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Abstract

Computational Geometry is the art of designing efficient
algorithms for answering geometric questions. Computa-
tional Geometry involves efficient and elegant solutions
for difficult algorithmic problems and plays a central role
in many different areas of computer science. Quantum
cloning-based attacks have deep relevance to quantum
cryptography. In this paper we use the results of clas-
sical Computational Geometry to analyze the security of
a quantum channel using current classical computer ar-
chitectures. To analyze a quantum channel for a large
number of input quantum states with classical computer
architectures, very fast and effective algorithms are re-
quired.

Keywords: Quantum communication, quantum cryptogra-
phy, quantum informational distance

1 Introduction

In today’s communication networks, the widespread use
of optical fiber and passive optical elements allows to use
quantum cryptography in the current standard optical
network infrastructure. In the past few years, quantum
key distribution schemes have attracted much study. The
security of modern cryptographic methods, like asymmet-
ric cryptography, relies heavily on the problem of factor-
ing large integers [7]. In the future, if quantum computers
become reality, any information exchange using current
classical cryptographic schemes will be immediately inse-
cure [11, 13]. Current classical cryptographic methods are
not able to guarantee long-term security. Other crypto-
graphic methods, with absolute security must be applied
in the future. Cryptography based on the principles of
quantum theory is known as quantum cryptography. Us-
ing current network technology, in order to spread quan-
tum cryptography, interfaces must be implemented that
are able to manage together the quantum and classical
channels [10].

Many challenging hard algorithmic problems can be
studied with computational geometry and, at present,

there exist many geometric algorithms that offer an effi-
cient and well implementable solution for hard computa-
tional problems. Computational Geometry was originally
focused on the construction of efficient algorithms and it
provides a very valuable and efficient tool for computing
hard tasks [8]. In many cases, the traditional linear pro-
gramming methods are not very efficient. The computa-
tion of the convex hull between quantum states cannot be
computed efficiently by linear programming, however the
methods of computational geometry are better at solving
these kinds of hard problems [18, 3, 8]. Computational
Geometry uses the results of classical geometry and the
power of computing. In Figure 1, we illustrate the logical
structure of the analysis and the cooperation of classi-
cal and quantum systems. To this day, the most efficient
classical algorithms for this purpose are computational
geometric methods. We use these classical computational
geometric tools to analyze the security of a quantum chan-
nel.

C o m p u t a t i o n a l G e o m e t r y
Q u a n t u m C h a n n e l s S e c u r i t y o fQ u a n t u m C h a n n e l s

C l a s s i c a l C o m p u t e rA r c h i t e c t u r e s
Q u a n t u m S y s t e m

C l a s s i c a l S y s t e m
Figure 1: Logical structure of our analysis. We use cur-
rent classical architectures to analyze the properties of
quantum channel.

In this paper, we use the methods of computational ge-
ometry to analyze the security of quantum channels, how-
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ever we use quantum information as a distance measure
instead of classical geometric distances. Unlike ordinary
geometric distances, a quantum informational distance is
not a metric and it is not symmetric, hence this pseudo-
distance features as a measure of informational distance.
This paper combines the models of information geometry
and the fast methods of computational geometry. Using
the quantum informational distance as a distance mea-
sure, we analyze the privacy of eavesdropped quantum
channels [8].

C l a s s i c a l C o m p u t a t i o n a lG e o m e t r i c M e t h o d s
Q u a n t u mI n f o r m a t i o n a lG e o m e t r y Q u a n t u m I n f o r m a t i o n a lD i s t a n c e F u n c t i o nC l a s s i c a lC o m p u t a t i o n a lG e o m e t r y

Figure 2: Quantum information as distance measure in
classical computational geometric methods

From the combination of the quantum informational
distance function and classical computational geometric
methods, the properties of quantum channels and quan-
tum states in quantum space can be analyzed as geomet-
rical objects in geometrical space.

Our paper is organized as follows. First, we discuss the
basic elements of computational geometry and quantum
information theory. Then we explain the main elements
of our security analysis and we show an application of our
theory to the security analysis of eavesdropping detection
on a quantum channel. Finally, we summarize the results.

2 Preliminaries

The security of QKD schemes relies on the no-cloning the-
orem [10]. Contrary to classical information, in a quan-
tum communication system, quantum information can-
not be copied perfectly. If Alice sends a number of pho-
tons |ψ1〉, |ψ2〉, . . . , |ψN 〉, through the quantum channel,
an eavesdropper is not interested in copying an arbitrary
state, only the possible polarization states of the attacked
QKD scheme. The unknown states cannot be cloned per-
fectly, the cloning process of quantum states is possible
only if the information being cloned is classical, hence
the quantum states are all orthogonal. The polarization
states in the QKD protocols are not all orthogonal states,
which makes it impossible for an eavesdropper to copy the
sent quantum states [10]. Our goal is to measure the level
of quantum cloning activity on the quantum channel, us-
ing fast computational geometric methods. We measure
the informational theoretical impacts of quantum cloning

activity in the quantum channel. Alice’s side is modeled
by a random variable X = {pi = P (xi)}, i = 1, . . . , N .
Bob’s side can be modeled by another random variable
Y . The Shannon entropy for the discrete random vari-
able X is denoted by H(X), which can be defined as

H(X) = −∑N
i=1 pi log(pi), for conditional random vari-

ables, the probability of random variable X given Y is
denoted by p(X |Y ). Alice sends a random variable to
Bob, who produces an output signal with a given prob-
ability. We analyze in a geometrical way the effects of
Eve’s quantum cloner on Bob’s received quantum state.
Eve’s cloner in the quantum channel increases the uncer-
tainty in X , given Bob’s output Y . The informational
theoretical noise of Eve’s quantum cloner increases the
conditional Shannon entropy H(X |Y ), where H(X |Y ) =

−∑NX

i=1

∑NY

j=1 log p(xi|yj). Our geometrical security anal-
ysis is focused on the cloned mixed quantum state received
by Bob. The type of quantum cloner machine depends
on the actual protocol. For the four-sate QKD proto-
col (BB84), Eve chooses the phase-covariant cloner, while
for the Six-state protocol she uses the universal quantum
cloner (UCM) machine [15, 6, 1]. Alice’s pure state is de-
noted by ρA, Eve’s cloner is modeled by an affine map L
and Bob’s mixed input state is denoted by L(ρA) = σB .
In our calculations, we can use the fact that for random
variables X and Y , H(X,Y ) = H(X) +H(Y |X), where
H(X), and H(X,Y ) are defined in terms of probability
distributions p(x), p(x, y) and H(Y |X). We measure in
a geometrical representation the information which can
be transmitted in the presence of an eavesdropper on the
quantum channel.

In Figure 3, we illustrate Eve’s quantum cloner on the
quantum channel. Alice’s pure state is denoted by ρA, the
eavesdropper’s quantum cloner transformation is denoted
by L. The mixed state received by Bob, is represented by
σR. A l i c e ’ s p u r eq u b i t E v e ’ s q u a n t u mc l o n e r B o b ’ s m i x e di n p u t s t a t eQ u a n t u mC l o n e rC l o n e ds t a t e A BAR a n d o m s t a t e

H X H X H X YH X Y
Figure 3: The analyzed attacker model and entropies

In a private quantum channel, we seek to maximize
H(X) and minimize H(X |Y ) in order to maximize the
radius r∗ of the smallest enclosing ball, which describes
the maximal transmittable information from Alice to Bob
in the attacked quantum channel:

r∗ = MAX{all possible x}H(X) −H(X |Y ).
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To compute the radius r∗ of the smallest informa-
tional ball of quantum states and the entropies between
the cloned quantum states, instead of classical Shannon
entropy, we can use von Neumann entropy and quan-
tum relative entropy. Geometrically, the presence of
an eavesdropper causes a detectable mapping to change
from a noiseless one-to-one relationship to a stochastic
map. If there is no cloning activity on the channel, then
H(X |Y ) = 0 and the radius of the smallest enclosing
quantum informational ball on Bob’s side will be maxi-
mal.

2.1 Geometrical Representation of Quan-

tum States

A quantum state can be described by its
density matrixρ ∈ Cd×s, which is a d × d matrix,
where d is the level of the given quantum system. For
an n qubit system, the level of the quantum system is
d = 2n. We use the fact that particle state distributions
can be analyzed probabilistically by means of density
matrices. A two-level quantum system can be defined by
its density matrices in the following way:

ρ =
1

2

(

1 + z x− iy
x+ iy 1 − z

)

, x2 + y2 + z2 ≤ 1,

where i denotes the complex imaginary i2 = −1 The den-
sity matrix ρ = ρ(x, y, z) can be identified with a point
(x, y, z) in 3-dimensional space, and a ball B formed by
such points B = {(x, y, z)|x2 + y2 + z2 ≤ 1}, is called a
Bloch ball. The eigenvalues λ1, λ2 of ρ(x, y, z) are given

by (1 ±
√

x2 + y2 + z2)/2, the eigenvalue decomposition
ρ is ρ = ΣiλiEi, where EiEj is Ei for i = j and 0
for i 6= j. For a mixed state ρ(x, y, z), log ρ defined by
log ρ =

∑

i(logλi)Ei. In quantum cryptography the en-
coded pure quantum states are sent through a quantum
communication channel. Using the Bloch sphere repre-
sentation, the quantum state ρ can be given as a three-
dimensional point ρ = (x, y, z) in R3 and it can be rep-
resented in spherical coordinates ρ = (r, θ, ϕ), where r is
the radius of the quantum state to the origin, θ and ϕ
represents the latitude and longitude rotation angles.

2.2 Measuring Quantum Informational

Distances between Quantum States

The classical Shannon-entropy of a discrete d-dimensional
distribution p is given by H(p) =

∑d
i=1 pi log 1

pi
=

∑d
i=1 pi log pi. The von Neumann entropy S(ρ) of quan-

tum states is a generalization of the classical Shannon en-
tropy to density matrices [12, 15]. The entropy of quan-
tum states is given by S(ρ) = −Tr(ρ log ρ) The quan-
tum entropy S(ρ) is equal to the Shannon entropy for the

eigenvalue distribution S(ρ) = S(λ) = −
∑d

i=1 λi logλi

where d is the level of the quantum system. The relative
entropy in classical systems is a measure that quantifies
how close a probability distribution p is to a model or

candidate probability distribution q [12, 15]. For p and
q probability distributions, the relative entropy is given
by D(p ‖ q) =

∑

i pi log2
pi

qi

, while the relative entropy
between quantum states is measured by

D(ρ ‖ σ) = Tr(ρ(log ρ− log σ)).

The quantum informational distance has some
distance-like properties, however it is not commuta-
tive [12, 15], thus D(ρ ‖ σ) 6= D(σ ‖ ρ), and D(ρ ‖ σ) ≥ 0
iff ρ 6= σ, and D(ρ ‖ σ) ≥ 0 iff ρ = σ. The quantum rela-
tive entropy for general quantum state ρ = (x, y, z), and

mixed state σ = (x̃, ỹ, z̃), with radii rρ =
√

x2 + y2 + z2

and rσ =
√

x2 + y2 + z2 is given by

D(ρ ‖ σ) =
1

2
log

1

4
(1 − r2ρ) +

1

2
rρ log

(1 + rρ)

(1 − rρ)

− 1

2
log

1

4
(1 − r2σ) − 1

2rσ
log

(1 + rρ)

(1 − rσ)
〈ρ, σ〉,

where 〈ρ, σ〉 = (zx̃, yỹ, zz̃). For a maximally mixed state
σ = (xx̃ + yỹ + zz̃) = (0, 0, 0) and rσ = 0, the quantum
relative entropy can be expressed as

D(ρ ‖ σ) =
1

2
log

1

4
(1 − r2ρ) +

1

2
rρ log

(1 + rρ)

(1 − rρ)
− 1

2
log

1

4

The relative entropy of quantum states can be de-
scribed by a strictly convex and differentiable generator
function F:

F(ρ) = −S(ρ) = Tr(ρ log ρ), (1)

where −S is the negative entropy of quantum states. The
quantum relative entropy D(ρ‖σ) for density matrices ρ
and σ is given by generator function F in the following
way:

D(ρ ‖ σ) = F(ρ) − F(σ) − 〈ρ− σ,∇F(σ)〉,

where 〈ρ, σ〉 = Tr(ρσ∗) is the inner product of quantum
states and ∇F (·) is the gradient.

In Figure 4, we have depicted the quantum informa-
tional distance, D(ρ ‖ σ), as the vertical distance between
the generator function F and H(σ), the hyperplane tan-
gent to F at σ. The point of intersection of quantum state
ρ on H(ρ) is denoted by Hσ(ρ).

Before we start to discuss the relation between quan-
tum informational distance and quantum generator func-
tion, for simplicity we prove the relation between Eu-
clidean distance and Euclidean generator function. The
proof can be extended to quantum informational dis-
tances, using the quantum generator function F. If the
generator function F is the squared Euclidean distance,
then the strictly convex and differentiable generator func-
tion over Rd can be expressed as

F(x) = x2 =

d
∑

i=1

x2
i = xTx,with ∇F (x) = 2x.



International Journal of Network Security, Vol.13, No.1, PP.1–12, July 2011 4

Figure 4: Depiction of generator function as a negative
von Neumann entropy

Figure 5: Squared Euclidean generator function

In this case, DF (ρ‖σ) can be expressed as

DF(ρ‖σ) = F(σ) − F(σ) − 〈ρ− σ,∇F(σ)〉
= ρ2 − σ2 − 〈ρ− σ, 2σ〉 = ρ2 + σ2 − 2ρσ

= ρTρ+ σTσ − 2ρTσ = ‖ρ− σ‖.

In Figure 5, we have illustrated the squared Euclidean
distance function DF(ρ‖σ), with Euclidean generator

function F(x) = x2 =
∑d

i=1 x
2
i .

For the quantum informational distance function, the
generator function is the negative von Neumann entropy
function −S,

F(ρ) = −S(ρ) = Tr(ρ log ρ),

where F : S(Cd) → R. The quantum informational dis-
tance function DF(ρ‖σ) with generator function F(ρ) =
−S(ρ) is illustrated in Figure 6.

The generator function of the quantum informational
distance is the negative von Neumann entropy function.
The quantum generator function has a classical analogy,
because for classical probability distributions p and q, the
generator function is the negative Shannon entropy:

F(x) = x log x = −x log
1

x
=

∫

p(x) log p(x)dx,

and ∇F(x) = 1 + log x. Hence, for probability distribu-

Figure 6: Negative von Neumann generator function

tions, the informational distance can be expressed as

D(p(x)‖q(x)) =

∫

(F(p) − F(q) − 〈p− q,∇F(q)〉)dx,

=

∫

(p(x) log p(x) − q(x) log q(x) − 〈p(x)

−q(x), log q(x) + 1〉)

=

∫

p(x) log
p(x)

q(x)
dx−

∫

p(x)dx

−
∫

q(x)dx)

=

∫

p(x) log
p(x)

q(x)
dx

The quantum informational distance function is a lin-
ear operator, thus for convex functions ∀F1 ∈ Cand∀F2 ∈
C,DF1+λF2

(ρ‖σ) = DF1
(σ‖σ) + λDF2

(ρ‖σ), for any λ ≥
0.The density matrices of quantum states can be repre-
sented by 3D points in the Bloch ball. If we compute
the distance between two quantum states in the 3D Bloch
ball representation, we compute the distance between two
Hermitian matrices ρ and σ.

3 Security Problem in Quantum

Cryptography

In quantum cryptography, the best eavesdropping at-
tacks use quantum cloning machines [4, 6, 15]. How-
ever, an eavesdropper cannot measure the state |ψ〉 of
a single quantum bit, since the result of her measure-
ment is one of the single eigenstates of the quantum sys-
tem. The measured eigenstate gives only very poor in-
formation to the eavesdropper about the original state
|ψ〉 [10, 15]. The eavesdropper’s cloning transformation
is a trace-preserving and completely positive map and it
can be described as {L, |Q〉}, where |Q〉 is the eavesdrop-
per’s ancilla state. The process of cloning pure states can
be generalized as

|ψ〉a ⊗ |Σ〉b ⊗ |Q〉x → |ψ〉abc,

where |ψ〉 is the state in Hilbert space to be copied, |Σ〉
is a reference state and |Q〉 is the ancilla state [15]. As
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i n p u t o u t p u to u t p u t

Figure 7: General model of Eve’s quantum cloner

Wooters and Zurek have shown, an unknown quantum
state |ψ〉 = α|0〉 + β|1〉 cannot be cloned perfectly [15],
however it was later shown that an unknown quantum
state can be cloned approximately [10]. A cloning ma-
chine is called symmetric if at the output all the clones
have the same fidelity, and asymmetric if the clones have
different fidelities [4, 6]. The effect of the eavesdropper’s
quantum cloner simply shrinks the Bloch ball B, with
given probability p. The general model of Eve’s cloning
machine is shown in Figure 7 [1, 4, 6, 14].

The input qubit state is denoted by x, which is initially
in an entangled state with a reference qubit r, denoted by
the Bell state |Φ+〉rx. After the cloning transformation,
the overall system consists of the three outputs and the
reference quantum state, thus the output state |Φ+

rabc〉 can
be written as a superposition of double Bell states [8]:

|Ψra,bc〉 = v|Φ+〉〈Φ+| + z|Φ−〉〈Φ−| + x|Ψ+〉〈Ψ+|
+y|Ψ−〉〈Ψ−|,

where x, y, z and v are complex amplitudes with |x|2 +
|y|2 + |z|2 + |v|2 = 1. The qubit pairs ra and bc are
Bell mixtures with |x|2 = px, |y|2 = py, |z|2 = pz and
|v|2 = 1 − p Equation v = x + y + z describes a three-
dimensional surface in the space, where each point (x, y, z)
represents parameters |x|2 = px, |y|2 = py, and |z|2 = pz

This surface is an oblate ellipsoid E [1, 4, 6, 14] and we
denote the coordinates of the ellipsoid E by (xE , yE, zE).
The ellipsoid E has polar radius xE = 1

2 , while the equa-
torial radius is zE = 1 [4, 8]. In Figure 8, we have illus-
trated the effects of phase-covariant and universal quan-
tum cloners that have been analyzed.

The radii which describe the shrinking of the cloned
state are denoted by rE,phasecov and rE,UCM in the three-
dimensional ellipsoidal representation.

3.1 Cloning Machine-based Attacks in

Quantum Cryptography

Our security analysis is based on the Four-state (BB84)
and Six-state quantum cryptography protocols. In this
setting, Alice sends a qubit |ψ〉 to Bob and Eve clones
the sent qubit using her ancilla qubit |E〉. In the cloning

Figure 8: Comparison of UCM and phase-covariant based
attack in ellipsoidal representation

process, Eve’s ancilla state |E〉 interacts with the sent
qubit |ψ〉 and the unknown state is forwarded to Bob who
makes his standard measurement. In the BB84 proto-
col [15], Eve uses a phase-covariant cloning machine, thus
Eve clones only equatorial states |ψ〉 = 1√

2
(|0〉 + eiϕ|1〉).

In the Six-state protocol [15], Eve uses universal cloning
and she clones all the states:

|ψ〉 = {|0〉, |0〉, 1√
2
(|0〉 ± |1〉, 1√

2
(|0〉 ± i|1〉)}

If Eve uses the universal quantum cloner, then the
value of the parameter FEve is independent of the input
quantum state |ψ〉. The quantum cloning transformation
is optimal [4, 6], if η = 2

3 and hence the maximum fidelity
of optimal universal cloning is FEve = 5

6 , and the maxi-
mum radius is rUCM

Eve = 2
3 . The quantum information the-

oretical radius can be defined as r∗UCM
Eve = 1−S(r∗UCM

Eve ),
where S is the von Neumann entropy of the corresponding
quantum state with radius rUCM

Eve . In general, the univer-
sal cloning machine output state can be given as [4, 6, 15]

ρout = FEve|ψ〉a〈ψ| + (1 − FEve)|ψ⊥〉〈⊥ψ|.

Universal cloning has direct application to eavesdrop-
ping strategies in Six-state quantum cryptography. In the
Four-state (BB84) quantum cryptography protocol, the
optimal eavesdropping attack is performed by a phase-
covariant cloning machine, which clones the x equa-
tor [1, 4, 6, 14]. The importance of equatorial qubits
lies in the fact that Four-state quantum cryptography
requires these states rather than the states that span
the whole Bloch sphere [6]. The optimal fidelity of 1
to 2 phase-covariant cloning transformation is given by

F phasecov.
1→2 = 1

2 +
√

1
8 ≈ 0.8535 [1, 4, 6, 14]. If Eve has a

phase-covariant quantum cloner, then the maximum value

of her radius is rphasecov.
Eve = 2

√

1
8 . The quantum informa-

tion theoretical radius r∗phasecov.
Eve of the phase-covariant
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Figure 9: Radius of the smallest enclosing information ball for secure and attacked quantum communication

Figure 10: Smallest enclosing quantum informational balls of optimal and imperfect universal and phase-covariant
cloners

cloner can be defined as rphasecov.
Eve = 1 − S(rphasecov.

Eve ),
where S is the von Neumann entropy of the correspond-
ing quantum state with radius rphasecov.

Eve . The phase-
covariant quantum cloning transformation produces two
copies of the equatorial qubit with optimal fidelity.

4 Proposed Model for Quan-

tum Cloning-based Eavesdrop-

ping Detection

The information theoretical impacts of the eavesdropper’s
cloning machine are measured by the radius r∗ of the
smallest enclosing quantum informational ball. We use
the Delaunay tessellation, because it is the fastest known
tool for seeking the center of the smallest enclosing ball
of points. As the first part of our theorem, for a secure
quantum channel, the radius r∗ of the smallest enclos-
ing quantum information ball of mixed states has to be
greater than r∗Eve, thus r∗ > r∗Eve. As the second part,

for an insecure quantum channel, the radius r∗ is smaller
than or equal to r∗Eve, thus r∗ ≤ r∗Eve. In Figure 9, we
show a geometrical interpretation of our model for a se-
cure and for an attacked quantum channel [9].

In our security analysis, we use the spherical Delau-
nay tessellation to compute the radius r∗, since it can
be simply obtained as an ordinary Euclidean Delaunay
triangulation mesh. The quantum relative entropy-based
Delaunay tessellation of pure states is identical to the con-
ventional spherical Delaunay tessellation [3]. The small-
est quantum informational ball with radius r∗ is shown in
grey, the ball of the ideal UCM cloner with radius r∗UCM

is shown in light grey. We conclude that, if rE ≥ rE,UCM ,
then r∗ ≤ r∗UCM , hence the informational theoretical ra-
dius will be smaller.

In Figure 10, we compare the ideal and imperfect uni-
versal and phase-covariant cloner quantum balls.

It can be concluded that the informational theoretical
radii for ideal and imperfect phase-covariant cloning are
different. In Figure 11, we illustrate the radii r∗UCM and
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Figure 11: Comparison of smallest enclosing quantum in-
formational ball of UCM-based and phase-covariant clon-
ers

r∗phasecov of the smallest enclosing quantum informational
ball for UCM-based and phase-covariant cloner based at-
tacks, in the Bloch sphere representation.

We would like to compute the radius r∗ of the small-
est enclosing ball of the cloned mixed quantum states,
thus we must first seek the center c∗ of the set of quan-
tum states S. The set S of quantum states is denoted
by S = {ρi}n

i=1. The distance d(�, �) between any two
quantum states of S is measured by the quantum rela-
tive entropy, thus a minimax mathematical optimization
is applied to the quantum relative entropy-based distances
to find the center c of the set S. We denote the quan-
tum relative entropy from c to the furthest point of S by
d(c, S) = maxid(c, ρi). Using a minimax optimization,
we can minimize the maximal quantum relative entropy
from C to the furthest point S of by c∗ = argmincd(c, s).
In Figure 12, we have illustrated the circumcenter c∗ of
S for the Euclidean distance and for quantum relative
entropy [9].

In Figure 13, we compare the smallest quantum infor-
mational ball and the ordinary Euclidean ball.

We conclude that the quantum states ρ1, ρ2 and ρ3

which determine the smallest enclosing ball in a Euclidean
geometry differ from the states of the quantum informa-
tional ball.

4.1 Computation of Delaunay Triangula-

tion on Bloch Sphere

In classical computational geometry, Voronoi diagrams
and Delaunay triangulations play an important role [3,
18]. A Voronoi diagram is a division of space. The dual
diagram for a Voronoi diagram is called a Delaunay tes-
sellation [3, 18]. In the graph of a Delaunay triangulation,
any circle is empty if it contains no vertex of S in its in-
terior. If two quantum states of set S are denoted by ρ
and σ, then edge e is in Del(S) if and only if there exists
an empty circle that passes through ρ and σ. An edge
satisfying the empty circle property is said to be Delau-

nay. The Delaunay triangulation is guaranteed to be a
triangulation only if the vertices of S are in a general po-
sition, thus there are no four quantum states of S lying
on the same circle. The circumcircle of a triangle is the
unique circle that passes through all three of its vertices,
and the triangle is Delaunay if and only if its circumcircle
is empty. The quantum Delaunay triangulation of a set
of quantum states S, denoted by Del(S), is the geomet-
ric dual of quantum Voronoi diagrams vo(S). The quan-
tum Voronoi diagrams can be first-type or right-sided di-
agrams. Similarly, we can derive two triangulations from
quantum Voronoi diagrams. The first-type quantum in-
formational ball circumscribing any simplex of quantum
Delaunay triangulation Del(S) is empty. If we choose
a subset x of at most d + 1 states in S = {ρ1, . . . , ρn},
then the convex hull of the associated quantum states
ρi, i ∈ χ, is a simplex of the quantum triangulation of S,
iff there exists an empty quantum informational ball B
passing through the ρi, i ∈ χ. The first-type and second-
type quantum diagrams for quantum states which have
non-equal radii differ. The quantum diagrams between
these states are to the same as the Euclidean diagrams.

In our geometrical approach, we use the fact from com-
putational geometry that the duality transform of a point
in the plane can be constructed with a parabola. The
dual of any quantum state on the Bloch sphere can be
computed without measuring the distances between the
quantum states. If we have a quantum state ρ and a
paraboloid function F , and we draw two lines that pass
through the state ρ and are tangent to F , then the line
ρ∗ will be the line that passes through the two points
where the tangents touch F , and state ρ represents the
intersection of the two tangent lines [3, 18]. The dual of
ρ must pass through the duals of the tangent points, and
these points are where the tangents touch F , as we have
illustrated in Figure 15.

4.1.1 The Lifting Algorithm

In the proposed model, we use a three-dimensional Bloch
ball and a four dimensional generator surface F . The
four dimensional object is generated by the quantum rela-
tive entropy-based generator function as defined in Equa-
tion (1):

F(ρ) = −S(ρ(x, y, z)) = Tr(ρ log ρ).

Consider the convex surface defined by the generator
function F, then the quantum Delaunay diagram can be
obtained as a projection of a lower envelope of tangent
planes of surface F at the Voronoi sites. The quantum
relative entropy function D(ρ‖σ) can be considered to be
σ minus the value of tangent surface at σ. For simplicity,
we will use a paraboloid surface in the figures to illus-
trate the quantum relative entropy-based abstract shape.
According to the proposed method, we project back the
points from the 3 + 1 dimension convex hull to a three-
dimensional Bloch ball, via the lower envelope of tangent
planes. The projection gives the Delaunay triangulation.
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Figure 12: Circumcenter for Euclidean distance and quantum relative entropy

Figure 13: Circumcenter for Euclidean distance and quantum relative entropy

The lower envelope of tangent planes is illustrated in Fig-
ure 16.

Figure 14: The empty ball property of quantum Delaunay
triangulation

The Delaunay triangulation can be determined
using tangent planes for any three quantum states
ρ1, ρ2, ρ3 ∈ S. If the tangent planes H(ρ1), H(ρ2), H(ρ3)
at the lifted quantum states intersect at a point v∗

located above v∗, then the corresponding Voronoi cells
vo(ρ1), vo(ρ2) and vo(ρ3) share a Voronoi vertex v. The
Voronoi vertex point v is the projection of the point
of intersection v∗ of tangent planes H(ρ1), H(ρ2), and
H(ρ3). Since v is the shared vertex between three cells
vo(ρ1), vo(ρ2) and vo(ρ3), v is a Voronoi vertex and the
circle around v is the circumcircle through the Delaunay
triangle ρ1ρ2ρ3 ∈ S. The quantum states ρ1, ρ2 and ρ3

define a unique circle, and the center of this circle is the
intersection of tangent planes. According to our method,

Figure 15: The dual of the quantum state ρ above F also
can be computed without measuring distances

1 2 31 2, , , dx x x
1dx T a n g e n tp l a n e L o w e re n v e l o p eB l o c h s p h e r e( d = 3 )v *v

Figure 16: Circumcenter for Euclidean distance and quan-
tum relative entropy
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Figure 17: Projection of points in the Bloch sphere to the generator object (a), projection of convex hull edges back
onto the Bloch sphere space (b)

we use generator function F, hence the intersection of
the tangent planes gives the circumcircle of a quantum
informational ball.

The steps of the quantum state projection algorithm are:

1) Project the quantum states ρ = (ρx, ρy, ρz) ∈ S
from the Bloch ball to four-dimensional points ρ =
(ρx, ρy, ρz,F(ρx, ρy, ρz)), on the quantum relative
entropy-based generator surface, centered at the ori-
gin.

2) Calculate the convex hull of points on the paraboloid.

3) Project the lowest part of the convex hull back
onto the three dimensional Bloch ball, thus com-
pute the Voronoi-diagram via the lower envelope of
the tangent planes. Consider the tangent planes
H(ρ1), H(ρ2), and H(ρ3) at the points ρ1, ρ2 and ρ3.
The tangent planes H(ρ1), H(ρ2), and H(ρ3) inter-
sect a Voronoi vertex point v∗, located above v.

4) In the Bloch ball, the three-dimensional edges be-
tween the vertices form the Delaunay triangulation
of the set S.

5) Compute the smallest enclosing information ball.

In Figure 17(a) and Figure 17(b), we show the main
steps of the proposed projection algorithm. In the first
phase, we project the quantum states from the Bloch
sphere to the generator surface. In the next phase, we
project back the intersection points and this projection
gives the Delaunay triangulation between the quantum
states in the Bloch ball.

The computational complexity of a Voronoi diagram
in d-dimensional geometrical space is the same as that
of a convex hull in d + 1 dimensional geometrical space.
In a d-dimensional geometrical space, the complexity
for computation of a convex hull has been proven [18]
to be , O(n logn + n⌈d/2⌉), thus the complexity of a

Figure 18: The hyperplane encodes the distance between
quantum states

Figure 19: Quantum Delaunay triangulation on the Bloch
sphere as a minimization diagram
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Figure 20: Comparison of ordinary Delaunay triangulation and furthest Delaunay triangulation between quantum
states in the Bloch sphere representation

Figure 21: Comparison of first-type and second-type quantum Delaunay triangulations

d-dimensional Voronoi diagram is O(n log n + n⌈d/2⌉).
Sharir has shown [12] that a lower envelope of algebraic
surfaces can be computed in time O(n(d−1)+ε) to a d-
dimensional geometrical space, and a Voronoi diagram in
d-dimensional geometrical space can be computed in time
O(nd+ε) [3, 18].

The fact that H(ρ) encodes the distance of quantum
states to ρ leads to a correspondence between dual De-
launay diagrams and lower envelopes. Consider the set
H = {H(ρ)|ρ ∈ S} of planes, and let lo(H) be the lower
envelope of the planes in H .

In this case, the projection of lo(H) onto the plane
z = 0 is the dual Delaunay diagram of S. Let H be the set
of planesH(ρ) for ρ ∈ S. The quantum Delaunay diagram
can be computed by a projection of lo(H) onto the plane
z = 0. The Voronoi cell of a quantum state ρ ∈ S is the
projection of the facet of lower envelope lo(H), that lies
on the plane H(ρ). Let σ be a quantum state in the plane
z = 0 lying in the Voronoi cell of ρ. In this case, D(σ‖ρ) <
D(σ‖x), for all x ∈ S, where x 6= ρ. We would like to
see that the vertical line through σ intersects the lower
envelope lo(H) at a point lying on H(ρ). For quantum
state x ∈ S, the plane H(x) is intersected by the vertical
line through σ at point σ(x) = (σx, σy ,F(σ) −D(σ‖x)).
The quantum ρ state has the smallest distance to σ, of all
states in S, thus σ(ρ) is the highest point of intersection.
We conclude that the vertical line through σ intersects the
lower envelope lo(H) at a point lying on H(ρ). We note
that the first-type of dual Delaunay diagram of S is the

minimization diagram of n linear functions Hρ1
(x), whose

graphs are the hyperplanes Hρ1
. Let S = {ρ1, . . . , ρn} be

a finite set of quantum states. To each quantum state ρi,
a d-variate continuous function Di can be defined over S.
The lower envelope of the functions can be expressed as
the graph of min1≤i≤nDi. The minimization diagram of
the functions is the subdivision of S into cells, where for
each cell, argminifi is fixed.

In Figure 19, we illustrate the method of construction
of quantum Delaunay diagram, as a minimization of dia-
grams for quantum informational distance.

The quantum Delaunay diagram can be obtained as
the minimization diagram for Di(x) = D(x‖ρi). In Fig-
ure 20, we compare the ordinary Delaunay triangulation
and the furthest Delaunay triangulation. The furthest
point Delaunay edges do not intersect and the furthest
Delaunay triangulation of S determines the convex hull
and center of the smallest enclosing ball.

In Figure 21, we illustrate the quantum Delaunay tri-
angulation and its curved edges. We have illustrated the
difference between first-type and second-type quantum
Delaunay triangulations. The regular Delaunay diagram
reg(B′) has straight edges, the geodesic Delaunay dia-
gram has curved edges. The second-type Delaunay dia-
gram Del′(S) is the geometric dual of left-sided quantum
Voronoi diagrams.

At the end of the proposed algorithm, the radius r∗ of
the smallest enclosing ball B∗ with respect to the quan-
tum informational distance is equal to the fidelity of the
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Figure 22: Comparison of first-type and second-type quantum Delaunay triangulations on the Bloch ball

cloning transformation. The approximated value of the
information theoretical impacts of the eavesdropper is ob-
tained by r∗, the radius of the smallest information ball.
Finally, the security of the quantum channel is deter-
mined by our geometrical model based on the assumptions
r∗ > r∗Eve and r∗ ≤ r∗Eve, and the approximate value of
the fidelity parameter FEve, can be expressed as:

FEve = 〈ψ|(in)ρ(out)|ψ〉(in) =
1

2
(1 + r),

where r can be derived from the quantum information
theoretical radius r∗ by r∗ = 1−S(r), where S is the von
Neumann entropy. In Figure 22, we compare the first-type
and second-type quantum Delaunay diagrams for mixed
quantum states on the Bloch sphere.

The dual of the left-sided quantum Voronoi diagram is
a curved diagram, the dual of the right-sided diagram has
straight edges. The distorted structure of the smallest
enclosing quantum relative entropy ball is easily seen in
Figure 23.

Figure 23: Smallest enclosing quantum informational ball
and its radius

In Figure 24, we show an example of a two-dimensional
smallest enclosing quantum informational ball.

This quantum relative entropy ball is a deformed ball,
thus our approximation algorithm is tailored for quantum

informational distance. The center c∗ of the smallest en-
closing quantum informational ball differs from the center
of a Euclidean ball.

Figure 24: Smallest enclosing quantum informational ball
inside the Bloch sphere

5 Conclusion and Future Work

This paper proposes a new algorithm for computing the
fidelity of an eavesdropper’s cloning machine. The pro-
posed method uses quantum relative entropy to compute
the smallest enclosing information ball. We have shown
that a Delaunay triangulation based on quantum relative
entropy plays an important role in a numerical calculation
of the fidelity of quantum cloning machines. According to
the proposed method, we compute the smallest enclosing
ball based on Delaunay triangulation, which is consid-
ered to be a useful and efficient tool. We propose a new
algorithm for computing the fidelity of quantum cloning
transformation-based attacks in quantum cryptography
and for estimating the security of a protocol.
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