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Abstract

In this paper, a new multi authority electronic voting
scheme based on elliptic curves is proposed. According to
the proposed scheme, each voter casts the vote as a point
on the elliptic curve and the final tally is computed with
the assistance of multiple authorities. A trusted center
is involved in the scheme to distribute the shared secret
key among the authorities and the Shamir (t, n) thresh-
old scheme is used for key distribution. The proposed
scheme also meets the essential requirements of e-voting
system. Ultimately, the proposed voting scheme fortifies
the security properties of the electronic voting procedure,
since the secrecy of the particularized vote is preserved
by ElGamal cryptosystem and Elliptic curve discrete log-
arithm problem.
Keywords: ElGamal cryptosystem, elliptic curves, elliptic
curve discrete, e-voting logarithm problem, homomorphic
encryption

1 Introduction

Supporting group decisions has become an important
topic in the field of computer applications and electronic
voting (e-voting) has a great attention regarding this is-
sue. Electronic voting has been intensively studied for
over the past 20 years [2]. A multi authority electronic
voting scheme is a set of protocols that allow a set of vot-
ers to cast their votes in a bulletin board and the final
tally is computed with the assistance of a set of authori-
ties.

Any e-voting scheme must accomplish the following re-
quirements:

• Privacy. ensures that no one links the ballot to the
voter.

• Universal Verifiability. provides the facility that
anyone in the voting system should be able to in-
dependently verify that all valid votes have been
counted correctly.

• Robustness. The system is robust, if it ensures that
all the system can recover from the faulty behavior of
any (reasonably sized) location of parties; i.e. Failure
resulting from partial authorities or voters can be
detected or tolerated.

• Efficiency. The computational loads must be light
and able to be performed within a reasonable amount
of time.

• Eligibility. Only the eligible voters, who pass the
authentication process, can be allowed to vote.

• Completeness. It is unable to fake a vote, that is
unable to remove a valid vote from the final tally,
and unable to add an invalid vote to the final tally.

• Uncoercibility. No voter can be forced to vote in a
particular way.

The first electronic voting scheme was introduced by
Chaum [3], in which voters electronically cast their bal-
lot over insecure networks. Cramer et al. [6, 7], proposed
multi-authority secret-ballot election scheme and the per-
formance in this scheme is optimal in the sense, that time
and communication complexity is minimal both for the
individual voters and the authorities, but it is a more
complicated scheme, since, it is based on the q-th residu-
osity assumption.

Cohen and Fischer [5], proposed a robust and verifiable
cryptographically secure election scheme based on a r-th
residuosity assumption. Wang et al. [18], proposed an
electronic voting scheme based on blind signature that
distributes the powers to more administrators, but, if the
voting center is not trustful and IP trace between the
voting center and voters is available, then, the proposed
scheme will be easily forgeable. Chun et al. [4] presented a
one-server Private Information Retrieval (PIR) electronic
voting scheme with secure coprocessor and it is suitable
for small-scale election only, because of its high security,
low cost and good efficiency.
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Li et al. [12], developed an electronic voting scheme on
ad hoh networks. Adida and Rivest [1] presented Scratch
& Vote, a cryptographic voting system designed to min-
imize cost and complexity in which, any helper organi-
zation or the voter himself/herself can audit the ballot
without interacting with election officials before the voter
casts his/her ballot.

Liaw [13], proposed an e-voting protocol using smart
cards, which allows the voter to ask the center to recount
his vote by sending the receipt, if his/her vote has not
been counted, but this approach does not satisfy the re-
quirement of uncoercibility. Gang [8], Song et al. [16], Wei
et al. [17], Liaw [13], Karro and Wang [9] and Liu [15] had
done related work in e-voting.

Koblitz [10], introduced an efficient elliptic pubic key
cryptosystem which uses considerably shorter key but of-
fers the same level of security as other asymmetric algo-
rithms using much larger keys. This security level is due
to the fact that elliptic curve discrete logarithm problem
appears to be much harder than the discrete logarithm
problem in DSA and RSA. For example, an elliptic curve
cryptosystem with public key size of 160 bits is as secure
as RSA and DSA cryptosystems with the pubic key of size
1024 bits. Lee et al. [11] and Lin [14] had done related
work in elliptic curves.

In this paper, a new multi authority electronic vot-
ing based on elliptic curves satisfying the requirements of
electronic election is proposed. Elliptic curve discrete log-
arithm is the underlying principle for the security of the
voting scheme. A trusted center is involved in the scheme
to verify the authentication of voters and authorities. The
trusted center is also responsible for constructing and dis-
tributing the shared secret keys to the authorities and
publishing the public key of it and the authorities on the
bulletin board.

All the existing voting schemes are developed on dis-
crete logarithm problem and the parameters involved in
the scheme chosen to those similar in DSA. Thus, these
voting schemes require larger keys to offer higher security.
The proposed e-voting scheme based on elliptic curves
with smaller key size provides the same level security as
the existing algorithms. The complex modular exponen-
tiation is involved in the existing schemes; where as, the
elliptic curve operations in the proposed scheme are not
much complex. The proposed scheme satisfies all the re-
quirements of e-voting. The scheme is illustrated numer-
ically using Mat lab.

The paper in organized in such a way that, Section 2
gives Mathematical primitives behind the scheme, Sec-
tion 3 discusses over view approach, Section 4 describes
vote casting, Section 5 discusses tally computing, Sec-
tion 6 provides proof of knowledge, Section 7 deals with
analysis, Section 8 provides a numerical illustration, Sec-
tion 9 discusses multi way election, Section 10 provides
numerical illustration for multi way election and Sec-
tion 11 concludes the paper.

2 Mathematical Primitives

2.1 Elliptic Curve

Let K be a field (either the field Q, R, C or Fp of charac-
teristic 6= 2, 3, then an elliptic curve over K is the set of
points (x, y) with x, y ∈ K satisfying E : y2 = x3+ax+b,
(where the cubic on the right-hand side has no multiple
roots, i.e., 4a3 + 27b2 6= 0) together with a single element
OE , called point at infinity.

2.2 Addition of Points on Elliptic Curve

Let P1 = (x1, y1), P2 = (x2, y2) be two points on elliptic
curve y2 = x3 + ax + b, then P3 = (x3, y3) = p1 + p2 on
E is computed as

P1 + P2 =
{

OE , if x1 = x2&y1 = −y2 where,
(x3, y3), otherwise

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1), and

λ =

{
3x2

1+a
2y1

, if P1 = P2

y2−y1
x2−x1

, otherwise

2.3 Elliptic Curve Discrete Logarithm
Problem

Suppose Q = xP represents that the point P on elliptic
curve E(Fp) is added to itself x times, then the elliptic
curve discrete logarithm problem is to determine x given
P and Q. It is relatively easy to calculate Q given x and
P , but it is very hard to determine x given Q and P .

2.4 Analogue of the ElGamal Encryption

The communication between Alice and Bob is done as
follows:

1) Alice and Bob choose an elliptic curve E(Fp) and a
random base point “P” of order “q”.

2) Alice and Bob chooses secret keys as the random in-
tegers ra and rb. The public keys of Alice and Bob
are ra and rb.

3) To send a message point “m” to Bob, Alice choose
a random integer “k” and sends the pair of points
(kp, m + k(rbP )).

4) To read m, Bob computes m+k(rbP )−rb(kP ) = m.

2.5 Homomorphic Encryption

Suppose (c1, c2) = (αP,m + α(rbP )) and (c1
1, c

1
2) =

(αP 1,m1 + α1(rbP )) are encryptions of messages m and
m1, then is an encryption for (m + m1).

Since (c1, c2) + (c1
1, c

1
2)

= (c1 + c1
1, c2 + c1

2)
= (αP + α1P, m + α(rbP ) + m1 + α1(rbP ))
= ((α + α1)P, (m + m1) + (α + α1)(rbP )).
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Thus ElGamal encryption is homomorphic.

3 Overview of the Approach

3.1 Bulletin Board

The communication model required for the proposed
scheme is best viewed as a publicly accessible memory,
which is called a bulletin board. Each member has a des-
ignated section of the memory to post messages and no
posted messages can be tampered. No party can erase
any information from the bulletin board, but each active
participant can append messages to its own designated
section. Also it is assumed that, there is some authenti-
cation mechanism such as digital signatures to guarantee
the origin of posted messages, which is to ensure only
eligible voter can post messages in his/her section and
authorities to post sub tally. Each published message is
signed, so the validity can be easily verified by any third
party. All Communication through the bulletin board can
be read by any party.

To execute an election, the parties perform the follow-
ing: Each voter selects the desired vote and constructs
a ballot (encryption of the vote) and posts the ballot to
the bulletin board together with a compact proof, that
it contains a valid vote. However, with the assistance of
a threshold number of authorities the final tally can be
obtained.

3.2 Setting up the Scheme

The participants in the election scheme are the voters
V1, V2, · · ·Vm, authorities A1, A2, · · ·An and a trusted cen-
ter. To set up the scheme, the trusted center chooses
an elliptic curve E(Fq) over a field Fp, a base point
P of order q and secret s ∈ Z∗q . The trusted cen-
ter publishes E(Fp), P , q and h = sP on the bul-
letin board. Homomorphic encryption is used to encrypt
the vote. Trusted center chooses a secret polynomial
f(x) = s + a1x + a2x

2 + · · ·+ at−1x
t−1(modq) and com-

putes s1 = f(1), s2 = f(2), · · · , sn = f(n). Trusted cen-
ter sends the secret pair to the ith authority Ai, where i
is the identity of Ai. If at least t- authorities pool their
secret shares, then the secret key of the trusted center s
can be recovered using Shamir’s (t, n)-threshold scheme.
The pubic keys h1 = s1P of the authorities are published
on the bulletin board by the trusted center. In the de-
scribed scheme, each voter selects his/her choice (yes or
no), encrypts with a homomorphic encryption algorithm
and signs the cryptogram. Particularly, yes vote is de-
noted by 1 and no vote by (-1).

4 Vote Casting

Each voter Vi chooses a secret αi inZ∗q and selects his/her
vote vi ∈ {1,−1} and encrypts the vote by the encryp-
tion as ci = (ci,1, ci,2) = (αiP, αih + viP ) and posts it

on the bulletin board. Here, it is assumed that Vi fol-
lows the protocol and correctly forms ci. The voter has
to perform a proof of knowledge discussed in Section 6,
which shows that he/she really does; otherwise, the vote
becomes invalid.

5 Tally Computing

Any one, who views the published details on the bulletin
board, can compute

c = (c1, c2)

= (
m∑

i=1

ci,1,

m∑

i=1

ci,2)

= ((
m∑

i=1

αi)P, (
m∑

i=1

αi)h + dP ).

Since the encryption is homomorphic. Thus c = (c1,
c2) is the encryption of dP , where d =

∑m
i=1 vi is the

difference between the number of yes votes and no votes.
Final tally is computed with the assistance of at least
t- honest authorities out of n and let J be the set of
these honest authorities. Each authority Aj posts wj =
sj(c1) with his/her identity j. Here, it is assumed that the
authorities are honest and follows the protocol described
in Section 6. As soon as all Aj ∈ J have posted their
messages wj = sj(c1), any one can recover the final tally,
by computing c2 − sj(c1). The value of sci is obtained
from wj = sj(c1) as below.

Now,
∑

j∈J

(
∏

k∈J,k 6=j

(
k

k − j
)wj)

=
∑

j∈J

(
∏

k∈J,k 6=j

(
k

k − j
)(sj , c1))

=
∑

j∈J

(
∏

k∈J,k 6=j

(
k

k − j
)sj(c1))

= s(c1), by Shamir’s threshold scheme.

Also, c2 − s(c1) = (
m∑

i=1

αi)sP + dP − s(
m∑

i=1

sαi)P,

= (
m∑

i=1

αi)sP + dP − (
m∑

i=1

sαi)P,

= dP , since αi(sP ) = (αis)P .

Thus, any tallier can compute from the information
available on the bulletin board posted by the voters and
authorities, where denotes the difference between the pos-
itive and negative votes.

The tallier obtains this difference d, by computing the
points m(−P ), (m−1)(−P ), · · · , P, 2P, · · · ,mp and com-
paring with dP in each step. The number of yes votes
x and the number of no votes y is obtained by solving
x− y = d, x + y = m.
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6 Proofs of Knowledge

6.1 Authority’s Proof

In the decryption protocol, each authority has to prove
that, he/she really posted wj = sjc1, where sj is the
secret key. As hj = sjP is published on the bulletin
board, the authority has to prove that wj and hj have the
same logarithm with respect to c1 and P and that he/she
knows this logarithm. The notation is simplified and an
interactive proof of knowledge of the common logarithm
k of y1 = kP1 and y2 = kP2 is described.

6.1.1 Interactive Proof of Knowledge

Proof of Log Equation (P1, y1, P2, y2):

1) Authority chooses r ∈ Zq at random, computes and
sends a = (a1, a2) = (rP1, rp2) to the verifier; i.e. the
authority commits, that two points have the same
logarithm r with respect to two different points P1

and P2.

2) Verifier chooses c ∈ Zq at random and sends to veri-
fier, which is a challenge by the verifier.

3) Authority computes b = r − ck and sends b to the
verifier, which is the response by the authority.

4) Verifier accepts if only if, a1 = bP1 + cy1 and a2 =
bP2 + cy2.

6.1.2 Non Interactive Proof of Knowledge

Proof of Log Equation (P1, y1, P2, y2): The interactive
proof knowledge can be converted as a non interactive
one by using a collision resistant hash function “hash”.
The authority chooses r ∈ Zq at random and sets a =
(a1, a2) = (rP1, rP2). Then he/she computes the chal-
lenge c = hash(P1x‖y1x‖P1x‖P2x‖y2x‖(bP1 + cy1)‖(bP1 +
cy1)) and sets b = r−ck, where P1x, y1x, P2x, y2x, a1x, a2x

denote the X-coordinates of P1, y1, P2, y2, a1, and a2

respectively. The verifier accepts only if, c =
hash(P1x‖y1x‖P2x‖y2x‖(bP1 + cy1)x‖(bP2 + cy2)x). The
verifier need not know a = (a1, a2) to check the verifica-
tion condition. If one trusts the collision resistant func-
tion, from hash(u) = hash(v), it can be concluded that
u = v. Thus in election protocol, each authority and each
voter completes his/her message with a non-interactive
proof, which convinces everyone that he/she, followed the
protocol.

6.1.3 Completeness

The equations a1 = bP1 + cy1 and a2 = bP2 + cy2 are
satisfied only if, the authority and the verifier follow the
protocol correctly and the authority knows a common log-
arithm for y1 and y2.

6.1.4 Soundness

A cheating prover Eve can convince the verifier with a
probability 1

q in the following way:

1) Eve chooses r, c1 ∈ Zq at random and sets a =
(a1, a2) = (rP1 + c1y1, rP2 + c2y2) and sends it to
the verifier.

2) Verifier chooses c ∈ Zq at random and sends to Eve.

3) Eve sends “r” to the verifier.

4) Verifier accepts, if and only if a1 = bP1+cy1 and a2 =
bP2 + cy2. This is possible if and only if c = c1. The
event c = c1 occurs with probability 1

q . Thus, Eve
succeeds in cheating with a probability 1

q . If Eve can
convince the verifier with a probability greater than
1
q , then he/she has to answer at least two challenges
correctly for a given commitment a. Suppose Eve
knows an ordered pair (a1, a2) for which, he/she can
answer two distinct challenges:

a1 = bP1 + cy1,

a2 = bP2 + cy2,

a1 = (b1P1 + c1y1),
a2 = b1P2 + c1y2)

then he/she can compute

(b− b1)P1 = (c1 − c)y1,

(b− b1)P2 = (c1 − c)y2

(b− b1)
c1 − c)

P1 = y1,

b− b1

c1 − c
P2 = y2.

Thus, Eve can find (b−b1)
c1−c) from the above two equa-

tions which in turn implies that Eve can solve the
computational hard elliptic curve discrete logarithm
problem. Hence, the probability of successes of cheat-
ing prover is bounded by 1

q .

6.2 Voter’s Proof

In the vote- casting protocol, each voter has to prove that
he/she really encrypted a vote viP ∈ (P,−P ); That is the
voter Vi has to prove ci = (ci, 1, ci, 2) = (αiP, αih + viP )
and viP ∈ (p,−P ).

The voter performs a proof knowledge that he/she
knows αi for either ci = αiP and ci,2 − P = αih, or
ci,1 = αiP and ci,2 + P = aih. Each of the two alterna-
tives could be proven interactively or non-interactively as
in authority’s proof.

7 Analysis

The proposed voting scheme satisfies all the requirements
of e-voting.
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• Eligibility: The voters and authorities must register
their identities to the trusted center, so that only
authorized persons can post the messages.

• Privacy: During the voting phase, only encrypted
ballot messages are published on the bulletin board.
Hence, an attacker gains no knowledge from them
and they cannot link the ballot to the voter.

• Universal verifiability & Correctness: The fi-
nal ballot and the proof of validity are posted on the
bulletin board and hence, any one can verify the va-
lidity of the final ballots, the correctness of the ballot
collection and the final result. Thus, valid votes are
counted correctly.

• Fairness: An attacker can decrypt the ballot mes-
sages only if, he/she has the knowledge of the secret
key “s” of the system and to recover “s”, and has
to solve the elliptic curve discrete logarithm problem
which is highly infeasible. Hence, no one can learn
partial results of an election and the entire voted bal-
lots are kept secret until the end of the voting pro-
cess. The final tally is obtained, only after a mini-
mum number of authorities post the messages.

• Robustness: The final tally is computed based on
(t, n) threshold ElGamal encryption scheme, which
can tolerate the failure of maximum (n− t) authori-
ties. Any invalid ballot can be detected and excluded
from the tally.

8 Numerical Illustration

8.1 Setting up the Scheme

Assume that 8 voters and 6 authorities are involved in
the voting scheme. The trusted center chooses the el-
liptic curve E(Fp), given by y2 = x3 − 4(mod211) with
p = 211. The trusted center selects the base point
P = (94, 57) of order q = 241 and the secret polynomial
f(x) = 52 + 15x + 11x2 + 14x3 + 28x4(mod241). The
secret key of the trusted center is s = 52. The trusted
center transmits the secret shares to the authority Ai,
for through a secure channel; i.e. trusted center sends
(1, 120), (2, 204), (3, 191), (4, 158), (5, 131), (6, 85) to the
authorities securely.

The trusted center posts E(Fp), p, P , q, h = sP =
(82, 134) and siP for i = 1, 2, · · · , 6 on the bulletin board.
The values of are (196, 29), (175, 155), (6, 210), (87, 50),
(118, 56), (54, 138) respectively. As the degree of the se-
cret polynomial is 4, the final tally is computed only if,
at least 5 authorities post their messages on the bulletin
board.

8.2 Encryption Phase

Each voter Vi encrypts his vote viP ∈ {P,−P} as
(ci1, ci2) = (αiP, αih + viP ) and posts it in to the bul-

Table 1: Numerical values in vote casting phase - multi
authority two way voting

Sl No Voter Vi ci,1 = αiP ci,2 = αih + viP
1 V1 (50, 57) (45, 179)
2 V2 (195, 72) (145, 127)
3 V3 (159, 114) (89, 196)
4 V4 (20, 191) (69, 191)
5 V5 (159, 114) (79, 136)
6 V6 (191, 196) (83, 124)
7 V7 (17, 30) (74, 210)
8 V8 (20, 191) (69, 191)

Table 2: Numerical values in tally computing phase -
multi authority two way voting

Authorities wj = Sjc1

∏
k∈J,k 6=j(

k
k−j )wj

A1 (182, 100) (34, 138)
A2 (209, 58) (183, 153)
A3 (207, 96) (181, 209)
A4 (23, 66) (111, 145)
A5 (30, 153) (64, 17)
A6 (168, 205) (168, 6)

letin board. The encrypted votes of 8 Voters are given in
the following table.

8.3 Decryption Phase

Once the voters post the encrypted votes (ci, 1, ci, 2)
for i = 1, 2, · · · , 8 on the bulletin board, any one who
views the details on the bulletin board, can compute
c1 =

∑8
i=1 ci, 1 = (36, 34) and c2 =

∑8
i=1 ci, 2 = (172, 16)

including the authorities. Suppose, six authorities j =
{A1, A2, · · · , A6} post for j = 1, 2, · · · , 6 on the bulletin
board, then any tallier can compute

∏
k∈J,k 6=j(

k
k−j )wj for

j = 1, 2, · · · , 6 and inturn the value of sci. The values of
wj and

∏
k∈J,k 6=j(

k
k−j )wj are tabulated below.

Now, sc1 =
∏

k∈J,k 6=j(
k

k−j )wj = (124, 119). The final
tally is computed as c2 − sc1 = dP = (124, 119). Now
computing, −8P , −7P , −6P , · · · , −P , −2P , −3P , · · · ,
−8P , and comparing with dP , it is obtained that d = 2.
Suppose the number of yes votes is x and the no votes y
then, it is obtained that x + y = 8 and x − y = 2 and
hence, the number yes votes is 5 and no votes is 3.

9 Extension to Multi Way Elec-
tion

9.1 Encoding in Multi Way Election

Assume that participants V1, V2, · · · , Vm have choice of
votes as u1, u2, · · · , ur instead of the two choices [1, -1].
To encode these votes the trusted center chooses “r” base
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points P1, P2, · · · , Pr and encodes vj by Pj and publishes
the encoding on the bulletin board.

9.2 Vote Casting

Each Voter Vi encrypts his/her vote uj as ci =
(ci,1, ci,2) = (αiP, αih + Pj) and posts it on the bul-
letin board. Each voter shows by an interactive proof of
knowledge that he/she knows ci,1 = αiP and for exactly
αih = ci2 − Pj one as in authority’s proof.

9.3 Tally Computing

Any one, who views the bulletin board, can compute

c = (c1, c2)

= (
m∑

i=1

ci,1,

m∑

i=1

ci,2)

= ((
m∑

i=1

αi)P, (
m∑

i=1

αi)h + (
r∑

j=1

d1Pj))

where, dj denotes the number of votes favor to uj . Thus
c = (c1, c2) is the encryption of the votes u1, u2, · · · , ur.
Final tally is computed with the assistance of at least t-
honest authorities out of “n” and let J be the set of these
honest authorities. Each authority Aj posts his/her mes-
sage wj = sj(c1) with their corresponding identity j. As
soon as all Aj ∈ J have posted wj = sj(c1), anyone, who
views the bulletin board, can recover the final tally, by
computing c2 = s(c1) =

∑r
j=1 djPj . Now, any tallier can

get final vote (d1, d2, · · · , dr) by computing
∑r

j=1 djPj for
values of satisfying 0 ≤ dj ≤ m,

∑r
j=1 dj = m and com-

paring with summation obtained from c2 − s(c1). Here
is uniquely determined by in the sense that computing a
different solution (d1

1, d
1
2, · · · , d1

r) would contradict the el-
liptic curve discrete logarithm problem, because the base
points were chosen independently.

9.4 Uniqueness of the Final Tally (d1, d2,
· · · , dr)

9.4.1 The Representation Problem

Let r ≥ 2 and (P1, P2, · · · , Pr) be distinct base points
of E(Fp), then (P1, P2, · · · , Pr) is called a generator of
length r. For any Q ∈ E(Fp), d = (d1, d2, · · · , dr) ∈ Zr

q is
a representation if Q =

∑r
j=1 djPj .

To represent Q, the elements d1, d2, · · · , dr−1 can be
chosen arbitrarily. Thus, dr is uniquely determined.
Therefore, each Q ∈ E(Fp) has qr−1 representations.
Given Q ∈ E(Fp), the probability that a randomly chosen
d ∈ Zr

q is a representation of Q is qr−1
qr = 1

q .

Theorem 1. No polynomial algorithm can exist which,
on input of a randomly chosen of length r ≥ 2, outputs
Q ∈ E(Fp) and two different representations of Q.

Proof. Assume that such an algorithm exists. On in-
put of randomly chosen generator (P1, P2, · · · , Pr), it
outputs Q ∈ E(Fp) and two different representations
d = (d1, d2, · · · , dr) and d1 = (d1

1, d
1
2, · · · , d1

r) of Q. Then
d − d1 is a representation of OE , since OE = Q − Q =∑r

j=1 djPj −
∑r

j=1 d1
jPj =

∑r
j=1(dj − d1

j )Pj .
Thus, there exists a polynomial algorithm A, which on

input a randomly chosen generator outputs a nontrivial
representation of OE . This algorithm A, may be used
to define an algorithm B, which on input P ∈ E(Fp),
P 6= OE and P 1 ∈ E(Fp) computes the discrete logarithm
problem of P 1 with respect to P .

Algorithm 1 Algorithm: B
1: Input P , P 1

2: repeat
3: select i ∈ {1, 2, · · · , r}
4: select uj ∈ Z∗q , 1 ≤ j ≤ r, uniformly at random
5: Pi ← uiP

1, Pj ← uiP
1, 1 ≤ j 6= 1 ≤ r

6: (d1, d1, · · · , dr) ← A(P1, P2, · · · , Pr)
7: until diui is not a multiple of q
8: return - (diui)−1〈∑i 6=j djuj〉(modq)

The returned value is indeed the discrete logarithm
of P 1, which is a contradiction to the fact that elliptic
curve discrete logarithm is an computationally hard prob-
lem. Hence there exists no polynomial algorithm can ex-
ist which, on input of a randomly chosen of length r ≥ 2,
outputs Q ∈ E(Fq) and two different representations of
Q.

Corollary 1. The returned value −(diui)−1 〈 ∑
i 6=jdjuj

〉
(modq) in algorithm B is discrete logarithm of P 1 with
respect to P .

Proof. Using algorithm A, a representation (d1, d2, · · · ,
dr) of OE can be obtained. Therefore

r∑

i=1

aiPi = OE

diPi +
∑

i6=j

djPj = OE

diuiP1 +
∑

i 6=j

djujP = OE( by step 4)

diuiP1 =
∑

i 6=j

djujP

P 1 = −(diui)−1
∑

i 6=j

djujP.

−(diui)−1〈∑i 6=j djuj〉 mod q is the discrete logarithm
of P 1 with respect to P .
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Table 3: Numerical values in vote casting phase - multi
authority multi way voting

S No Voter Vi ci,1 = αiP ci,2 = αih + viP
1 V1 (60, 96) (130, 203)
2 V2 (39, 92) (89, 196)
3 V3 (174, 163) (118, 56)
4 V4 (206, 90) (67, 57)
5 V5 (144, 69) (14, 29)
6 V6 (95, 194) (20, 20)
7 V7 (16, 111) (81, 136)
8 V8 (93, 134) (107, 87)
9 V9 (150, 85) (71, 126)
10 V10 (130, 8) (27, 181)

10 Numerical Illustration

10.1 Setting up the Scheme

Assume that 10 voters and 6 authorities are involved in
the voting scheme. The trusted center chooses the el-
liptic curve E(Fq), given by y2 = x3 − 4(mod211) with
p = 211. The trusted center selects the base point
of order q = 241 and the secret polynomial f(x) =
52 + 60x + 26x2 + 24x3 + 13x4(mod241). The secret key
of the trusted center is s = 52. The trusted center trans-
mits the secret shares (i, si = f(i)) to the authority Ai, for
i = 1, 2, · · · , 6 through a secure channel; i.e. the trusted
center sends (1, 175), (2, 194), (3, 239), (4, 29), (5, 77),
(6, 3) to the authorities securely.

Suppose the participants have the choice of voting as
u1, u2, u3, u4. The trusted center selects four distinct base
points of the elliptic curve E(Fp) other than P = (94, 57),
say P1 = (2, 2), P2 = (6, 1), P3 = (13, 100), P4 = (14, 29)
and encodes u1, u2, u3, u4 as the points P1, P2, P3, P4 re-
spectively. The trusted center posts, E(Fq), p, q, h =
sP = (82, 134), and siP for i = 1, 2, · · · , 6 on the bulletin
board. The posted are (182, 100), (167, 30), (124, 92),
(27, 30), (121, 210) and (137, 37) respectively. As the
degree of the secret polynomial is 4, the final tally is com-
puted only if at least 5 authorities post their messages on
the bulletin board.

10.2 Encryption Phase

Each voter Vi encrypts his/her vote as c1i, ci2 =
(αiP, αih + Pj), where Pj ∈ {P1, P2, P3, P4} and posts it
into the bulletin board. The encrypted votes of 10 voters
are given in the following table.

10.3 Decryption Phase

Once the voters post the encrypted votes ci,1, ci,2 for i =
1, 2, · · · , 10 on the bulletin board, any one who views the
bulletin board can compute c1 =

∑1 0i=1ci,1 = (119, 113)
and c2 =

∑1 0i=1ci,2 = (87, 161) including the authori-
ties. Suppose the six authorities j = {A1, A2, · · · , A6}

Table 4: Numerical values in tally computing phase -
multi authority Multi way voting

Authorities wj = Sjc1

∏
k∈J,k 6=j(

k
k−j )wj

A2 (80, 136) (159, 97)
A3 (72, 14) (207, 115)
A4 (51, 136) (34, 73)
A5 (50, 57) (74, 10)
A6 (168, 6) (23, 66)
A7 (179, 199) (45, 32)

post (j, wj = sjc1) for on the bulletin board, then any
tallier can compute

∏
k∈JK 6=j(

k
k−j )wj for j = 1, 2, · · · , 6

and inturn the value of sc1. The values of and are tabu-
lated below.

11 Conclusion

In this paper a new e-voting scheme based on ellip-
tic curves is proposed. As far as the authors knowl-
edge is concerned, the concept of elliptic curves has
not previously been applied to multi authority election
scheme. The elliptic curve cryptosystem requires consid-
erably shorter key and offer the same level of security as
other asymmetric algorithms RSA and DSA which need
much larger keys. Hence, the proposed e-voting provides
the same level of security as other e-voting schemes devel-
oped on ElGamal cryptosystem with parameter assump-
tions as in DSA. The modular exponentiation is involved
in the existing voting schemes, where as, in the proposed
scheme, the computation of the ballot requires only a few
point additions; and hence, the scheme is computation-
ally efficient. In this paper two multi authority election
schemes were discussed. The first one is a multi author-
ity voting scheme in which the vote vi is selected from
[-1, 1]. The second scheme multi way election is an exten-
sion of the first one in which the vote vi has more than
two choices u1, u2, · · · , ur. The proposed scheme satisfies
well-known requirements such as privacy, universal verifi-
ability and robustness of e-voting. The final tally compu-
tation is complicated in proposed scheme and hence the
scheme is applicable at small scale.

Now sc1 =
∑

j∈J

∏
k∈J,k 6=j(

k
k−j )wj= (70, 200). Any

one, who views the bulletin board, can recover the final
tally c2 − s(c1) =

∑4
j=1 djPj = (99, 31).
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