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Abstract

Proxy ring signature allows proxy signer to sign messages
on behalf of the original signer while providing anonymity.
Certificateless public key cryptography was first intro-
duced by Al-Riyami and Paterson in Asiacrypt 2003. In
certificateless cryptography, it does not require the use of
certificates to guarantee the authenticity of users’ public
keys. Meanwhile, certificateless cryptography does not
have the key escrow problem, which seems to be inher-
ent in the Identity-based cryptography. In this paper,
we introduce the notion of proxy ring signature into cer-
tificateless public key cryptography and propose a con-
crete certificateless proxy ring signature scheme. The se-
curity models of certificateless proxy ring signature are
also formalized. The security of the proposed scheme can
be proved to be equivalent to the computational Diffie-
Hellman problem in the random oracle with a tight re-
duction.
Keywords: Certificateless cryptography, provable security,
proxy ring signature, random oracle model

1 Introduction

The concept of proxy signature was first introduced by
Mambo, Usuda, and Okamoto in 1996 [24, 25]. The proxy
signature schemes allow a proxy signer to sign messages
on behalf of an original signer within a given context
(the context and limitations on proxy signing capabilities
are captured by a certain warrant issued by the delega-
tor which is associated with the delegation act). Proxy
signatures have been found numerous practical applica-
tions, particularly in distributed computing where delega-
tion of rights is quite common, distributed shared object
systems, global distribution networks, and mobile com-
munications. Since Mambo el al.s scheme, many proxy
signature schemes have been proposed [2, 5, 19, 21, 26].
Proxy signatures can combine other special signatures to
obtain some new types of proxy signatures [10, 18, 31].
These include threshold proxy signatures [23, 35], blind

proxy signatures [20, 32], proxy ring signatures [4, 22] and
one-time proxy signatures [17].

Ring signature, introduced by Rivest, Shamir and
Tauman [27], is characterized by two main properties:
anonymity and spontaneity. Anonymity in ring signa-
ture means 1-out-of-n signer verifiability, which enables
the signer to keep anonymous in these “rings” of diverse
signers [33]. Spontaneity is a property which makes dis-
tinction between ring signatures and group signatures [7].
In group signature schemes, there exists a trusted third
party (TTP), usually known as the group manager, who
handles the joining of group members by interacting with
them. In ring signature schemes, no such trusted party ex-
ists and the rest of the n−1 members in the ring are totally
unaware that they have been included in the ring. These
two properties make ring signatures widely applicable to
various cryptographic schemes. The survey of ring signa-
tures and related applications can be found in [28, 29].

Proxy ring signatures [3, 22, 36] are designated for the
following situation: an entity delegates his signing capa-
bility to many proxies, called proxy signer group. Any
proxy signer can perform the signing operation on behalf
of the original signer while providing anonymity, we can
use group signature to solve it (take the group manger
as the original entity). But in some applications, it is
necessary to protect the privacy of participants (we be-
lieve that unconditional anonymity is necessary in many
occasions). If the proxies hope that nobody (including
the original signer) can open their identities, the group
signature is not suitable for this situation. So the proxy
ring signature is proposed to solve this problem [36]. On
one hand, the proxy ring signature allows the proxy signer
generates a proxy ring signature such that any verifier can
be sure that the secret is indeed given out by the proxy
signer group, on the other hand, nobody can figure out
who the proxy signer is.

Certificateless public key cryptography (CL-PKC) is a
new paradigm proposed by Al-Riyami and Paterson [1]
in 2003. The concept was introduced to suppress the in-
herent key-escrow property of identity-based public key
cryptosystems (ID-PKC) without losing their most at-
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tractive advantage which is the absence of digital certifi-
cates and their important management overhead. Like
ID-PKC, certificateless cryptography does not use public
key certificate [1, 37], it also needs a third party called
Key Generation Center (KGC) to help a user to generate
his private key. However, the KGC does not have access
to a user’s full private key. A user computes his full pri-
vate key by combining his partial private key and a secret
value chosen by himself. The public key of a user is com-
puted from the KGC’s public parameters and the secret
value of the user, and it is published by the user himself.

Recently, many researchers have been investigating se-
cure and efficient certificateless signature (CLS) schemes.
In their original paper [1], Al-Riyami and Paterson pre-
sented a CLS scheme. Huang et al. [14] pointed out a
security drawback of the original scheme and proposed a
secure one. A generic construction of CLS scheme was
proposed by Yum and Lee [34] in ACISP 2004. However,
Hu et al [15] showed that the Yum-Lee construction is
insecure and proposed a fix in the standard model. In
ACNS 2006, Zhang et al. [37] presented an efficient CLS
scheme from pairings. Gorantla and Saxena [12] intro-
duced a new construction of CLS scheme without pro-
viding formal proofs. Their scheme has been shown inse-
cure by Cao et al [9]. The survey and discussions of CLS
scheme can be found in [11, 15, 16].

As a useful primitive, proxy ring signature have been
studied in traditional PKC and ID-PKC for more than
several years. Even in a theoretic point of view, proxy ring
signature should be studied in CL-PKC to rich the theo-
ries and techniques of CL-PKC. In practice, to generate
a proxy ring signature on behalf of a group in traditional
PKC, the signer must first verify all the certificates of the
group members, otherwise his anonymity is jeopardized
and the proxy ring signature will be rejected if he uses in-
valid certificates of some group members. Given a proxy
ring signature, the verifier must perform the same verifica-
tion as well before checking the validity of the proxy ring
signature. These verifications inevitably lead to the inef-
ficiency of the whole scheme since the computational cost
increases linearly with the group size. Although Identity-
based proxy ring signatures eliminate such costly verifi-
cations, they suffer from a security drawback induced by
the inherent key escrow problem of ID-PKC. As CL-PKC
does not use public key certificates, and in the meantime,
it removes the key escrow problem of ID-PKC, we think
it supplies an appropriate environment for implementing
proxy ring signatures. So it is necessary to extend the
notion and security model of proxy ring signatures to CL-
PKC.

To the best of our knowledge, certificateless proxy ring
signature based on bilinear pairings has not been treated
in the literature. Our current work is aimed at filling
this void. A security model for certificateless proxy ring
signature is proposed in our paper. The model captures
the notion of existential unforgeability of certificateless
signature against Type I and Type II adversaries. We
then propose an efficient and simple certificateless proxy

ring signature scheme and show its security in our model,
with the assumption that Computational Diffie-Hellman
problem is intractable.

The rest of this paper is organized as follows. A
brief review of some basic concepts and tools used in our
scheme is described in Section 2. The proposed certifi-
cateless proxy ring signature scheme is given in Section 3.
The security of our scheme is analyzed in Section 4. Fi-
nally, the conclusions are given in Section 5.

2 Preliminaries

In this section, we will review some fundamental back-
grounds required in this paper, namely bilinear pairing
and the definition of certificateless proxy ring signature
scheme.

2.1 Bilinear Pairing and Complexity As-
sumption

Let G1 denote an additive group of prime order q and
G2 be a multiplicative group of the same order. Let P
be a generator of G1, and ê be a bilinear map such that
ê : G1 ×G1 → G2 with the following properties:

1) Bilinearity: For all P , Q ∈ G1, and a, b ∈ Zq, ê(aP ,
bQ) = ê(P , Q)ab.

2) Non-degeneracy: ê(P , P ) 6= 1G2 .

3) Computability: It is efficient to compute ê(P , Q) for
all P , Q ∈ G1.

The security of our signature scheme will be reduced to
the hardness of the Computational Diffie-Hellman (CDH)
problem in the group in which the signature is con-
structed. We briefly review the definition of the CDH
problem:

Definition 1. Given the elements P , aP and bP , for
some random values a, b ∈ Zq the Computational Diffie-
Hellman (CDH) problem consists of computing the ele-
ment abP .

The success probability of any probabilistic
polynomial-time algorithm A in solving CDH prob-
lem in G1 is defined to be SuccCDH

A,G1
= Pr[A(P , aP ,

bP ) = abP : a, b ∈ Zq]. The CDH assumption states
that for every probabilistic polynomial-time algorithm
A, SuccCDH

A,G1
is negligible.

2.2 Security Notions

Component of Certificateless Proxy Ring Signa-
ture Schemes. A Certificateless Proxy Ring Signature
(CL-PRS) scheme is a tuple CL-PRS=(MasterKeyGen,
PartialKeyGen, UserKeyGen, Sign, Verify, (Delegation,
Proxy), PRSign and PRVerify), and the description of each
algorithm is as follows.
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1) The randomized parameters generation algorithm
MasterKeyGen takes as input 1k, where k is the se-
curity parameter and outputs a master public/secret
key pair (mpk, msk). The algorithm is assumed to
be run by a Key Generation Center (KGC) for the
initial setup of a certificateless proxy ring signature
scheme.

2) The randomized private key generation algorithm
PartialKeyGen takes as input msk and user’s identity
ID ∈ {0, 1}∗ and generates a key pskID called user
partial key. This algorithm is run by the KGC once
for each user, and the partial private key is assumed
to be distributed securely to the corresponding user.

3) The randomized user key generation algorithm
UserKeyGen takes as input mpk and user’s iden-
tity ID and generates a user public/secret key pair
(upkID, uskID). This algorithm is supposed to be
run by each user in the system.

4) The randomized standard signing algorithm Sign
takes as input mpk, a message m ∈ {0, 1}∗, user
secret key uskID and user partial key pskID, and
outputs a signature sig on message m.

5) The deterministic verification algorithm Verify takes
as input mpk, user identity ID, user public key
upkID, message m and signature sig, and outputs
True if the signature is correct, or ⊥ otherwise.

6) (Delegation, Proxy) is a pair of interactive randomized
algorithms forming the proxy-designation protocol.
The input to each algorithm includes an identity IDo

and a set of identities LID = {ID1, · · · , IDn} with a
warrant ω (the warrant made by the original signer
IDo is public and it implies that the original signer
IDo delegates LID as a set of proxy singers). Delega-
tion is run by the original signer and it also takes as
input the user secret key uskIDo and the user partial
key pskIDo of the original signer. Proxy is run by the
actual proxy signer and it also takes as input the user
secret key uskIDs and the user partial key pskIDs of
the actual proxy signer IDs, where IDs ∈ {ID1,
· · · , IDn}. As result of the interaction, a proxy
signing key SIDs=(Delegation(IDo, LID, ω, uskIDo ,
pskIDo), Proxy(IDo, LID, ω, uskIDs , pskIDs)) for
IDs is output.

7) The randomized proxy ring signing algorithm PRSign
takes as input a message m ∈ {0, 1}∗, the identity
IDo and its corresponding public key upkIDo of orig-
inal singer, a set of n proxy signers whose identities
form the set LID = {ID1, · · · , IDn} and their corre-
sponding public keys form the set Lupk = {upkID1 ,
· · · , upkIDn}, the corresponding warrant ω, a proxy
signing key SIDs , and outputs a proxy ring signa-
ture prsig ← PRSign(SIDs , m, ω, IDo, upkIDo , LID,
Lupk).

8) The deterministic verification algorithm PRVerify
takes as input mpk, the identity of original singer
IDo and its corresponding public key upkIDo

, the set
LID of the proxy signers’ identities and the set Lupk

of the corresponding public keys of the proxy signers,
the corresponding warrant ω, a message m ∈ {0, 1}∗
and a proxy ring signature prsig, and outputs True
if the signature is correct, or ⊥ otherwise, i.e., {True,
⊥}← PRVerify (ω, m, mpk, IDo, upkIDo

, LID, Lupk,
prsig).

Adversaries Model of Certificateless Proxy
Ring Signature Scheme. Combining the security no-
tions of certificateless public key cryptography and secu-
rity models of proxy ring signature schemes in traditional
PKC and ID-PKC, we define two types of security for CL-
PRS scheme, Type-I security and Type-II security, along
with two types of adversaries, A1 and A2, respectively.
Adversary A1 models a malicious adversary which com-
promises the user secret key uskID or replaces the user
public key upkID, however, cannot compromise the mas-
ter secret key msk nor get access to the user partial key
pskID. Adversary A2 models the malicious-but-passive
KGC who controls the generation of the master pub-
lic/secret key pair, and that of any user partial key pskID.
Furthermore, we give both of adversaries the power to re-
quest proxy signing keys on any desired identity.

We define the security of a CL-PRS scheme via the
following two games, one for A1 and the other one for A2.

Game I: Let S1 be the game simulator/challenger and
k ∈ N be a security parameter.

1) S1 executes MasterKeyGen(1k) to get (mpk, msk).
S1 then runs A1 on 1k and mpk while keeping msk
secret. In addition, S1 will maintain three lists L1,
L2, L3 where

• L1 is used to record the identities which have
been chosen by A1 in the RevealPartialKey
queries.

• L2 is used to record the identities whose public
keys have been replaced by A1.

• L3 is used to record the identities which have
been chosen by A1 in the RevealSecretKey
queries.

All these three lists L1, L2, L3 are the empty set ∅
at the beginning of the game.

2) The adversary A1 can adaptively issue a polynomial
bounded number of queries as defined below:

• CreateUser: On input an identity ID ∈ {0,
1}∗, if ID has already been created, nothing
is to be carried out. Otherwise, S1 generates
(upkID, uskID) ← UserKeyGen(mpk, ID). In
both cases, upkID is returned.
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• RevealPartialKey: On input an identity
ID, S1 resets L1 = L1

⋃{ID} and generates
pskID ← PartialKeyGen(msk, ID). S1 outputs
the user partial key pskID as answer.

• ReplaceKey: For any user whose identity is
ID, A1 can choose a new public key upk∗ID. A1

then sets upk∗ID as the new public key of this
user and submits (ID, upk∗ID) to S1. On re-
ceiving such a query, S1 resets L2 = L2

⋃{ID}
and updates the public key of this user to the
new value upk∗ID.

• RevealSecretKey: On input an identity ID,
S1 first checks the set L2. If ID ∈ L2 (that is,
the public key of the user ID has been replaced),
S1 will return the symbol ⊥ which means S1

cannot output the private key of an identity
whose public key has been replaced. Otherwise,
ID 6∈ L2 and S1 resets L3 = L3

⋃{ID}. S1 then
generates (upkID, uskID) ← UserKeyGen(mpk,
ID) and outputs the user secret key uskID as
answer.

• Sign: On input a message m ∈ {0, 1}∗ and an
identity ID, S1 outputs a standard signature
sig on m for ID.

• Delegation-Proxy:

a. A1 can request to interact with user IDo,
user IDo playing the role of original signer,
i.e., the original signer is user IDo and the
actual proxy signer is IDs, where IDs ∈
{ID1, · · · , IDn}. S1 responses by run-
ning algorithm (Delegation, Proxy), taken
warrant ω is chosen by A1 as input, and
outputs a valid proxy signing key SIDs , if
{IDo}

⋂
L1

⋂
L2 = ∅ and {IDo}

⋂
L3 = ∅.

b. A1 can request to interact with the group
of users {ID1, · · · , IDn}, {ID1, · · · , IDn}
playing the role of the set of proxy sign-
ers, and A1 playing the role of origi-
nal signer. S1 responses by running al-
gorithm (Delegation, Proxy), taken war-
rant ω is chosen by A1 as input, and
outputs a valid proxy signing key SIDs ,
if {ID1

⋂ · · ·⋂ IDn}
⋂

L1

⋂
L2 = ∅ and

{ID1

⋂ · · ·⋂ IDn}
⋂

L3 = ∅.
• Proxy-Ring-Sign: On input a message m ∈
{0, 1}∗ for {IDo, LID} with a warrant ω, S1

generates a valid proxy ring signature prsig for
m.

3) Eventually, A1 outputs a forge. The adversary A1

wins the game if any of the following events occurs:

• A1 forges a standard signature (m∗, sig∗) of
user ID∗, where sig∗ is a valid signature and m∗

has never been queried during the Sign queries.
Note that ID∗ cannot be an identity for which
the user secret key has been extracted. Also,

ID∗ cannot be an identity for which both the
public key has been replaced and the user par-
tial key has been extracted.

• A1 forges a proxy ring signature (m∗, ω∗,
prsig∗) for the original signer ID∗

o and the set
of proxy signers L∗ID such that

a. prsig∗ is a valid proxy ring signature.
b. (m∗, ω∗) has never been queried during the

Proxy-Ring-Sign queries.
c. {ID∗

o , L∗ID} with a warrant ω∗ is not re-
quested to Delegation-Proxy query, i.e.,
L∗ID was not designated by ID∗

o as a set of
proxy signers.

d. L∗ID

⋂
L1

⋂
L2 = ∅ and L∗ID

⋂
L3 = ∅.

Definition 2. A CL-PRS scheme is said to be Type-I se-
cure if there is no probabilistic polynomial-time adversary
A1 which wins Game I with non-negligible advantage.

Game II: Let S2 be the game challenger and k ∈ N be a
security parameter. There are two phases of interactions
between S2 and A2.

1) S2 executes A2 on input 1k, which returns a master
public/secret key pair (mpk, msk) to A2. S2 will
maintain two lists L1, L2 where

• L1 is used to record the identities whose public
keys have been replaced by A2.

• L2 is used to record the identities which have
been chosen by A2 in the RevealSecretKey
queries.

Both two lists L1, L2 are empty at the beginning of
the game.

2) As defined in Game I, A2 can issue a polynomi-
ally bounded number of RevealSecretKey queries,
Delegation-Proxy queries, ReplaceKey queries
Sign queries and Proxy-Ring-Sign queries. A2 can
also make queries to CreateUser. S2 will answer
those queries in the same way in Game I. Note that
oracle RevealPartialKey is not accessible and no
longer needed as A2 has the master secret key.

3) Eventually, A2 outputs a forge. The adversary A2

wins the game if any of the following events occurs:

• A2 forges a standard signature (m∗, sig∗) of
user ID∗, where sig∗ is a valid signature and m∗

has never been queried during the Sign queries.
Note that ID∗ cannot be an identity for which
the user secret key has been extracted. Also,
ID∗ cannot be an identity for which both the
public key has been replaced and the user par-
tial key has been extracted.

• A2 forges a proxy ring signature (m∗, ω∗,
prsig∗) for the original signer ID∗

o and the set
of proxy signers L∗ID such that



International Journal of Network Security, Vol.12, No.2, PP.92–106, Mar. 2011 96

a. prsig∗ is a valid proxy ring signature.
b. (m∗, ω∗) has never been queried during the

Proxy-Ring-Sign queries.
c. {ID∗

o , L∗ID} with a warrant ω∗ is not re-
quested to Delegation-Proxy query, i.e.,
L∗ID was not designated by ID∗

o as a set of
proxy signers.

d. L∗ID

⋂
L1 = ∅ and L∗ID

⋂
L2 = ∅.

Definition 3. A CL-PRS scheme is said to be Type-II se-
cure if there is no probabilistic polynomial-time adversary
A2 which wins Game II with non-negligible advantage.

Security Requirements of Certificateless
Proxy Ring Signature Schemes. Like the general
proxy ring signature, a certificateless proxy ring signature
scheme should satisfy the following requirements.

1) Distinguishability: Proxy ring signatures are dis-
tinguishable from normal signatures by everyone.

2) Verifiability: From the proxy ring signature, the
verifier can be convinced of the original signers agree-
ment on the signed message.

3) Strong Non-Forgeability: A designated proxy
signer can create a valid proxy ring signature for
the original signer. But the original signer and other
third parties who are not designated as a proxy signer
cannot create a valid proxy signature.

4) Strong Identifiability: Anyone can determine the
corresponding original signer and the set of proxy
signers from the proxy ring signature.

5) Signer-ambiguity: No one except the actual signer
himself can tell the identity of the actual signer with a
probability large than 1/n, where n is the cardinality
of the ring, even if he/she has unlimited computing
resources.

6) Prevention of Misuse: The proxy signer cannot
use the proxy key for other purposes than generat-
ing a valid proxy ring signature. That is, it cannot
sign messages that have not been authorized by the
original signer.

3 Construction of Our Scheme

In this section, we will give the concrete construction
of a certificateless proxy ring signature scheme. In our
scheme, we employ some ideas of the certificateless signa-
ture scheme in [37], the ID-based ring signature scheme
in [13], and the ID-based proxy signature scheme in [30].
The proposed certificateless proxy ring signature scheme
comprises the following algorithms.

MasterKeyGen: Given a security parameter k ∈ Z, the
algorithm works as follows:

1) Run the parameter generator on input k to gen-
erate a prime q, two groups G1, G2 of prime or-
der q, a generator P in G1, an admissible pairing
ê : G1 ×G1 → G2 and g = ê(P , P ).

2) Select a master-key κ ∈R Z∗q and set Ppub = κP .

3) Choose cryptographic hash functions H1, H3,
H4: {0, 1}∗ → G1 and H2, H5, H6: {0, 1}∗ →
Z∗q . The security analysis will review H1, H2,
H3, H4, H5 and H6 as random oracles. The
system parameters is Params= {q, G1, G2, ê,
P , g, Ppub, H1, H2, H3, H4, H5, H6}. The
master-key is κ.

PartialKeyGen: Given a user’s identity ID ∈ {0, 1}∗,
KGC first computes QID = H1(ID). It then sets
this user’s partial key pskID = κQID and transmits
it to ID secretly.

It is easy to see that pskID is actually a signature [6]
on ID for the key pair (Ppub, κ), and user ID can
check its correctness by checking whether ê(pskID,
P ) = ê(QID, Ppub).

UserKeyGen: The user ID selects a secret value
xID ∈R Z∗q as his secret key uskID, and computes
his public key as upkID = xIDP .

Sign: On inputs Params, a message m ∈ {0, 1}∗, signers’
identity ID, his partial key pskID and user secret key
uskID, the signer randomly picks r ∈ Z∗q , computes
U = rP ∈ G1, h = H2(m, U), and V = h · pskID +
rH3(m, ID, upkID, U) + xIDH4(m, ID, upkID) ∈
G1. The signature is sig = (U , V ).

Verify: Given Params, message m, ID and signature
sig = (U , V ), the algorithm accepts the signature
if the following equations holds:

ê(V, P ) = ê(hQID, Ppub)ê(U,H3(m, ID, upkID, U))
ê(upkID, H4(m, ID, upkID)).

Delegation, Proxy:

1) Delegation Generation: The original signer pub-
lishes a warrant ω where there is an explicit
description of the delegation relation including
the identity of the original signer IDo and a
group of n proxy signers whose identities form
the set LID = {ID1, · · · , IDn}. Note that the
corresponding public keys of the proxy signers
form the set Lupk = {upkID1 , · · · , upkIDn}.
The original signer IDo chooses ro ∈ Z∗q and
computes Uo = roP ∈ G1, ho = H2(ω, Uo),
and Vo = ho · pskIDo + roH3(ω, IDo, upkIDo ,
Uo) + xIDoH4(ω, IDo, upkIDo) ∈ G1. Then the
original signer broadcasts (ω, Uo, Vo) to the set
of proxy signers.

2) Delegation Verification: The proxy signer IDs,
where IDs ∈ {ID1, · · · , IDn}, verifies whether
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ê(Vo, P ) = ê(hoQIDo , Ppub) ê(Uo, H3(ω, IDo,
upkIDo

, Uo)) ê(upkIDo
, H4(ω, IDo, upkIDo

))
holds or not.

3) Proxy Key Generation: If it holds, IDs com-
putes h′o = H5(ω, Uo) and SIDs

= Vo +
h′opskIDs + xIDsH4(ω, LID, Lupk) ∈ G1 and
keeps it as a proxy signing key.

PRSign: To sign a message m ∈ {0, 1}∗ on behalf of the
proxy signers, the actual signer, indexed by s using
the proxy signing key SIDs , performs the following
steps.

1) For all i ∈ {1, · · · , n}, i 6= s, choose ri ∈ Z∗q
uniformly at random, compute yi = gri .

2) Compute hi = H6(ω, m, IDo, upkIDo
, LID,

Lupk, yi) for all i ∈ {1, · · · , n}, i 6= s.

3) Choose random rs ∈ Z∗q , compute ys =
grs ê(−Uo,

∑
i 6=s hiH3(ω, IDo, upkIDo , Uo))

ê(−Ppub,
∑

i6=s hi ho QIDo) ê(−Ppub,
∑

i 6=s

h′o hi QIDi) ê(−upkIDo ,
∑

i 6=s hi H4(ω, IDo,
upkIDo)) ê (−H4(ω, LID, Lupk),

∑
i 6=s hi

upkIDi). If ys = 1G2 or ys = yi for some i 6= s,
then go to the previous step.

4) Compute hs = H6(ω, m, IDo, upkIDo , LID,
Lupk, ys).

5) Compute V =
∑n

i=1 riP + hsSIDs .

6) Output the proxy ring signature prsig = (y1,
. . ., yn, V , Uo).

PRVerify: To verify a proxy ring signature prsig = (y1,
. . ., yn, V , Uo) on a message m with original signer
IDo, the set of proxy singers LID, and the corre-
sponding ω, a verifier does:

1) Compute hi = H6(ω, m, IDo, upkIDo , LID,
Lupk, yi) for all i ∈ {1, . . ., n}.

2) Compute ho = H2(ω, Uo) and h′o = H5(ω, Uo).

3) Verify whether ê(V , P ) = y1 · · · ynê(
∑n

i=1 hi

H3(ω, IDo, upkIDo , Uo), Uo)ê(
∑n

i=1 hihoQIDo ,
Ppub) ê(h′o

∑n
i=1 hiQIDi , Ppub)ê(

∑n
i=1 hi H4(ω,

IDo, upkIDo), upkIDo)ê(
∑n

i=1 hiupkIDi , H4(ω,
LID, Lupk)) holds or not. If it holds, accept the
signature.

4 Security Analysis

4.1 Correctness and Signer Ambiguity

The property of correctness is satisfied. In effect, if the
proxy ring signature has been correctly generated, then

ê(V, P ) = ê(
n∑

i=1

riP + hsSIDs
, P )

= ê(
n∑

i=1

riP, P )ê(hsSIDs , P )

= y1 · · · ynê(Uo,
∑

i 6=s

hiH3(ω, IDo, upkIDo
, Uo))

ê(Ppub,
∑

i 6=s

hihoQIDo)ê(Ppub, h
′
o

∑

i 6=s

hiQIDi
)

ê(upkIDo ,
∑

i6=s

hiH4(ω, IDo, upkIDo))

ê(H4(ω,LID, Lupk),
∑

i 6=s

hiupkIDi
+ hsupkIDs

)

ê(hsh
′
oQIDs

, Ppub)
ê(upkIDo , hsH4(ω, IDo, upkIDo))
ê(hsH3(ω, IDo, upkIDo , Uo), Uo)
ê(hshoQIDo , Ppub)

= y1 · · · ynê(
n∑

i=1

hiH3(ω, IDo, upkIDo , Uo), Uo)

ê(
n∑

i=1

hihoQIDo , Ppub)ê(h′o
n∑

i=1

hiQIDi , Ppub)

ê(
n∑

i=1

hiH4(ω, IDo, upkIDo), upkIDo)

ê(
n∑

i=1

hiupkIDi ,H4(ω, LID, Lupk)).

With respect to the anonymity of the scheme, we
can argue as follows: let (ω, m, y1, . . ., yn, V ) be a
valid proxy ring signature of a message m on behalf of
the original signer IDo, n proxy signers specified by
identities in LID and public keys in Lupk. Since all the
ri, i ∈ {1, · · · , n}\{s} are randomly generated, hence
all yi, i ∈ {1, · · · , n}\{s} are also uniformly distributed.
The randomness of rs chosen by the signer implies
ys = grs ê(−Uo,

∑
i 6=s hiH3(ω, IDo, upkIDo , Uo))ê(−Ppub,∑

i 6=s hihoQIDo)ê(−Ppub,
∑

i 6=s h′ohiQIDi)ê(−upkIDo ,∑
i 6=s hiH4(ω, IDo, upkIDo))ê(−H4(ω, LID, Lupk),∑
i 6=s hiupkIDi) is also uniformly distributed. So (y1, . . .,

yn) in the signature reveals no information about the
signer.

It remains to consider whether V =
∑n

i=1 riP +hsSIDs

leaks information about the actual signer. From
the construction of V , it is obvious to see that
SIDs = h−1

s (V − ∑n
i=1 riP ). To identify whether

IDs is the identity of the actual signer, the only way
is to check ê(hoQIDo , Ppub)ê(Uo, H3(ω, IDo, upkIDo ,
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Uo))ê(upkIDo , H4(ω, IDo, upkIDo))ê(upkIDs , H4(ω,
LID, Lupk))ê(h′oQIDs , Ppub)

?= ê(SIDs , P ). Namely,
ê(hoQIDo , Ppub)ê(Uo, H3(ω, IDo, upkIDo , Uo))ê(upkIDo ,
H4(ω, IDo, upkIDo

))ê(h′oQIDs
, Ppub)ê(upkIDs

, H4(ω,

LID, Lupk)) ?= ê(h−1
s (V − ∑n

i=1 riP ), P ). If IDs

is the identity of the actual signer, it should hold
ys = grs ê(−Uo,

∑
i 6=s hiH3(ω, IDo, upkIDo

, Uo))ê(−Ppub,∑
i 6=s hihoQIDo

)ê(−Ppub,
∑

i6=s h′ohiQIDi
)ê(−upkIDo

,∑
i 6=s hiH4(ω, IDo, upkIDo))ê(−H4(ω, LID, Lupk),∑
i 6=s hiupkIDi

).

It remains to check

(
ê(V, P )

ρ
)h−1

s
?= ê(hoQIDo , Ppub)ê(Uo,H3)ê(upkIDo , H4)

ê(h′oQIDs , Ppub)ê(upkIDs ,H
′
4)

where

H3 = H3(ω, IDo, upkIDo , Uo),
H4 = H4(ω, IDo, upkIDo

),
H ′

4 = H4(ω,LID, Lupk), and

ρ = y1 · · · ynê(Uo,
∑

i 6=s

hiH3)ê(Ppub,
∑

i 6=s

hihoQIDo)

ê(Ppub,
∑

i 6=s

h′ohiQIDi)ê(upkIDo ,
∑

i6=s

hiH4)

ê(H ′
4,

∑

i6=s

hiupkIDi).

However, we have for each j ∈ {1, 2, . . ., n}

(
ê(V, P )

ξ0
)h−1

s = (
ê(

∑n
i=1 riP + hsSIDs , P )

ξ0ξ1ξ2
)h−1

j

= (
ê(

∑n
i=1 riP, P )
ξ0ξ2

)h−1
j

= (

∏
i 6=s yi · grs

ξ0ξ2
)h−1

j

= (ξ2)−h−1
j

= ê(hoQIDo , Ppub)ê(Uo,H3)
ê(upkIDo ,H4)ê(h′oQIDj , Ppub)

ê(upkIDj ,H
′
4)

where

ξ0 = y1 · · · ynê(Uo,
∑

i 6=j

hiH3)ê(Ppub,
∑

i 6=j

hihoQIDo)

ê(Ppub,
∑

i 6=j

h′ohiQIDi)ê(upkIDo ,
∑

i 6=j

hiH4)

ê(H ′
4,

∑

i 6=j

hiupkIDi),

ξ1 = ê(Uo, hsH3)ê(Ppub, hshoQIDo)ê(Ppub, h
′
ohsQIDs)

ê(upkIDo , hsH4)ê(H ′
4, hsupkIDs),

ξ2 = ê(−Uo, hjH3)ê(−Ppub, hjhoQIDo)
ê(−Ppub, h

′
ohjQIDj )ê(−upkIDo , hjH4)

ê(−H ′
4, hjupkIDj )

and IDs is the identity of the actual signer. This fact
shows that V in the signature does not leak any informa-
tion about the identity of the actual signer. And hence,
the unconditional anonymity of our CL-PRS scheme is
proved.

4.2 Unforgeability of the Scheme

Theorem 1. In the random oracle model, our certificate-
less proxy ring signature scheme is existentially unforge-
able against adaptive chosen-message attacks under the
assumption that the CDH problem in G1 in intractable.

The theorem follows at once from Lemmas 1 and 2,
according to Definitions 2 and 3.

Lemma 1. If a probabilistic polynomial-time forger A1

has an advantage ε in forging a proxy ring signature in an
attack modelled by Game I of Definition 2 after running
in time t and making qHi queries to random oracles Hi

for i = 1, 2, 3, 4, 5, 6, qCreU queries to the CreateUser
request oracle, qRPar queries to the RevealPartialKey
extraction oracle, qRSec queries to the RevealSecretKey
extraction oracle, qDP queries to the Delegation-Proxy
extraction oracle, qSig queries to the Sign oracle, and
qPRSig queries to the Proxy-Ring-Sign oracle, then
the CDH problem can be solved with probability ε′ >

(1 − 1
e(qRP ar+1) )ε +

((
qRP ar

qRP ar+n+1 )qRP ar ( n+1
qRP ar+n+1 )n+1·ε)2

66CqH1
,n

with time t′ < 2(t + qH1T1 + qH2T2 + qH3T3 + qH4T4 +
qH5T5+qH6T6+qRParTRPar+qCreUTCreU +qRSecTRSec+
qDP TDP + qSigTSig + qPRSigTPRSig), where CqH1 ,n is de-
fined as the number of n-permutations of qH1 elements
i.e. CqH1 ,n = qH1 · . . . · (qH1 − n + 2)(qH1 − n + 1),
T1(resp. T2, T3, T4, T5, TRPar, TCreU , TRSec, TDP , TSig

and TPRSig) is the time cost of an H1(resp. H2, H3,
H4, H5, RevealPartialKey, CreateUser, RevealSe-
cretKey, Delegation-Proxy, Sign and Proxy-Ring-
Sign query).

Proof. Let (X = aP , Y = bP ) be a random instance of
the CDH problem in G1. Here P is a generator of G1, with
prime order q, and the elements a, b are taken uniformly
at random in Z∗q . By using the forgery algorithm A1, we
will construct an algorithm S1 which outputs the CDH
solution abP in G1.

Algorithm S1 sets Ppub = X and then starts per-
forming oracle simulation. Without loss of generality,
we assume that, for any key extraction or signature
query involving an identity, a H1(·) oracle query has
previously been made on that identity. S1 maintains
a list L = {(ID, pskID, upkID, uskID)} while A1 is
making queries throughout the game. S1 also keeps three
lists L1, L2, L3, the functions of these lists are the same
as mentioned in Game I in Section 2. S1 responds to
A1’s oracle as follows.

Queries on Oracle H1: When an identity ID is
submitted to oracle H1, S1 first flips a coin W ∈ {0, 1}
that yields 0 with probability ζ and 1 with probability
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1 − ζ, and picks t1 ∈ Z∗q at random. If W = 0, then the
hash value H1(ID) is defined as t1P ∈ G1. If W = 1,
then S1 returned t1Y ∈ G1. In both cases, S1 inserts a
tuple (ID, t1, W ) in a list H1 = {(ID, t1, W )} to keep
track the way it answered the queries.

Queries on Oracle H2: Suppose (m, U) is submitted
to oracle H2(·). S1 first scans list H2 = {(m, U , t2, H2)}
to check whether H2 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S1 picks at random t2 ∈ Z∗q and returns
H2 = t2 ∈ Z∗q as a hash value of H2(m, U) to A1 and
also stores the values in the list H2.

Queries on Oracle H3: Suppose (m, ID, upkID, U)
is submitted to oracle H3(·). S1 first scans H3 = {(m,
ID, upkID, U , t3, H3)} to check whether H3 has already
been defined for that input. If so, the previously defined
value is returned. Otherwise, S1 picks at random t3 ∈ Z∗q
and returns H3 = t3P ∈ G1 as a hash value of H3(m,
ID, upkID, U) to A1 and also stores the values in the
list H3.

Queries on Oracle H4: Suppose (m, ID, upkID) is
submitted to oracle H4(·). S1 first scans H4 = {(m,
ID, upkID, t4, H4)} to check whether H4 has already
been defined for that input. If so, the previously defined
value is returned. Otherwise, S1 picks at random t4 ∈ Z∗q
and returns H4 = t4P ∈ G1 as a hash value of H4(m,
ID, upkID) to A1 and also stores the values in the list H4.

Queries on Oracle H5: Suppose (ω, U) is submitted
to oracle H5(·). S1 first scans list H5 = {(ω, U , t5, H5)}
to check whether H4 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S1 picks at random t5 ∈ Z∗q and returns
H5 = t5 ∈ Z∗q as a hash value of H5(ω, U) to A1 and also
stores the values in the list H5.

Queries on Oracle H6: Suppose (ω, m, ID, upkID,
LID, Lupk, y) is submitted to oracle H6(·). S1 first scans
list H6 = {(ω, m, ID, upkID, LID, Lupk, y, t6, H6)}
to check whether H6 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S1 picks at random t6 ∈ Z∗q and returns
H6 = t6 ∈ Z∗q as a hash value of H6(ω, m, ID, upkID,
LID, Lupk, y) to A1 and also stores the values in the list
H6.

RevealPartialKey Oracle: Suppose the request is on
an identity ID. S1 recovers the corresponding (ID, t1,
W ) from the list H1. If W = 1, then S1 outputs “failure”
and halts because it is unable to coherently answer the
query. Otherwise, S1 looks up the list L and performs as
follows.

1) If the list L contains (ID, pskID, upkID, uskID),
S1 checks whether pskID = ⊥. If pskID 6= ⊥, S1

returns pskID to S1. If pskID = ⊥, S1 recovers the
corresponding (ID, t1, W ) from the list H1. Noting
W = 0 means that H1(ID) was previously defined
to be t1P ∈ G1 and pskID = t1Ppub = t1X ∈ G1

is the partial key associated to ID. Thus S1 returns
pskID to A1, writes pskID in the list L and sets L1 =
L1

⋃{ID}.
2) If the list L does not contain (ID, pskID, upkID,

uskID), S1 recovers the corresponding (ID, t1, W )
from the list H1, sets pskID = t1Ppub = t1X and
returns pskID to A1, adds an element (ID, pskID,
upkID, uskID) to the list L and sets L1 = L1

⋃{ID}.
CreateUser Oracle: Suppose the request is on an iden-
tity ID.

1) If the list L contains (ID, pskID, upkID, uskID), S1

checks whether upkID = ⊥. If upkID 6= ⊥, S1 re-
turns upkID to S1. Otherwise, S1 randomly chooses
ν ∈ Z∗q and sets upkID = νP , uskID = ν. S1 returns
upkID to A1 and saves (upkID, uskID) into the list
L.

2) If the list L does not contain (ID, pskID, upkID,
uskID), S1 sets pskID = ⊥, and then randomly
chooses ν ∈ Z∗q and sets upkID = νP and uskID = ν.
S1 returns upkID to A1 and adds (ID, pskID, upkID,
uskID) to the list L.

ReplaceKey Oracle: Suppose A1 makes the query with
an input (ID, upk′ID), then S1 sets L2 = L2

⋃{ID}.
1) If the list L contains an element (ID, pskID, upkID,

uskID), S1 sets upkID = upk′ID and uskID = ⊥.

2) If the list L does not contain an item (ID, pskID,
upkID, uskID), S1 sets pskID = ⊥, upkID = upk′ID

and uskID = ⊥, and adds an element (ID, pskID,
upkID, uskID) to L.

RevealSecretKey Oracle: Suppose the request is on
an identity ID, if ID ∈ L2, S1 returns ⊥, otherwise

1) If the list L contains (ID, pskID, upkID, uskID),
S1 checks whether uskID = ⊥. If uskID 6= ⊥, S1

returns uskID to A1 and sets L3 = L3

⋃{ID}. Oth-
erwise, S1 makes a CreateUser query itself to gen-
erate (upkID = νP , uskID = ν). Then S1 returns
uskID = ν to A1, saves these values in the list L and
sets L3 = L3

⋃{ID}.
2) If the list L does not contain (ID, pskID, upkID,

uskID), S1 makes a CreateUser query itself, and
then adds (ID, pskID, upkID, uskID) to the list L,
sets L3 = L3

⋃{ID} and returns uskID.

Sign Oracle: Suppose that A1 queries the oracle with an
input (m, ID). Without loss of generality, we assume that
the list L contains an item (ID, pskID, upkID, uskID),
and upkID 6= ⊥. (If the list L does not contain such an
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item, or if upkID = ⊥, S1 runs a CreateUser query itself
to generate (upkID, uskID).)

Then S1 picks at random two numbers u, v ∈ Z∗q
and sets U = vPpub, and looks up the list H2 for (m,
U , t2, H2) such that the hash value of H2(m, U) has
been defined to H2 = t2 (If such an item does not
exist, S1 makes a query on oracle H2). After that S1

defines the hash value of H3(m, ID, upkID, U) as
H3 = v−1(uP − t2QID) ∈ G1 (S1 halts and outputs
“failure” if H3 turns out to have already been defined
for (m, ID, upkID, U)). Then S1 looks up the list H4

for (m, ID, upkID, t4, H4) such that the hash value of
H4(m, ID, upkID) has been defined to H4 = t4P ∈ G1

(If such an item does not exist, S1 makes a query on
oracle H4). Finally, S1 sets V = uPpub + t4upkID and
returns (U , V ) to A1.

Delegation-Proxy Oracle:

1) If A1 requests to interact with IDo, IDo playing the
role of original signer. We assume that IDs, where
IDs ∈ {ID1, · · · , IDn}, is the actual proxy signer.
A1 creates a warrant ω, and requests IDo to sign the
warrant ω. S1 queries ω to its Sign(IDo, ·) oracle.
Upon receiving an answer sig, it forwards (ω, sig) to
A1.

2) If A1 requests to interact with IDs, where IDs ∈
{ID1, · · · , IDn}, IDs playing the role of actual proxy
signer, the original signer is IDo. A1 outputs a war-
rant ω and computes the signature sig = (U , V ) for
warrant ω under the user secret key and user partial
key of IDo. Then sends sig = (U , V ) to S1. After
receiving the (ω, sig), S1 checks the validity of (U ,
V ).

Proxy-Ring-Sign Oracle: A1 chooses an original signer
IDo, a group of n users whose identities form the set
LID = {ID1, · · · , IDn} and their corresponding public
keys form the set Lupk = {upk1, · · · , upkn}, and may ask
a valid proxy ring signature for a message m on {IDo,
LID, ω}, where ω explicitly denotes that an original signer
IDo designates LID as a set of proxy signers. To answer
such a query, the algorithm S1 proceeds as follows.

1) Choose at random an index s ∈ {1, . . ., n}.
2) For all i ∈ {1, · · · , n}\{s}, choose ri at random in
Z∗q , pairwise different, and compute yi = gri .

3) Compute hi = H6(ω, m, IDo, upkIDo , LID, Lupk,
yi) for all i ∈ {1, · · · , n}\{s}.

4) Choose hs ∈ Z∗q , V , Uo ∈ G1 at random.

5) Compute ys = ê(V −(
∑

i6=s ri)P, P )ê(−Uo, (
∑n

i=1 hi)
H3(ω, IDo, upkIDo , Uo))ê(−Ppub, (

∑n
i=1 hi)hoQIDo)

ê(−Ppub, h
′
o

∑n
i=1 hiQIDi)ê(−upkIDo , (

∑n
i=1 hi)H4(ω,

IDo, upkIDo))ê(−H4(ω, LID, Lupk),
∑n

i=1 hiupkIDi),
where ho = H2(ω, Uo) and h′o = H5(ω, Uo). If

ys = 1G2 or ys = yi for some i 6= s, then go to the
previous step.

6) Now S1 “falsifies” the random oracle H5, by imposing
the relation H6(ω, m, IDo, upkIDo

, LID, Lupk, ys) =
hs. Later, if A1 asks the random oracle H6 for this
input, then S1 will answer with hs. Since hs is a
random value and we are in the random oracle model
for H6, this relation seems consistent to A1.

7) Return the tuple (ω, m, y1, . . ., yn, V , Uo).

Eventually, A1 halts. It either concedes failure, in
which case so does S1, or it returns a forgery.

1) A1 outputs a forgery sig∗ = (U∗, V ∗) on a message
m∗, for an identity ID∗ with public key upkID∗ . Now
S1 recovers the triple (ID∗, t∗1, W ∗) from H1. If
W ∗ = 0, then S1 outputs “failure” and stops. Oth-
erwise, it goes on and finds out an item (m∗, U∗,
t∗2, H∗

2 ) in the list H2, an item (m∗, ID∗, upkID∗ ,
U∗, t∗3, H∗

3 ) in the list H3, and an item (m∗, ID∗,
upkID∗ , t∗4, H∗

4 ) in the list H4. Note that list H2, H3,
and H4 must contain such entries with overwhelm-
ing probability (otherwise, S1 outputs “failure” and
stops). Note that H∗

2 = H2(m∗, U∗) is t∗2 ∈ Z∗q ,
H∗

3 = H3(m∗, ID∗, upkID∗ , U∗) is t∗3P ∈ G1, and
H∗

4 = H4(m∗, ID∗, upkID∗ , t∗4) is t∗4P ∈ G1. If A1

succeeds in the game, then

ê(V ∗, P ) = ê(H∗
2 ·QID∗ , X)ê(U∗, H∗

3 )ê(upkID∗ ,H∗
4 )

with H∗
2 = t∗2, H∗

3 = t∗3P , H∗
4 = t∗4P , and QID∗ =

t∗1Y for known elements t∗1, t∗2, t∗3, t∗4 ∈ Z∗q . Therefore,
ê(V ∗, P ) = ê(t∗2t

∗
1Y , X)ê(U∗, t∗3P )ê(upkID∗ , t∗4P ),

and thus (t∗2t
∗
1)
−1(V ∗− t∗3U

∗− t∗4upkID∗) is the solu-
tion to the target CDH instance (X, Y ) ∈ G1 ×G1.

2) A1 outputs a forgery of the form (m∗, L∗ID = {ID∗
1 ,

· · · , ID∗
n}, L∗upk = {upk∗ID1

, · · · , upk∗IDn
}, ID∗

o ,
upk∗IDo

, ω∗, prsig∗ = (y∗1 , · · · , y∗n, V ∗, U∗
o )), where

ID∗
o is the original signer with public key upk∗IDo

,
L∗ID is the set of proxy signers with public keys L∗upk,
and ω∗ is the corresponding warrant. It is required
that S1 does not know the private key of original
singer and any member in the set of proxy signers,
{ID∗

o}
⋂

L∗ID

⋂
((L1

⋂
L2)

⋃
L3) = ∅ and the proxy

ring signature sig∗ must be valid. Now, applying
the ‘ring forking lemma’ [13], if A1 succeeds in out-
putting a valid proxy ring signature sig∗ with proba-
bility ε ≥ 7CqH1

,n

2k in a time t in the above interaction,
then within time 2t and probability ≥ ε2

66CqH1
,n

, S1

can get two valid proxy ring signatures (m∗, L∗ID,
L∗upk, ID∗

o , upkID∗
o
, ω∗, sig∗ = (y∗1 , · · · , y∗n, V ∗, U∗

o ))
and (m∗, L∗ID, L∗upk, ID∗

o , upkID∗o , ω∗, sig′∗ = (y∗1 ,
· · · , y∗n, V ′∗, U∗

o )). From these two valid proxy ring
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signatures, S1 obtains

ê(V ∗, P ) = y∗1 · · · y∗nê(
n∑

i=1

h∗i h
∗
oQID∗

o
, Ppub)

ê(
n∑

i=1

h∗i H3(ω∗, ID∗
o , upkID∗

o
, Uo∗), U∗

o )

ê(
n∑

i=1

h∗i upkID∗i ,H4(ω∗, L∗ID, L∗upk))

ê(
n∑

i=1

h∗i H4(ω∗, ID∗
o , upkID∗

o
), upkID∗

o
)

ê(h′∗o
n∑

i=1

h∗i QID∗i , Ppub)

and

ê(V ′∗, P ) = y∗1 · · · y∗nê(
n∑

i=1

h′∗i h∗oQID∗o , Ppub)

ê(
n∑

i=1

h′∗i H3(ω∗, ID∗
o , upkID∗

o
, Uo∗), U∗

o )

ê(
n∑

i=1

h′∗i upkID∗
i
,H4(ω∗, L∗ID, L∗upk))

ê(
n∑

i=1

h′∗i H4(ω∗, ID∗
o , upkID∗

o
), upkID∗

o
)

ê(h′∗o
n∑

i=1

h′∗i QID∗
i
, Ppub)

where

h∗o = H2(ω∗, U∗
o ),

h′∗o = H5(ω∗, U∗
o ),

h∗i = H6(ω∗, m∗, ID∗
o , upkID∗o , L∗ID, L∗upk, y∗i ),

h′∗i = H ′
6(ω

∗, m∗, ID∗
o , upkID∗o , L∗ID, L∗upk, y∗i ),

and for some s ∈ {1, · · · , n}, h∗s 6= h′∗s , while for
i ∈ {1, · · · , n}\{s}, h∗i = h′∗i . From the above two
equations we have

ê(V ∗ − V ′∗, P )
= ê((h∗s − h′∗s )H∗

3 , U∗
o )ê(h∗o(h

∗
s − h′∗s )QID∗

o
, Ppub)

ê(h′∗o (h∗s − h′∗s )QID∗
s
, Ppub)

ê((h∗s − h′∗s )H∗
4 , upkID∗

o
)

ê((h∗s − h′∗s )upkID∗
s
, H ′∗

4 ),

where H∗
3 = H3(ω∗, ID∗

o , upkID∗
o
, U∗

o ), H∗
4 = H4(ω∗,

ID∗
o , upkID∗o ), H ′∗

4 = H4(ω∗, L∗ID, L∗upk). At this
stage, S1 may find the item (ID∗

o , t∗1o, W ∗
o ), (ID∗

s ,
t∗1s, W ∗

s ) from H1, (ω∗, ID∗
o , upkID∗

o
, U∗

o , t∗3, H∗
3 )

from H3, (ω∗, ID∗
o , upkID∗

o
, t∗4, H∗

4 ), (ω∗, L∗ID, L∗upk,
t′∗4 , H ′∗

4 ) from H4. If the coins flipped by S1 for the
query to ID∗

o and ID∗
s show 0 then S1 fails. Oth-

erwise, (W ∗
o = 1,W ∗

s = 1) then QID∗
o

= H1(ID∗
o) =

t∗1oY and QID∗
s

= H1(ID∗
s) = t∗1sY . In this case,

ê(V ∗ − V ′∗, P ) = ê((h∗s − h′∗s )t∗3P , U∗
o )ê(h∗o(h

∗
s −

h′∗s )t∗1oY , X)ê(h′∗o (h∗s − h′∗s )t∗1sY , X)ê((h∗s − h′∗s )t∗4P ,
upkID∗

o
)ê((h∗s − h′∗s )upkID∗

s
, t′∗4 P ). So S1 can get

abP = ((V ∗ − V ′∗) − t∗3(h
∗
s − h′∗s )U∗

o − t∗4(h
∗
s −

h′∗s )upkID∗
o
−t′∗4 (h∗s−h′∗s )upkID∗s )(h∗s−h′∗s )−1(h∗ot

∗
1o+

h′∗o t∗1s)
−1 as the solution to the target CDH instance

(X, Y ) ∈ G1 ×G1.

Now, we evaluate S1’s probability of failure. By an
analysis similar to Coron’s technique [8], the probabil-
ity ζqRP ar (1 − ζ) for S1 not to fail in key extraction
queries or because A1 produces its forgery of standard
signature on a ‘bad’ identity ID∗ is greater than 1 −

1
e(qRP ar+1) when the optimal probability ζopt = qRP ar

qRP ar+1

is taken. Furthermore, the probability ζqRP ar (1 − ζ)n+1

for S1 not to fail in key extraction queries, or because
A1 produces its forgery of proxy ring signature on a
‘bad’ identity ID∗ is greater than ( qRP ar

qRP ar+n+1 )qRP ar ·
( n+1

qRP ar+n+1 )n+1 when the optimal probability ζopt =
qRP ar

qRP ar+n+1 is taken. Based on the bound from the
ring forking lemma [13], if A1 succeeds with probabil-

ity ε ≥ 7CqH1
,n

2k to forge the proxy ring signature, then
the CDH problem in G1 can be solved by S1 with proba-

bility ≥ ((
qRP ar

qRP ar+n+1 )qRP ar ( n+1
qRP ar+n+1 )n+1·ε)2

66CqH1
,n

. Finally, the

probability for S1 to solve the CHD problem is (1 −
1

e(qRP ar+1) )ε +
((

qRP ar
qRP ar+n+1 )qRP ar ( n+1

qRP ar+n+1 )n+1·ε)2
66CqH1

,n
.

Lemma 2. If a probabilistic polynomial-time forger A2

has an advantage ε in forging a proxy ring signature in an
attack modelled by Game II of Definition 3 after running
in time t and making qHi queries to random oracles Hi

for i = 1, 2, 3, 4, 5, 6, qCreU queries to the CreateUser
request oracle, qRSec queries to the RevealSecretKey ex-
traction oracle, qDP queries to the Delegation-Proxy
extraction oracle, qSig queries to the Sign oracle, and
qPRSig queries to the Proxy-Ring-Sign oracle, then
the CDH problem can be solved with probability ε′ >

(1− 1
e(qCreU+1) )ε+

((
qCreU

qCreU +n+1 )qCreU ( n+1
qCreU +n+1 )n+1·ε)2

66CqH1
,n

with

time t′ < 2(t + qH1T1 + qH2T2 + qH3T3 + qH4T4 + qH5T5 +
qH6T6 +qCreUTCreU +qRSecTRSec +qDP TDP +qSigTSig +
qPRSigTPRSig).

Proof. Suppose A2 is a Type II adversary that (t, ε)-
breaks our certificateless proxy signature scheme. We
show how to construct a t′-time algorithm S2 that solves
the CDH problem on G1 with probability at least ε′. Let
(X = aP , Y = bP ) ∈ G1 × G1 be a random instance of
the CDH problem taken as input by S2.
S2 randomly chooses κ ∈ Z∗q as the master key, and

then initializes A2 with Ppub = κP and also the mas-
ter key κ. The adversary A2 then starts making oracle
queries such as described in Definition 3. Note that the
user’s partial key pskID = κH1(ID) can be computed
by both S2 and A2, thus the hash function H1(·) is not
modelled as a random oracle in this case.
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S2 maintains a list L = {(ID, upkID, uskID, W )},
which does not need to be made in advance and is
populated when A2 makes certain queries specified
below. S2 also keeps two lists L1, L2, the functions of
these two lists are the same as mentioned in Game II in
Section 2.

CreateUser Oracle: Suppose the request is on an iden-
tity ID.

• If the list L contains (ID, upkID, uskID, W ), S2

returns upkID to A2.

• If the list L does not contain (ID, upkID, uskID, W ),
as in Coron’s proof [8], S2 flips a coin W ∈ {0, 1} that
yields 0 with probability ζ and 1 with probability
1− ζ. S2 also picks a number t1 ∈ Z∗q at random. If
W = 0, the value of upkID is defined as t1P ∈ G1. If
W = 1, S2 returns t1X ∈ G1. In both cases, S2 sets
uskID = t1, and inserts a tuple (ID, upkID, uskID,
W ) in a list L = {(ID, upkID, uskID, W )} to keep
track the way it answered the queries. S2 returns
upkID to A2.

ReplaceKey Oracle: Suppose A2 makes the query with
an input (ID, upk′ID), then S2 sets L1 = L1

⋃{ID}.

1) If the list L contains an element (ID, pskID, upkID,
uskID), S2 sets upkID = upk′ID and uskID = ⊥.

2) If the list L does not contain an item (ID, pskID,
upkID, uskID), S2 sets pskID = ⊥, upkID = upk′ID

and uskID = ⊥, and adds an element (ID, pskID,
upkID, uskID) to L.

RevealSecretKey Oracle: Suppose the request is on
an identity ID, if ID ∈ L1, S2 returns ⊥, otherwise

1) If the list L contains (ID, pskID, upkID, uskID),
S2 checks whether uskID = ⊥. If uskID 6= ⊥, S2

returns uskID to A2 and sets L2 = L2

⋃{ID}. Oth-
erwise, S2 makes a CreateUser query itself to gen-
erate (upkID = t1P , uskID = t1), while W = 1, S2

aborts. Then S2 returns uskID = t1 to A2, saves
these values in the list L and sets L2 = L2

⋃{ID}.
2) If the list L does not contain (ID, pskID, upkID,

uskID), S2 makes a CreateUser query itself, while
W = 1, S2 aborts. And then S2 adds (ID, pskID,
upkID, uskID) to the list L, sets L2 = L2

⋃{ID}
and returns uskID.

Queries on Oracle H1: On receiving a query H1(ID).
If (ID, QID) exists in H1, S2 returns QID as answer.
Otherwise, S2 picks a random QID ∈ G1 which has not
been used in the former H1 queries, then returns QID as
answer and adds (ID, QID) to H1.

Queries on Oracle H2: Suppose (m, U) is submitted
to oracle H2(·). S2 first scans list H2 = {(m, U , t2, H2)}

to check whether H2 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S2 picks at random t2 ∈ Z∗q and returns
H2 = t2 ∈ Z∗q as a hash value of H2(m, U) to A2 and
also stores the values in the list H2.

Queries on Oracle H3: Suppose (m, ID, upkID, U)
is submitted to oracle H3(·). S2 first scans H3 = {(m,
ID, upkID, U , t3, H3)} to check whether H3 has already
been defined for that input. If so, the previously defined
value is returned. Otherwise, S2 picks at random t3 ∈ Z∗q
and returns H3 = t3P ∈ G1 as a hash value of H3(m,
ID, upkID, U) to A2 and also stores the values in the
list H3.

Queries on Oracle H4: Suppose (ω, ID, upkID) is
submitted to oracle H4(·). S2 first scans H4 = {(ω,
ID, upkID, t4, H4)} to check whether H4 has already
been defined for that input. If so, the previously defined
value is returned. Otherwise, S2 picks at random t4 ∈ Z∗q
and returns H4 = t4Y ∈ G1 as a hash value of H4(ω,
ID, upkID) to A2 and also stores the values in the list H4.

Queries on Oracle H5: Suppose (ω, U) is submitted
to oracle H5(·). S2 first scans list H5 = {(ω, U , t5, H5)}
to check whether H4 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S2 picks at random t5 ∈ Z∗q and returns
H5 = t5 ∈ Z∗q as a hash value of H5(ω, U) to A2 and also
stores the values in the list H5.

Queries on Oracle H6: Suppose (ω, m, ID, upkID,
LID, Lupk, y) is submitted to oracle H6(·). S2 first scans
list H6 = {(ω, m, ID, upkID, LID, Lupk, y, t6, H6)}
to check whether H5 has already been defined for that
input. If so, the previously defined value is returned.
Otherwise, S2 picks at random t6 ∈ Z∗q and returns
H6 = t6 ∈ Z∗q as a hash value of H6(ω, m, ID, upkID,
LID, Lupk, y) to A2 and also stores the values in the list
H6.

Sign Oracle: Suppose that A2 queries the oracle with an
input (m, ID). Without loss of generality, we assume that
the list L contains an item (ID, pskID, upkID, uskID),
and upkID 6= ⊥. (If the list L does not contain such an
item, or if upkID = ⊥, S2 runs a CreateUser query itself
to generate (upkID, uskID).)

Then S2 picks at random two numbers u, v ∈ Z∗q
and sets U = vPpub, and looks up the list H2 for (m,
U , t2, H2) such that the hash value of H2(m, U) has
been defined to H2 = t2 (If such an item does not
exist, S2 makes a query on oracle H2). After that S2

defines the hash value of H3(m, ID, upkID, U) as
H3 = v−1(uP − t2QID) ∈ G1 (S2 halts and outputs
“failure” if H3 turns out to have already been defined
for (m, ID, upkID, U)). Then S2 looks up the list H4

for (m, ID, upkID, t4, H4) such that the hash value of
H4(m, ID, upkID) has been defined to H4 = t4P ∈ G1
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(If such an item does not exist, S2 makes a query on
oracle H4). Finally, S2 sets V = uPpub + t4upkID and
returns (U , V ) to A2.

Delegation-Proxy Oracle:

1) If A2 requests to interact with IDo, IDo playing the
role of original signer. We assume that IDs, where
IDs ∈ {ID1, · · · , IDn}, is the actual proxy signer.
A2 creates a warrant ω, and requests IDo to sign the
warrant ω. S2 queries ω to its Sign(IDo, ·) oracle.
Upon receiving an answer sig, it forwards (ω, sig) to
A2.

2) If A2 requests to interact with IDs, where IDs ∈
{ID1, · · · , IDn}, IDs playing the role of actual proxy
signer, the original signer is IDo. A2 outputs a war-
rant ω and computes the signature sig = (U , V ) for
warrant ω under the user secret key and user partial
key of IDo. Then sends sig = (U , V ) to S2. After
receiving the (ω, sig), S2 checks the validity of (U ,
V ).

Proxy-Ring-Sign Oracle: A2 chooses an original signer
IDo, a group of n users whose identities form the set
LID = {ID1, · · · , IDn} and their corresponding public
keys form the set Lupk = {upk1, · · · , upkn}, and may ask
a valid proxy ring signature for a message m on {IDo,
LID, ω}, where ω explicitly denotes that an original signer
IDo designates LID as a set of proxy signers. To answer
such a query, the algorithm S2 proceeds as follows.

1) Choose at random an index s ∈ {1, . . ., n}.
2) For all i ∈ {1, · · · , n}\{s}, choose ri at random in
Z∗q , pairwise different, and compute yi = gri .

3) Compute hi = H6(ω, m, IDo, upkIDo , LID, Lupk,
yi) for all i ∈ {1, · · · , n}\{s}.

4) Choose hs ∈ Z∗q , V , Uo ∈ G1 at random.

5) Compute ys = ê(V − (
∑

i 6=s ri)P, P )ê(−Uo, (
∑n

i=1

hi)H3(ω, IDo, upkIDo , Uo))ê(−Ppub, (
∑n

i=1 hi)hoQIDo)
ê(−Ppub, h

′
o

∑n
i=1 hiQIDi)ê(−upkIDo , (

∑n
i=1 hi)H4(ω,

IDo, upkIDo))ê(−H4(ω, LID, Lupk),
∑n

i=1 hiupkIDi),
where ho = H2(ω, Uo) and h′o = H5(ω, Uo). If
ys = 1G2 or ys = yi for some i 6= s, then go to the
previous step.

6) Now S1 “falsifies” the random oracle H5, by imposing
the relation H6(ω, m, IDo, upkIDo , LID, Lupk, ys) =
hs. Later, if A1 asks the random oracle H6 for this
input, then S1 will answer with hs. Since hs is a
random value and we are in the random oracle model
for H6, this relation seems consistent to A1.

7) Return the tuple (ω, m, y1, . . ., yn, V , Uo).

Eventually, A2 halts. It either concedes failure, in
which case so does S2, or it returns a forgery.

1) A2 outputs a forgery sig∗ = (U∗, V ∗) on a mes-
sage m∗, for an identity ID∗ with public key upkID∗ .
Now S2 recovers the triple (ID∗, upkID∗ , uskID∗ ,
W ∗) from L. If W ∗ = 0, then S2 outputs “failure”
and stops. Otherwise, it goes on and finds out an
item (m∗, U∗, t∗2, H∗

2 ) in the list H2, an item (m∗,
ID∗, upkID∗ , U∗, t∗3, H∗

3 ) in the list H3, and an
item (m∗, ID∗, upkID∗ , t∗4, H∗

4 ) in the list H4. Note
that list H2, H3, and H4 must contain such entries
with overwhelming probability (otherwise, S2 out-
puts “failure” and stops). Note that H∗

2 = H2(m∗,
U∗) is t∗2 ∈ Z∗q , H∗

3 = H3(m∗, ID∗, upkID∗ , U∗) is
t∗3P ∈ G1, and H∗

4 = H4(m∗, ID∗, upkID∗ , t∗4) is
t∗4Y ∈ G1. If A2 succeeds in the game, then

ê(V ∗, P ) = ê(H∗
2 ·QID∗ , Ppub)ê(U∗, H∗

3 )ê(upkID∗ ,H∗
4 )

with H∗
2 = t∗2, H∗

3 = t∗3P , H∗
4 = t∗4Y , and upkID∗ =

t∗1X for known elements t∗1, t∗2, t∗3, t∗4 ∈ Z∗q . Therefore,
ê(V ∗, P ) = ê(t∗2QID∗ , κP )ê(U∗, t∗3P )ê(t∗1X, t∗4Y ),
and thus (t∗4t

∗
1)
−1(V ∗ − t∗3U

∗ − t∗2κQID∗) is the solu-
tion to the target CDH instance (X, Y ) ∈ G1 ×G1.

2) A2 outputs a tuple (m∗, L∗ID = {ID∗
1 , · · · , ID∗

n},
L∗upk = {upk∗ID1

, · · · , upk∗IDn
}, ID∗

o , upk∗IDo
, ω∗,

prsig∗ = (y∗1 , · · · , y∗n, V ∗, U∗
o )) which means prsig∗

is a proxy ring signature on a message m∗ on behalf
of the original signer specified by identity ID∗

o and
public key upk∗IDo

, and the set of proxy signers speci-
fied by identities in L∗ID and the corresponding public
keys in L∗upk. It is required that S2 does not know the
private key of original singer and any member in the
set of proxy signers, {ID∗

o}
⋂

L∗ID

⋂
(L1

⋃
L2) = ∅

and the proxy ring signature prsig∗ must be valid.
Now, applying the ‘ring forking lemma’ [13], if A2

succeeds in outputting a valid proxy ring signature
sig∗ with probability ε ≥ 7CqH1

,n

2k in a time t in the
above interaction, then within time 2t and probabil-
ity ≥ ε2

66CqH1
,n

, S2 can get two valid proxy ring signa-

tures (m∗, L∗ID, L∗upk, ID∗
o , upkID∗

o
, ω∗, sig∗ = (y∗1 ,

· · · , y∗n, V ∗, U∗
o )) and (m∗, L∗ID, L∗upk, ID∗

o , upkID∗
o
,

ω∗, sig′∗ = (y∗1 , · · · , y∗n, V ′∗, U∗
o )). From these two

valid proxy ring signatures, S2 obtains

ê(V ∗, P ) = y∗1 · · · y∗nê(h′∗o
n∑

i=1

h∗i QID∗
i
, Ppub)

ê(
n∑

i=1

h∗i H3(ω∗, ID∗
o , upkID∗

o
, Uo∗), U∗

o )

ê(
n∑

i=1

h∗i H4(ω∗, ID∗
o , upkID∗

o
), upkID∗

o
)

ê(
n∑

i=1

h∗i h
∗
oQID∗

o
, Ppub)

ê(
n∑

i=1

h∗i upkID∗
i
,H4(ω∗, L∗ID, L∗upk))
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and

ê(V ′∗, P ) = y∗1 · · · y∗nê(h′∗o
n∑

i=1

h′∗i QID∗
i
, Ppub)

ê(
n∑

i=1

h′∗i H3(ω∗, ID∗
o , upkID∗

o
, Uo∗), U∗

o )

ê(
n∑

i=1

h′∗i H4(ω∗, ID∗
o , upkID∗

o
), upkID∗

o
)

ê(
n∑

i=1

h′∗i h∗oQID∗
o
, Ppub)

ê(
n∑

i=1

h′∗i upkID∗
i
,H4(ω∗, L∗ID, L∗upk))

where

h∗o = H2(ω∗, U∗
o ),

h′∗o = H5(ω∗, U∗
o ),

h∗i = H6(ω∗, m∗, ID∗
o , upkID∗o , L∗ID, L∗upk, y∗i ),

h′∗i = H ′
6(ω

∗, m∗, ID∗
o , upkID∗o , L∗ID, L∗upk, y∗i ),

and for some s ∈ {1, · · · , n}, h∗s 6= h′∗s , while for
i ∈ {1, · · · , n}\{s}, h∗i = h′∗i . From the above two
equations we have

ê(V ∗ − V ′∗, P )
= ê((h∗s − h′∗s )H∗

3 , U∗
o )ê(h∗o(h

∗
s − h′∗s )QID∗

o
, Ppub)

ê(h′∗o (h∗s − h′∗s )QID∗
s
, Ppub)

ê((h∗s − h′∗s )H∗
4 , upkID∗

o
)

ê((h∗s − h′∗s )upkID∗
s
, H ′∗

4 )

where

H∗
3 = H3(ω∗, ID∗

o , upkID∗
o
, U∗

o ),
H∗

4 = H4(ω∗, ID∗
o , upkID∗

o
),

H ′∗
4 = H4(ω∗, L∗ID, L∗upk).

At this stage, S2 may find the item (ID∗
o , upkID∗

o
,

uskID∗
o
, W ∗

o ), (ID∗
s , upkID∗

s
, uskID∗

s
, W ∗

s ) from L,
(ω∗, ID∗

o , upkID∗o , t∗4, H∗
4 ), (ω∗, L∗ID, L∗upk, t′∗4 , H ′∗

4 )
from H4. If the coins flipped by S2 for the query to
ID∗

o and ID∗
s show 0 then S2 fails. Otherwise, (W ∗

o =
1,W ∗

s = 1) then upkID∗
o

= t∗1oX and upkID∗
s

= t∗1sX.
In this case,

ê(V ∗ − V ′∗, P )
= ê((h∗s − h′∗s )t∗3P, U∗

o )ê(h∗o(h
∗
s − h′∗s )QID∗

o
, κP )

ê(h′∗o (h∗s − h′∗s )QID∗
s
, κP )

ê((h∗s − h′∗s )t∗4Y, uskID∗
o
X)

ê((h∗s − h′∗s )uskID∗
s
X, t′∗4 Y ).

So S2 can get

abP = ((V ∗ − V ′∗)− t∗3(h
∗
s − h′∗s )U∗

o

− κh∗o(h
∗
s − h′∗s )QID∗

o

− κh′∗o (h∗s − h′∗s )QID∗
s
)(h∗s − h′∗s )−1

(t∗4uskID∗
o

+ t′∗4 uskID∗
s
)−1

as the solution to the target CDH instance (X, Y ) ∈
G1 ×G1.

Now, we evaluate S2’s probability of failure. By an
analysis similar to Lemma 1, the CDH problem in G1

can be solved by S2 with probability (1− 1
e(qCreU+1) )ε +

((
qCreU

qCreU +n+1 )qCreU ( n+1
qCreU +n+1 )n+1·ε)2

66CqH1
,n

.

4.3 Further Security Analysis

Now, we show that our certificateless proxy ring signa-
ture scheme satisfies all the requirements described in Sec-
tion 2.

1) Distinguishability: This is obvious, because there
is a warrant ω in a valid proxy ring signature, at the
same time, this warrant ω and the public keys of the
original signer and the set of proxy signers must occur
in the verification equations of proxy ring signatures.

2) Verifiability: It derived from correctness of the pro-
posed certificateless proxy ring signature scheme. In
general, the warrant contains the identity informa-
tion and the limitation of the delegated signing ca-
pacity and so satisfies the verifiability.

3) Strong Non-Forgeability: It derived from correct-
ness of the Theorem 1.

4) Strong Identifiability: It contains the warrant ω in
a valid proxy ring signature, so anyone can determine
the identity of the corresponding original signer and
the set of proxy signers from the warrant ω.

5) Signer-ambiguity: It derived from correctness of
Section 4.1.

6) Prevention of Misuse: In our proxy ring signature
scheme, using the warrant ω, we had determined the
limit of the delegated signing capacity in the warrant
ω, so the proxy signer cannot sign some messages
that have not been authorized by the original signer.

5 Conclusion

The notion and security models of certificateless proxy
ring signature are formalized. The models capture the
essence of the possible adversaries in the notion of cer-
tificateless system and proxy ring signature. A concrete
construction of certificateless proxy ring signature scheme
from the bilinear maps is presented. The unforgeability
of our CL-PRS scheme is proved in the random oracle
based on the hardness of Computational Diffie-Hellman
problem. We note that CL-PRS schemes may be more
efficient than proxy ring signature schemes in traditional
PKC since they avoid the costly computation for the ver-
ification of the public key certificates of the signers. And
no key escrow in CL-PKC makes it impossible for the
KGC to forge any valid proxy ring signatures.
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