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Abstract

In this paper, we present a background on elliptic curve
cryptosystems (ECCs) along with the different meth-
ods used to compute the scalar multiplication (ECSM),
which is the core operation of ECCs, and the various
costs associated with them. We have also provided a
brief background on Simple (SPA) and Differential (DPA)
power and electromagnetic analysis attacks on the classi-
cal ECSM algorithms. We study on minor collisions and
to provide an analytic result for their probability of oc-
currence as well as effect of the fixed sequence window
method.
Keywords: Differential power analysis, elliptic curve
cryptosystems, side-channel attacks, simple power anal-
ysis

1 Introduction

In this paper, we present an overview of elliptic curve
cryptosystems (ECCs) [2, 23]. The primary opera-
tion of ECCs is the elliptic curve scalar multiplication
(ECSM) [26]. Hence we discuss about original ECSM al-
gorithms are susceptible to side-channel analysis (SCA)
attacks.

1.1 Elliptic Curve Cryptosystems

Let K be a finite field and E be an elliptic curve (EC)
over K defined by the following Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

where a × K and 4 6= 0, where 4 is the discriminant
of E.

Let L be an extension field of K. Then E(L) denotes
the set of L-rational points (x, y) on E, where (x, y) ×
L × L and satisfy Equation (1), together with the point
at infinity ϑ. The addition of two points on the curve
is performed using a chord-and-tangent rule. E(L) and
this addition operation form an Abelian group where ϑ
is the identity. The point addition operation consists of
finite field operations carried in the underlying field K.

We denote the field inversion by I, the multiplication by
M , the squaring by S. The point addition is denoted by
A. When the two operands of the addition are the same
point, the operation is referred to as point doubling and
is denoted by D.

1.2 Elliptic Curves over Prime Fields

If K = Fp, where p > 3 is a prime, Equation (1) can be
simplified to

E : y2 + ax + b, (2)

where a and b × F , The discriminant of this curve is
∆ = −16(4a3 + 27b2). The negative of a point P = (x, y)
is −P = (x,−y) such that P + (−P ) = ϑ. This simpli-
fication is generally applicable when the characteristic of
K is not 2 or 3.

The affine coordinate (A) representation of a point
P = (x, y) can be replaced by projective coordinates rep-
resentations in order to render the point addition and
doubling operations less costly in terms of field opera-
tions. The following representations are the best known
o standard (homogeneous) projective coordinates (P ):

The projective point (X : Y : Z), Z 6= 0, corresponds to
the affine point (X/Z, Y/Z), ϑ corresponds to (0 : 1 :
0) and the negative of (X : Y : Z) is (X : −Y : Z).

Jacobian projective coordinates (J): the projective point
(X : Y : Z), Z6 = 0, corresponds to the affine point
(X/Z2, Y/Z3), O corresponds to (0 : 1 : 0) and the
negative of (X : Y : Z) is (X : −Y : Z).

Chudnovsky coordinates (C): The Jacobian point (X :
Y : Z) is represented as (X : Y : Z : Z2 : Z3).

1.3 Elliptic Curves over Binary Fields

If K = F2m , Equation (1) can be simplified to Equa-
tion (2). Where a and b × F2m .The discriminant of this
curve is δ = b and the negative of a point P = (x, y) is −P
= (x, x+y). Such a curve is known as non-supersingular.
Standard and Jacobian projective coordinates are used to
represent points on this type of curves in the same way as
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on the prime curves with the difference that the negative
of (X : Y : Z) is (X : X + Y : Z).

1.4 Elliptic Curve Scalar Multiplication
(ECSM)

Scalar multiplication in the group of points of an elliptic
curve is analogous to exponentiation in the multiplica-
tive group of integers modulo a fixed integer. Thus, it
is the fundamental operation in EC-based cryptographic
systems. The scalar multiplication, denoted kP , is the
result of adding the point P to itself k times, where k is
a positive integer, that is kP = P + P + · · · + P |{z}k
copies and −kP = k(−P ). u is said to be the order of P
if u is the smallest integer.

Let (kn−1, kn−2, · · · , k1, k0)2 be the binary representa-
tion of k, i.e., k × {0, 1} for 0 ≤ i < n− 1. Thus,

kP = (
n−1∑

i=0

2i)P

= 2(2(· · · 2(2(kn−1P ) + kn−2P ) + · · · )
+k1P ) + k0P

= (kn−12n−1P ) + · · · (k12P ) + (k0P ).

Hence, kP can be computed using the straight-
forward double-and-add approach in n iterations (see
Algorithms 1 and 2). These algorithms are analo-
gous to the square-and-multiply algorithms employed in
exponentiation-based cryptosystems.

Algorithm 1 Left-to-Right Double-and-Add Algorithm
1: Input: k = (kn−1 · · · kk0) 2 and P ∈ E(Fq).
2: Output: kP .
3: Q ← ð
4: for i from n− 1 down to 0 do
5: Q ← 2Q.
6: if (k = 1) then
7: Q ← Q + P .
8: end if
9: end for

10: Return (Q).

Algorithm 2 Right-to-Left Double-and- Add Algorithm
1: Input: k = (kn−1, · · · , kk0) 2 and P ∈ E(Fq).
2: Output: KP.1.Q ← ð; R ← P .
3: 2(2(· · · 2(2(kn−1P ) + kn−2P ) + · · · ) + k1P ) + k0P

= (kn−12n−1P ) + · · · (k12P ) + (k0P )
4: for i from 0 to n?1 do
5: if if (ki = 1) then then
6: Q ← Q + R.
7: end if
8: R ← 2R.
9: Return (Q).

10: End

The expected number of point addition (A) and point
doubling (D) operations performed in the binary algo-
rithm (left-to-right or right-to-left) is (n− 1)D +

n

2
A.

2 Window Methods

This method is sometimes referred to as m-ary method.
What is common among them is that, if the window width
is w, some multiples of the point P up to (2w-1)P are
precomputed and stored and k is processed w bits at a
time. k is recoded to the radix 2w. k can be recoded in
a way so that the average density of the nonzero digits in
the recoding is 1/(w + ξ), where 0 ≤ ξ ≤ 2 depends on
the algorithm. Let the number of precomputed points be
t, in the precomputation stage, each point requires either
a doubling or an addition to be computed also depending
on the algorithm.

This ECSM method is suitable for unknown or fixed
point P .

The cost is Storage: t points, where 2w−2 ≤ t ≤ 2w−1

depending on the algorithm.

Precomputation: t point operations (A or D).

Expected running time: (n − 1) D + n
n

w + ξ
A, where

0 ≤ ξ ≤ 2 depending on the algorithm.

2.1 Simultaneous Multiple Point Multi-
plication

This method is used to compute kP + lS where P may be
a known point. This algorithm was referred to as Shamir’s
trick in [9] (see Algorithm 3). If k and l are n-bit inte-
gers, then their binary representations are written in a
2 × n matrix called the exponent array. Given width w,
the values iP + jS are calculated for 0 ≤ i, j < 2w. Now
the algorithm performs d = dn/we iterations. In every
iteration, the accumulator point is doubled w times and
the current 2×w window over the exponent array deter-
mines the precomputed point that is to be added to the
accumulator.

Algorithm 3 Simultaneous multiple point multiplication
(Shamir-Strauss method)
1: Input: Window width w, d = dn/we, k =

(Kd−1, · · · ,K1, K0)xw l = (Ld−1, · · · , L1, L0)2w , and
P, S ∈ E(Fq)

2: Output: kP + 1S.
3: Precomputation. Compute iP + jS for all i, j ∈ [0,

2w-1].
4: Q ← Kd−1P +Ld−1S.
5: for i from d− 2 down to 0 do
6: Q ← 2wQ.
7: 2Q ← Q + (KiP +LiS).
8: end for
9: Return (Q).
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Storage: 22w − 1 points. For w = 1, 3 points. For w =
2, 15 points.

Precomputation: (22(w−1) − 2w−1)D + (3 • 22(w−1) −
2w−11)A.

For w = 1, 1 A.
For w = 2, 1 D + 11 A.
For w = 2, 1 D + 11 A.

Expected running time: (d− 1)wD + 22w−1

22w d− 1)A.
For w = 1, (n− 1)D + (n− 1)A.
For w = 2, (n− 1)D + ( 15

32n− 1)A.

Using sliding windows can save about 14 of the pre-
computed points and decrease the number of additions to

n
w+(1/3) , which is about 9% saving for w ∈ {2, 3}.

2.2 Interleaving Method

This method is also a multiple point multiplication
method, that is we want to compute

∑
kjPj for points

Pj and integer’s kj (see Algorithm 4). In the comb and
simultaneous multiplication methods, each of the precom-
puted values is a sum of the multiples of the input points.
In the interleaving method, each precomputed value is
simply a multiple of one of the input points.

Algorithm 4 Interleaving method
1: Input: Window width w, d = dn/we, k =

(Kd−1, · · · ,K1,K0)xw l = (Ld−1, · · · , L1, L0)2w , and

P, S ∈ E(Fq)

2: Output: kP + 1S.
3: Precomputation. Compute iP and iS for all i ∈ [0,

2w - 1].
4: Q ← Kd−1P .
5: for i from d− 2 down to 0 do
6: Q ← 2wQ.
7: Q ← Q + KiP
8: Q ← Q + LiS
9: end for

10: Return (Q).

Storage: 22w + 1 points;

Precomputation: 2(w − 1)D + 2(2w − w − 1)A;

Expected running time:

w(d− 1)D + (2d− 1)
22w − 1

22w
A.

In general, if different basis and/or representations are
used for k and l, we have

Storage: 2t points, where 2w−2 ≤ t ≤ 2w−1;

Precomputation: 2t point operations (A or D);

Expected running time: (n− 1)D + 2 n
w+1 )A, where 1

≤ i ≤ 2 depending on the algorithm.

3 Power and Electromagnetic
Analysis Attacks on ECCS

However, the mathematically proved security of a cryp-
tosystem does not imply its implementation security
against side-channel attacks. Among those attacks are
those that monitor the power consumption and/or the
electromagnetic emanations of a device, e.g., a smart card
or a handhold device, and can infer important information
about the instructions being executed or the operands be-
ing manipulated at a specific instant of interest.

These attacks are broadly divided into two categories;
simple and differential analysis attacks. We will refer to
the former category as SPA attacks and the latter as DPA
attacks. Though SPA and DPA are the acronyms for
simple power analysis and differential power analysis.

Power analysis attacks use the fact that the instan-
taneous power consumption of a hardware device is re-
lated to the instantaneous computed instructions and
the manipulated data. The attacker could measure the
power consumption during the execution of a crypto-
graphic algorithm, store the waveform using a digital os-
cilloscope and process the information to learn the secret
key. Kocher et al., in [15], first introduced this type of at-
tack on smart cards performing the DES operation. Then
Messerges et al. [17] augmented Kocher’s work by pro-
viding further analysis and detailed examples of actual
attacks they mounted on smart cards.

In general, SPA attacks are those based on retriev-
ing valuable information about the secret key from sin-
gle leaked information -power consumption or electromag-
netic emanation-trace. On the other hand, DPA attacks
generally include all attacks that require more than one
such trace along with some statistical analysis tools to
extract the implicit information from those traces.

3.1 SPA Attack on ECCs and Its Coun-
termeasures

Coron [7] has transferred the power analysis attacks to
ECCs and has shown that an unaware implementation of
EC operations can easily be exploited to mount an SPA
attack. Monitoring of the power consumption enables us
to visually identify large features of an ECC implementa-
tion such as the main loop in Algorithms 3 and 4.

Window methods process the key on a digit (window)
level. The basic version of this method, that is where =
= 0 in Section 2.1, is inherently uniform since in most
iterations, wD operations are followed by 1A, except for
possibly when the digit is 0. Therefore, fixed-sequence
window methods were proposed [19, 21, 25] in order to
recode the digits of the key such that the digit set does
not include 0.
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3.2 DPA Attack on ECCs and Its Coun-
termeasures

When the relation between the instructions executed by
a cryptographic algorithm and the key bits is not directly
observable from the power signal, an attacker can ap-
ply differential power analysis (DPA). DPA attacks are in
general more threatening and more powerful than SPA at-
tacks because the attacker does not need to know as many
details about how the algorithm was implemented. The
technique also gains strength by using statistical analysis
and digital signal processing techniques on a large num-
ber of power consumption signals to reduce noise and to
amplify the differential signal. The latter is indicated by a
peak, if any, in the plot of the processed data. This peak
appears only if the attacker’s guess of a bit or a digit of
the secret key is correct.

The attacker’s goal is to retrieve partial or full infor-
mation about a long-term key that is employed in several
ECSM executions.

As for the SPA attack, Kocher et al. were the first to
introduce the DPA attack on a smart card implementa-
tion of DES [15]. Techniques to strengthen the attack and
a theoretical basis for it were presented by Messerges et
al. in [16, 17]. Coron applied the DPA attack to ECCs [7].
A potential DPA countermeasure is known as key split-
ting [14]. It is based on randomly splitting the key into
two parts such that each part is different in every ECSM
execution. An additive splitting using subtraction is at-
tributed to [6]. It is based on computing

kP = (k − r)P + rP. (3)

The authors mention that the idea of splitting the data
was abstracted in [1]. where r is a n-bit random integer,
that is, of the same bit length as k. Alternatively, [4] sug-
gest the following additive splitting using division, that
is, k is written as

k = bk/rc+ k mod r.

Hence, if we let k1 = (k mod r), k22 = bk/rc and S =
rP , we can compute

KP = k1P + k2P, (4)

where the bit length of r is n/2. They also suggest that
Equation (4) should be evaluated with Shamir-Strauss
method as in Algorithm 2.1. However, they did not men-
tion whether the same algorithm should be used to eval-
uate Equations 3.

The following multiplicative splitting was proposed by
Trichina and Bellezza [5] where r is a random integer in-
vertible modulo u, the order of P . The scalar multiplica-
tion kP is then evaluated as

kP = [kr−1(modu)](rp).

To evaluate the above equation, two scalar multipli-
cations are needed; first R = rP is computed, and then
kr−1R is computed.

4 Key Splitting Methods

4.1 Additive Splitting Using Subtraction
(Scheme I)

This approach was suggested by [6] and revisited by [3] as
follows. In order to compute the point kP , the n-bit key
k is written as k = k1 + k2, such that k1 = k − r and k2

= r, where r is a random integer of length n bits. Then
kP is computed as

kP = k1P + k2P. (5)

It is important to note that each of the terms of Equa-
tion (3) should be evaluated separately and their results
combined at the end using point addition. This observa-
tion is based on the following lemma. Let kb→a denotes
bk( mod 2b+1)2acor, simply, the bits of k from bit position
b down to bit position a, with b ≥ a.

Lemma 1. Let splitting scheme I can be evaluated using
Algorithm 2.2 with w = 1(d = n). Then, at the end of
some iteration j, 0 < j ≤ n−1, there are only two possible
values for Q, those are [kn−I−j ]P or [kn−I−j − 1]P .

Proof. Algorithm 2.2 and similarly Algorithm 2.1 com-
putes the required point by scanning k = (k1n−1 , · · · , k10)2
and k2 = (k2n−1 , · · · , k10)2 from the most significant end
down to the least significant end. Hence, at the end of
iteration j, the accumulator Q contains the value

Q = k1n−I−jP + k2n−I−jP

= [k1n−I−j + k2n−I−j ]P.

We can write k, k1 and k2 as

k = k2n−I−jj 2j + kj−1−0.

k = k1j−I−12
j + kij−1−0 .

Since k = k1 + k2 we have

k1j−I−0 + k2j−I−0j = k2j−I−0j + b2j ,

where b ∈ {0, 1}, and k1n−I−j
+ k2n−I−j

= kn−I→j − b.
The attack would proceed in the same way, whether

the algorithm processes a single bit or a digit per itera-
tion, though it would be more involved in the latter case
depending on the digit size. The attacker can double the
number of traces gathered and compute the necessary in-
termediate points as if there was no countermeasure in
place.

Hence each term of Equation (5) should be computed
separately using a SPA-resistant algorithm fixed-sequence
window method. If the key splitting process, e.g., the
subtraction in this case, is processing the key every time,
then an attacker can obtain less noisy information about
the key words such as their Hamming weights by averag-
ing the side-channel trace obtained from the key splitting
process.



International Journal of Network Security, Vol.12, No.3, PP.151–158, May 2011 155

Moreover, if it is difficult for the attacker to locate the
instances where the key is manipulated, then by correlat-
ing different traces, he can detect where the same data is
processed. Therefore, it is desirable to use a previously
split version of the key to generate the new one. Hence
in Equation (5), k1 and k2 can be refreshed as k2 ± rt,
k2 µ rt, before the t-th execution of the ECSM, where
the addition /subtraction is modulo the group order of
the points on the elliptic curve and rt is an n-bit random
integer.

4.2 Additive Splitting Using Division
(Scheme II)

As an alternative to the previous splitting in [4] suggest
that a random divisor r be chosen and the key k written
as k = g ∗ r + h, where g = bk/rc and h = k mod r. Let
S = rP , then kP can be computed as

kP = gS + hP. (6)

We choose the bit length of r to be l = dn/2e. That is, r
is chosen uniformly at random from the range [2l−1, 2l−1].
Hence, the bit length of g is at most bn/2c + 1 ≤ l + 1
and at least l and that of h is at most l [13].

An ECSM is first performed to compute the point S,
where the scalar is of size half that of k. Then, unlike
splitting scheme I, a multiple point multiplication method
can be safely used. In the following, we will justify this
assertion.

Let the representations of k, g and h to the base 2w,
for some w ≥ 1, be (K2z−1, · · · ,K11,K0)2w, (Gz, · · · ,
G1, G0)2w and (Hz−1, · · · , H1, H0), respectively, where
z = dl/we that is l ≤ zw l + w ≤ 1. If l < zw, then Gz =
0, otherwise, if l = zw, then Gz ≤ 1. As before, let Kb→a

denotes bk mod 2bw+1/2awec or, simply, the w-bit digits
of k from digit position b down to digit position a, with
b ≥ a. Let Equation (6) be evaluated using Algorithms
2.1 or 2.2, replacing d by z + 1 in these algorithms and
setting Hz = 0. Then at the end of some iteration j,
1 < j z, the accumulator Q contains the value

Q = Gz→jS + Hz→jP,

= (Gz→j ∗ r + Hz→j)P.

Let kj = Gz→j ∗r + Hz→j , which is of length 2z−j w-
bit digits1. In general- exceptions follow-, k 6= K2z−1→j .
This is true since K2z−1→j = Gz→j ∗ r + hj , where hj

is the l-bit remainder of the division of K2z−1→j by r.
Since K2z−1→j 6= k, then from the division theorem, the
pair (Gz→j , hj) is not equal to (g, h), hence, in general
hj 6= Hz→j .

4.2.1 Major Collisions

A major collision is defined as the occurrence of kj =
K2z−1→j at some iteration j ∈ [1, z - 1]. The intermediate
point computed at this value of kj is the same value that
would be computed when no countermeasure is in place.

The condition of this collision is provided by the following
lemma.

Lemma 2. For some j ∈ [1, z - 1], kj = K2z−1→j2z− 1
if Gj−1→0 = 0.

Proof. We have

k = g ∗ r + h

= (Gz→j ∗ 2jw + Gj−1→0) ∗ r

+(Hzz→j ∗ 2jw + Hj−1→0)
= kj ∗ 2jw + Gj−1→0 ∗ r + Hj−1→0.

But k = K2z−1→j ∗ 2jw + K2z−1→0. Hence, if
Gjj−1→0 = 0, we have kj = K2z−1→0 and Kj−1→0 =
Hj−1→0. On the other hand, if kj = K2z−1→j , then
b(!Gj−1→0 ∗ r)/2jw = 0. However, r ≥ 2l−1 that is,
r ≥ 2(z−1)w. Hence, Gj−1→0 = 02.

The probability of the occurrence of this collision is
around 2−jw. That is, it increases with the iterations
of a multiple-point multiplication ECSM algorithm. It is
negligible in the first iterations that are critical for the at-
tacker in a DPA attack. Moreover, these collisions can be
avoided when evaluating Equation (12) for all j as follows.
After performing the division of k by r, the quotient g is
inspected. If the least significant w bits are found to be
0, another r is chosen. Note that this incurs a negligible
reduction in the choice space of r from 2l−1 to approxi-
mately 2l−12l−w−1.

Another way to avoid these collisions is to make the
quotient g always odd. That is if g is even, it is decre-
mented by one and h is updated by adding r to it. This
may increase the bit length of h to l + 1.

4.2.2 Minor Collisions

A minor collision occurs when at some iteration j ∈ [1, z],
for two values of r: r1 and r2, such that r1 6= r2, we have
kj
1 = kj

2j 6= K2z−1→j . The conditions favoring these col-
lisions are not straightforward to analyze. Some of them
occur when h1 = h2, but also many of them occur with
g 6= g and h1 6= h2. Also in some cases, collisions occur
when gcd(r1, r2) 6= 1, where gcd is the greatest common
divisor.

In the following we refer to φ as a t-time collision value,
if at iteration j, kj = φ for t different values of r. We have
conducted some experiments to study the probability of
happening of these collisions for n = 40 and 50 when di-
vided by all divisors of length 20 and 25 bits, respectively,
with window width w = 4. We found that for different
values of j, after excluding the values of g with w least
significant bits, about 63% of the values of kj on average
were collision-free. About 25.6% were two-times collision
values. The maximum number of collisions t for some
value varied with the iteration; it was higher towards the
middle iterations than the first and last iterations. For
example, in the middle iterations, some 40-bit integers
exhibited kj values with up to 132-times collision and up
to 1735-times for 50-bit integers. The density of values
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that have the higher number of collisions is usually 1 or
2. On the other hand, after the first iteration, the max-
imum number of collisions we obtained was 12 for 40-bit
integers and 23 for 50-bit integers.

5 Proposed System

5.1 Major Collisions

A Major collisions is defined as the occurrence of kj =
k2z−1 → j at some iteration j ∈ [1, z−1]. The intermedi-
ate point computed of this value of kj is the same value
that would be computed when no counter measure is in
place.

Lemma 3. For some j ∈ [1, z - 1], kj = K2z−1→j → j
iff Gj−1→0 = 0. We know that

K = g ∗ r + h,

g = Gz→j ∗ 2jw + Gj−1→0

h = Hz→j ∗ 2jw + Hj−1→0.

Now

K = (Gz→j ∗ 2jw + Gj−1→0 ∗ r)
+(Hz→j ∗ 2jw + Hj−1→0)

= (Gz→j ∗ 2jw) ∗ r + Gj−1→0 ∗ r

+(Hz→j ∗ 2jw + Hj−1→0

K = (Gz→j ∗ r + Hj−1→0) ∗ 2jw

+Gj−1→0 ∗ r + Hj−1→0.

Let

kj = Gz→j ∗ r + Hz→j

K = kj ∗ 2jw + Gj−1→0 ∗ r + Hj−1→0. (7)

Case 1:
Let us assume that Gj−1→0 = 0. From Equation (7), we
have

K = kj ∗ 2jw + Hj−1→0. (8)

But we know that

kj = k2z−1 → j ∗ 2jw + kj−1→0. (9)

From Equations (8) & (9), kj = k2z−1 → j and
Hj−1→0 = kj−1→0.

Case 2:
Let us assume that Kj = K2z−1 → j = 0. From Equa-
tion (7), we have

K = k2z−1 → j ∗ 2jw + Gj−1→0 ∗ r + Hj−1→0. (10)

But we know that

K = k2z−1 → j ∗ 2jw + kj−1→0. (11)

From Equations (10) & (11), we have

Gj−1→0 + Hj−1→0 = kj−1→0
Gj−1→0 ∗ r

2jw
+

Hj−1→0

2jw

=
kj−1→0

2jw

bGj−1→0 ∗ r

2jw
c+ bHj−1→0

2jw
c

= bKj−1→0

2jw
c+ bGj−1→0 ∗ r

2jw
c+ 0

= 0

∴ bGj−1→0 ∗ r

2jw
c = 0

r ≥ 2l−1 ⇒ r ≥ 2(z−1)w

z − 1 = dl/we9r
2jw 0

w(z − 1) ≤ l − 1
∴ Gj−1→0 = 0.

The Probability of major collisions = 2(z−1)w/2jw

2(z−1)w = 1
2jw =

2−jw.

5.2 Minor Collisions

A Minor collision occurs when at some iteration j ∈ [1, z]
for two values of r: r1 and r2, such that r1 6= r2 we have
kj
1 = kj

2 6= k2z−1 → j.

Lemma 4. Probability of the occurrence of the minor col-
lision is around 2−jw

2 .

Proof. We know that k = g ∗ r + h and kj
1 = G1z→j ∗

r1 + Hz→j . Now kj
1 = G2z→j ∗ r2 ∗ r2 + H2z→j and kj

2 =
G2z→j ∗ r2 + H2z→j .

Case 1:
Let

h1 = h2 ⇒ H1z→j = H2z→j .

For kj
1 = kj

2, we have

G1z→j ∗ r1 + H1z→j = G2z→j ∗ r2 + H2z→j

G1z→j ∗ r1 = G2z→j ∗ r2.

From the above equations,

bG1z→j ∗ r1

21+jw
c = bG2z→j ∗ r

21+jw
c. (12)

Since

z = d l

w
e

z ≤ l − 1
w

1 + zw ≤ 1
r1 ≥ 2l & r2 ≥ 2l

r1 ≥ 21+jw & r2 ≥ 21+jw

r1

21+jw
≥ 21+zw

21+jw
&

r2

21+jw
≥ 21+zw

21+jw
.
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Therefore r2
21+jw 9 0 and r2

21+jw 9 0. It is existed in
Equation (12) only when G1z→j = 0 and G2z→j = 0.
Therefore, the probability of occurrence of minor colli-
sion: 21+zw/21+jw

21+zw = 1
21+jw = 2−jw

2 . The above probability
is the half of that of major collisions.

Case 2:
Let g1 6= g2 and h1 6= h2. For Kj

1 = Kj
2 ,

G1z ∗ r1 + H1z→j ∗ r2 = G2z→j ∗ r2 + H2z→j

+bH1z→j

21+jw
c = bG2z→j ∗ r

21+jw
c.

Since

z = d l

w
e,

z ≤ l − 1
w

,

1 + zw ≤ 1.

Now

r1 ≥ 2l and r2 ≥ 2l.

r1 ≥ 21+jw and r2 ≥ 21+jw.

r1

21+jw
≥ 21+zw

21+jw
and

r2

21+jw
≥ 21+zw

21+jw
.

r1

21+jw
9 0 and

r2

21+jw
9 0.

Equation (12) possible existed only when G1z→j = 0 and
G2z→j = 0. Therefore the probability of occurrence of
minor collision: 21+zw/21+jw

21+zw = 1
21+jw = 2−jw

2 .

5.3 The Effect of Probability of Minor
Collisions on Fixed Sequence Win-
dow

The Probability of major collisions = 2−jw+1, j ∈ [1, z −
2]. Mathematically we find the probability of occurrence
of minor collision: 2

−jw
2 , j ∈ [1, z].

In the existing system according to major collisions the
condition of major collision depends on the least signifi-
cant jw + 1 bits of g the probability of occurrence of this
collision is around 2−jw+1 for both values of hjw which
are expected to be equally likely. The condition of minor
collision depends on the value of the least significant jw
bits of length. The probability of the occurrence of these
collisions is around 2−jw

2 for the both values of hjw which
are expected to be equally likely.

In the existing system, experiments are conducted it-
eratively for n collisions and find out the length of bits
according to n. When we taken the window length =
4, excluding the significant bits of w and the values of
kj the collisions average is 63%. The maximum number
of collisions t are varied from higher towards the mid-
dle iterations, then first and last iterations from 12 for
40 bit integers and 23 for 50 bit integers. According to
[8], it is not mathematically proved when the probability

was reduced or increased according to the major colli-
sions depends upon the value of the least significant jw
bits of length. The probability of minor collisions is re-
duced up to 50% compared with that of major collisions.
It is proved that when z ∈ [1, n] the minor collisions are
reduced 50% of major collisions.

6 Conclusion

We have presented a background on elliptic curve cryp-
tosystems (ECCs) along with the different methods used
to compute the scalar multiplication (ECSM), which is
the core operation of ECCs, and the various costs associ-
ated with them. According to the existing system it is not
proved the probability of minor collisions increased or re-
duced of those major collisions depends on the value of the
least significant bits of jw length. We proved that math-
ematically the minor collisions are reduced up to 50% of
major collisions.
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