee of the Russia for Standards,
Information Technology - Cryptographic Data Secu-
rity - Produce and check procedures of Electronic Dig-
ital Signature based on Asymmetric Cryptographic
Algorithm, Russian Federation Standard: GOST R
34.10-94, 1994 (in Russian).

[6] Government Committee of the Russia for Standards,
Information Technology - Cryptographic Data Secu-
rity - Produce and check procedures of Electronic Dig-
ital Signature, Russian Federation Standard: GOST
R 34.10-2001, 2001 (in Russian).

[7] M. S. Hwang and C. C. Lee, “Research issues and
challenges for multiple digital signatures”, Interna-
tional Journal of Network Security, vol. 1, no. 1,
pp. 1-7, 2005.

[8] ISO, Information Technology - Security Techniques -
Digital Signatures with Appendix - Part 3: Discrete
Logarithm Based Mechanisms, International Stan-
dard ISO/IEC 14888-3: 2006(E).

[9] R. S. Katti and R. G. Kavasseri, “Nonce genera-
tion for the digital signature standard”, International
Journal of Network Security, vol. 11, no. 1, pp. 23-32,
2010.

[10] N. Koblitz, Elliptic Curve Cryptosystems, Mathe-
matics of Computation Advances, vol. 48, pp. 203-
209, 1987.



International Journal of Network Security, Vol.13, No.1, PP.22–30, July 2011 30

[11] N. Koblitz and A. J. Menezes, “Another Look at
Provable Security”, Journal of Cryptology, vol. 20,
pp. 3-38, 2007.

[12] V. Miller, “Use of elliptic curves in cryptography”,
Advances in cryptology: Proceedings of Crypto’85,
LNCS 218, pp. 417-426, 1986.

[13] N. H. Minh, N. A. Moldovyan, and N. L. Minh, “New
multisignature protocols based on randomized signa-
ture algorithms”, 2008 IEEE International Confer-
ence on Research, Innovation and Vision for the Fu-
ture in computing & Communication Technologies,
PP. 23, Ho Chi Minh City, Vietnam, July 13-17,
2008.

[14] N. A. Moldovyan and A. A. Moldovyan, “Blind col-
lective signature protocol based on discrete logarithm
problem”, International Journal of Network Secu-
rity, vol. 11, no. 2, pp. 106-113, 2010.

[15] D. Pointcheval and J. Stern, “Security arguments for
digital signatures and blind signatures”, Journal of
Cryptology, vol. 13, pp. 361-396, 2000.

[16] R. L. Rivest, A. Shamir, and L. M. Adleman, “A
method for obtaining digital signatures and public
key cryptosystems”, Communications of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[17] B. Schneier, “Applied Cryptography (2nd Ed.)”,
John Wiley & Sons, 1996.

[18] C. P. Schnorr, “Efficient signature generation by
smart cards”, Journal of Cryptology, vol. 4, pp. 161-
174, 1991.

[19] Z. M. Zhao, “ID-based weak blind signature from
bilinear pairings”, International Journal of Network
Security, vol. 7, no. 2, pp. 265-268, 2008.

Nikolay A. Moldovyan is an honored inventor of Rus-
sian Federation (2002), a laboratory head at St. Peters-
burg Institute for Informatics and Automation of Russian
Academy of Sciences, and a Professor with the St. Pe-
tersburg State Electrotechnical University. His research
interests include information security and cryptology. He
has authored or co-authored more than 70 inventions and
230 scientific articles, books, and reports. He received his
Ph.D. from the Academy of Sciences of Moldova (1981).


