International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

29

Designing a Framework Method for Secure
Business Application Logic Integrity in
e-Commerce Systems

Faisal Nabi
E-Commerce Security Research Group, Hazraat Baba Bullah Shah Research Center, Shaihar

Qasoor, Pakistan (Email: nabifaisal@yahoo.com)
(Received Nov. 13, 2009; revised and accepted Feb. 17, 2010)

Abstract

Currently e-commerce system security focuses on mech-
anisms such as secure transactional protocols, crypto-
graphic schemes, parameter sanitization and it is assumed
that putting these in place will guarantee a secure e-
Commerce application. However, often vulnerabilities in
the business application logic itself are often ignored that
can make the effect of these security mechanisms null and
void. Essentially, the weakest link can be at the server
rather the client and ignoring this is done at a devel-
oper’s peril. This paper focuses on this weakest link in e-
commerce system. In particular, it considers component-
based middleware platforms where vulnerabilities may ex-
ist in the middleware itself or the components used to
construct the e-Commerce application. We outline a logic
attacks that would not be prevented by the deployment of
the mechanisms commonly used in e-Commerce systems.
To counter this problem, we present a secure framework
method based on existing techniques that treats security
as a first-class concept and considers its interaction with
business logic.

Keywords: CBS, design flaws, e-commerce system, in-
tegrity, logical attacks, logical flaws, software flaws

1 Introduction

The advent of e-Commerce ushered in a new period per-
vaded by sense of boundless excitement and opportuni-
ties. However, there is always an inverse relationship be-
tween return and risk implying that e-Commerce intro-
duces more and newer risks than traditional bricks and
mortar commerce. In particular, e-Commerce provides a
storefront on the Internet and this makes such businesses
vulnerable to hackers. Developers often rely upon vendors
of e-Commerce systems providing security mechanisms
such as SSL or TLS to protect against attacks. However,
reliance on such mechanisms is often insufficient [4, 5, 18].

The real security risks of e-commerce security is
more than secure transactional protocols, cryptographic

schemes/techniques, parameter santisation, intrusion de-
tection systems etc. [21]. These attributes make up only
some part of security and, privacy of e-commerce [12].
The software that executes on the either end of the
transaction-server-side or client-side software poses real
threats to the security and privacy in e-commerce sys-
tems. Two familiar adages play an important role in un-
derstanding to secure e-commerce systems:

1) A chain is only as strong as its weakest link;

2) In the presence of obstacles, the path of least resis-
tance is always the path of choice [6]. Although, the
security issues of the front-end and back-end software
systems in e-commerce application warrant equal at-
tention for complete security in e-commerce but we
are more concerned with the often neglected back-
end side of security. In particular, component-based
middleware business applications.

Section 2 provides an overview of the role of
application-level business logic in a Web application. Sec-
tion 3 introduces component-based software for applica-
tion development. Section 4 discusses risks in developing
component-based business applications. Section 5 out-
lines the notions of software bugs, flaws and their rela-
tionship to software vulnerabilities. Section 6 discusses
the concept of a logical vulnerability. Section 7 intro-
duces business logic attacks. Section 8 proposes a classifi-
cation. Section 9 highlights some case studies. Section 10
proposes a secure framework method for mitigating the
existence of flaws in the business software that may lead
to expression of these attacks. Finally, Section 11 wraps
up the paper with a discussion of the approach.

2 Application Business Logic

The business logic describes the steps required to com-
plete or perform a particular action as defined by the
application developer. This is also called business logic
because it defines the business rules in e-commerce sys-
tem at middle tier. The execution of business logic causes

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

the state of the business to evolve over time [9, 10]. Busi-
ness logic is the implementation of business rules and is
defined by a developer and implemented as code [9, 10].

Figure 1 shows the role of business logic in a traditional
Web 1.0 style Web application. The user uses a browser
to interact with the Web application. The browser for-
wards requests and receives pages to render in response.
The requests are handled by Web servers that delegate
requests for the application to the middle-tier application
servers where the business logic is implemented. The im-
plementation may be developed using various middleware
as shown in the diagram. The business logic will use the
middleware to communicate with back-end services such
as data storage in the form of databases, other systems
such as an Enterprise Resource Planning system (ERP
system) or perhaps legacy applications.

The business application logic represents the functions
or services that a particular e-commerce site provides. As
a result, a given site may often employ custom-developed
logic. As the demand for e-commerce services grows, the
sophistication of the business application logic grows ac-
cordingly [6, 12].

Software
Logic and

3 Component-based
Role in Business
Concerns

Component-based software is constructed of components.
These are objects that encapsulate behavior and state, are
accessed through well-defined interfaces, and are compos-
able with other objects and to provide this conform to
some standard. Frameworks for component-based soft-
ware development will provide tools and code that im-
plement the standard. Examples of such frameworks are
JavaBeans, COM, DCOM and CORBA [6]. The great
advantage of component based development is the oppor-
tunity to reuse industrial-strength software in order to
rapidly prototype business application logic colorred(Q.
Cheng, J.Yao & R.Xing 2006).

One of the more popular component frameworks for e-
commerce application is the server-side Enterprise Java
Beans architecture for distributed applications. Other
component-based technologies include the common object
request broker architecture (CORBA) version 3, an open
standard developed by the Object Management Group
(OMG) and the Microsoft Distributed Common Object
Model/.Net environment.

The component frameworks are the glue that enables
software components to provide services, business appli-
cation logic and provides standard infrastructure services
such as naming, persistence, introspection and event han-
dling [12]. The business application logic is coded in
software “Components” that can be “Custom-Developed
or purchased Commercial-off-the-shelf” [12]. Component-
based software is expected to enable distributed B2B ap-
plications over the internet and as that off-the-shelf stan-

30

dard business application logic components will be avail-
able for purchase.

Components developed using component frameworks
execute within application servers that form the middle
tier of an n-tier architecture. For example, JBoss is a pop-
ular application server for the EJB framework and can
load EJB standards compliant beans. The application
servers also provide an interface for the business appli-
cation logic to back-end services such as database man-
agement, enterprise resource planning (ERP) and legacy
software system services |7, 12]. There is no doubt that
component-based software provides numerous benefits,
but it poses security hazards similar to the Common Gate-
way Interface scripts that used to dominate e-Commerce.
For example, components generally execute with all rights
and privileges of server process and a poorly written com-
ponent may subject to malformed input causing a buffer
overflow. This would allow an attacker to exploit the
server side and use the rights allocated to the application
server for their own purposes.

One reason for the emergence of components-based
software on e-commerce sites is the complexity of the soft-
ware necessary to implement business application logic.
This complexity, in turn, introduces more software flaws
that can be exploited for malicious gain.

4 Web Software Application and
Component-based Development
Risks

Modern Web applications run large scale software applica-
tions for e-commerce, information distribution, entertain-
ment, collaborative research work, surveys and numer-
ous other activities. They run on a variety of networked
hardware platforms. The software that powers Web ap-
plications is distributed, is implemented in multiple lan-
guages and styles, incorporates much reuse of custom de-
veloped and third-party components and must interface
with users, other Web sites and databases. Although.
Server-side components are relatively new to the compo-
nent market. Benefits enable the developer to provide
solutions that run on a per server basis. These compo-
nents serve many clients simultaneously without signifi-
cant performance loss. Server-side components can also
be upgraded efficiently removing the complexities of up-
dating potentially thousands of desktop machines. Com-
ponent logic is often run on powerful servers as opposed to
a desktop machine [14]. This makes the server-side com-
ponent an excellent candidate for systems that require ef-
ficient throughput and performance [15]. The word “het-
erogeneous” is often used for Web software, it applies
in so many ways that the synonymous term “diverse”
is more general, familiar and probably more appropri-
ate [13]. The software components are often distributed
geographically both during the development and deploy-
ment (diverse distribution), communicate in numerous

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

31

Web
Servers

G

Business application logic Database
servers
Component-based
software
-t ERP system
Application

servers
Legacy
CORBA systems

EJB COMIDCOM

Figure 1: Middle tier of e-commerce servers that implements the business application logic

distinct and sometimes novel ways (diverse communica~
tion) [2].

Web-based software systems by integrating numer-
ous diverse components from disparate sources, includ-
ing custom-built special-purpose applications, customized
“Commercial off-the-shelf Software Components & third-
party products” [13]. Much of the new complexity found
with web-based applications also results from how the
different Software components are integrated. Not only
is the source unavailable might be hosted on computers
at remote, even competing organization. To ensure high
quality for the Web systems composed of very loosely cou-
pled components, which seriously required evaluate these
Components connections [3].

Web software Components coupled more loosely than
any previous software application [13].

The web’s function and structure have changed drasti-
cally will continue to do so. This was even observed back
in 2002 [13]. Examples of such a change in last couple
of years idea is the use of Web 2.0 feature Ajax. The
Ajax engine is a framework for writing client-side code
that handles calls between the client and server. Typi-
cally this would implemented as a library of JavaScript
functions included on the page [16].

The great advantage of Ajax is that it can be used to
provide a more responsive Web application because some
tasks can be carried out at the client side without need-
ing to interact with the server. Dangers arise when criti-
cal business logic is implemented on the client side where
there is little control by the owner of the Web applica-
tion. For example, examples of exploits have used proxies
or the direct invocation of script functions to bypass the
intended logic/business logic. Another problem with Ajax
is that the source code incorporating business logic checks

is now directly available to intruders just be downloading
a Web page. Sharing business logic client-side reveals the
source information of the complete system which makes
the attacker’s job easier. For example, an Ajax-enabled
application with multiple levels of user account was found
to have one JavaScript include file for the entire client-side
logic. This meant that an anonymous user with trail ac-
count could see the logic behind both unprivileged and
administrator-level service calls. This provided a map of
the application that an attacker could use to attack busi-
ness logic in the middle-tier.

Web sites are now fully functional software systems
that provide business-to-customer e-commerce, business-
to-business e-commerce and many other services to many
users. The growing use of third-party software com-
ponents and middleware represents one of the biggest
changes in the e-commerce Web application systems.

The business application logic is a key weak link in se-
curity of many online sites. Typically, application subver-
sion attacks as well as data driven attacks exploit weak-
ness in this Web application software.

5 Security Properties Violations
in Middle Tier

Traditionally the focus for the security community has
been at the hardware, operating system and network lev-
els. In recent years there has been interest in the middle-
ware and application layers. In terms of our Web appli-
cation, these are the layers where our business rules are
implemented. Although their security relies upon lower
layers and security mechanisms, vulnerabilities at these
layers can represent the weakest link in a Web applica-

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

tion. “A software system’s security & its integrity only as
secure as its weakest component” [19].

Security problems originate from flaws in software de-
sign and implementation, and configuration management.
These flaws are leveraged either maliciously or acciden-
tally by the users of the software into providing a level of
access and privilege that would not otherwise be granted
by the program [5].

e Vulnerabilities: It can be the result of design flaw
or implementation faults/errors. Design vulnerabil-
ities are very hard to correct, while implementation
vulnerabilities can be corrected through patches.a
vulnerability is a defect or weakness in system secu-
rity procedures, design, implementation, or internal
controls that can be exercised and result in a security
breach or a violation of security policy.

e Bug: Bugs are implementation-level problems lead-
ing to security risk [20]. Automated source code anal-
ysis tools tend to focus on bugs.

e Flaw: Defining flaws are design-level problems lead-
ing to security risk [20]. Flaws are the software de-
sign level problems that exist in the software; Human
expertise is required to uncover flaws. Whereas, au-
tomated source code analysis tools tend to focus on
bugs [20].

A flaw become the cause to of a vulnerability in the
underlying software mitigating a flaw typically involves
significantly more effort than simply modifying a few lines
of code.

Designing software behavior is a process that involves
identifying and coding up policy and business logic. The
policy is enforced using security mechanisms. There is no
sliver bullet for software security. Technology for scanning
code is good at finding implementation-level mistakes, but
there is no substitute for experience [8].

6 What is Logical Vulnerability
in Terms of E-Commerce Web-
Application?

All Web applications employ logic in order to deliver their
functionality. Writing code in a programming language
involves at its root nothing more than breaking down
a complex process into very simple and discrete logical
steps. Translating a piece of functionality that is mean-
ingful to human beings into a sequence of small operations
that can be executed by computer involves a great deal
of skill. Doing it in an elegant and secure fashion is even
harder still. In the very simplest of Web applications, a
vast amount of logic is performed at every stage. This rep-
resents an intricate attack surface that is always present
but often overlooked. Many code reviewers and pene-
tration tests focus exclusively on the common “headline”
vulnerabilities like SQL injection & Cross-Site Scripting,

32

because these have an easily recognizable signature and
well-researched exploitation vector. By contrast, flaws in
an application’s logic are harder to characterize; each in-
stance may appear to be a unique one-off occurrence, and
they are not usually identified by any automated vulnera-
bility scanners. As a result, they are not generally as well
appreciated or understood & they are therefore of great
interest to an attacker.

For example, an application might direct the user from
point A to point B to point C, with the point B being
a security validation check A manual review of the appli-
cation might show that it is possible to go directly from
point A to point C bypassing the security validation at
pint B entirely.

7 Application Logic Attacks Op-
eration

Unlike, common application technical attacks, such as
SQL injection or Buffer Overflow. Each application logic
attack is usually unique primarily because it has to exploit
a function or feature that is specific to the application.
This makes it more difficult for automated vulnerability
testing tools to identify or detect such vulnerability class
of attacks because these look for non-application specific
flaws.

Such types of problem may sound unlikely or rate but
a review of attacks on websites between 2006 and 2007
as identified in a 2008 FBI report (Published CNBC TV
dated: 13 Feb. 2008) shows that server side application
software flaws caused many of breaches. This was despite
many of these sites using modern technologies such as the
Java-based Web development model (JSP + Servlets) or
the Microsoft .Net ASP Web development.

Such types of problem may sound unlikely or rate but
a review of attacks on websites between 2006 and 2007
as identified in a 2008 FBI report (Published CNBC TV
dated: 13 Feb. 2008) shows that server side application
software flaws caused many of breaches. This was despite
many of these sites using modern technologies such as the
Java-based Web development model (JSP + Servlets) or
the Microsoft .Net ASP Web development.

Figure 2 shows the poor design of an e-commerce Web
software application. All the application logic is merged
in a “Single Class” in the “Servlets”. Please note that
Servlets are primarily intended to accept HTTP requests
for delegation to other classes and to return formatted
HTTP pages or replies to the client. Essentially this
means that Servlets play a presentation role. The fig-
ure shows in the application server two different address-
isolated containers performing different jobs. The first
container “Web Container” only generates “Represen-
tation +Rendering Logic” whereas the EJB container
“Application’s Business Logic” as per defined business
rule/policy. Each container executes code in a differ-
ent address space thereby minimising the opportunity for
flaws in presentation code to affect business logic code.

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

33

Figure 2: Flaw in design. Combining all the logic in a single servlet

Merging all together, leads to this possibility.

When application logic attacks are successful, it is of-
ten because developers do not build sufficient process val-
idation and controls into application logic. This lack of
functional flow control of logic allows attacker to perform
certain steps incorrectly or out of order of the defined
Logic.

From another angle to attempt an experiment attack-
ing on application’s business logic in the scenario of the
(SOAP) by injecting code in the SOAP message.

In this case, as we know all that (SOAP) is a message-
based communications technology that uses the XML for-
mat to encapsulate data. It can be used to share informa-
tion and transmit messages between systems, even if these
run on different operating systems and architectures. Its
primary use is in Web services, and in the context of a
browser-accessed Web application, you are most likely to
experience SOAP in the communications that occur be-
tween “Application Components” [1].

SOAP is often used in large-scale enterprise applica-
tions where individual tasks are performed by different
computers to improve performance (W3C.org). It is also
often found where a Web application has been deployed
as a front end to an existing application. In this situa-
tion, communications between different components may
be implemented using SOAP to ensure modularity and in-
teroperability. Because XML is an interpreted language,
SOAP is potentially vulnerable to code injection in a sim-
ilar way as the other examples already are [11]. XML ele-
ments are represented syntactically, using the “Metachar-
acters” < > and/. If user-supplied data containing these
characters is inserted directly into a SOAP message, an
attacker may be able to interfere with the structure of
the message and so interfere with the application’s logic
or cause other undesirable effects [15].

A “Banking Application” in which a user initiates
a funds transfer using an HT'TP request like the following:

POST /transfer.asp HTTP/1.0

Host: ask-bank.com

Content-Length: 65

FromAccount=18281008& Amount
=1430&ToAccount=08447656&Submit
=Submit

In the course of processing this request, the following
SOAP message is sent between two of the application’s
back-end components:

<soap: Envelope xmlns:soap=*“http://www.w3.org/
2008/2/soap-envelope” >
<soap: Body>
<pre: Add xmlns:pre=http://target/lists
soap: encodingStyle=*“http://www.w3.org/
2008/2/soap-encoding” >
<Account>
<FromAccount>18281008< /FromAccount>
<Amount>1430</Amount>
<ClearedFunds>False< /ClearedFunds>
<ToAccount>08447656< /ToAccount>
</Account>
</pre: Add>
< /soap: Body>
</soap: Envelope>

Look how the XML elements in the message cor-
respond to the parameters in the HTTP request, and
also the addition of the ClearedFunds (Component). At
this point in the application’s logic, it has determined
that there are insufficient funds available to perform
the requested transfer, and has set the value of this
Component to False, with the result that the component
which receives the SOAP message does not act upon
it. In this situation, there are various ways in which

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

you could seek to inject into the SOAP message, and
so interfere with the application’s logic. For example,
submitting the following request will cause an additional
ClearedFunds (Component) to be inserted into the
message before the original element (while preserving the
SQL’s syntactic validity). If the application processes
the first ClearedFunds (Component) that it encounters,
then you may succeed in performing a transfer when no
funds are available:

POST /transfer.asp HTTP/1.0

Host: ask-bank.com

Content-Length: 119

FromAccount=18281008& Amount=1430

</Amount>

< ClearedFunds>True< /ClearedFunds>

<Amount>1430&ToAccount=08447656
&Submit=Submit

If, on the other hand, the application processes the last
ClearedFunds (Component) that it encounters, you could
inject a similar attack into the ToAccount parameter.

A different type of attack would be to use XML com-
ments to remove part of the original SOAP message al-
together, and replace the removed elements with your
own. For example, the following request injects a Cleared-
Funds (Component) via the Amount parameter, provides
the opening tag for the ToAccount (Component), opens
a comment, and closes the comment in the ToAccount
parameter, thus preserving the syntactic validity of the
XML:

POST /transfer.asp HTTP/1.0

Host: ask-bank.com

Content-Length: 125
FromAccount=18281008& Amount=1430
</Amount>

<ClearedFunds>True< /ClearedFunds>
<ToAccount><!-&ToAccount=—>
08447656&Submit=Submit

A further type of attack would be to attempt to com-
plete the entire SOAP message from within an injected
parameter and comment out the remainder of the mes-
sage. However, because the opening comment will not
be matched by a closing comment, this attack produces
strictly invalid XML, which will be rejected by many XML
parsers:

POST /transfer.asp HTTP/1.0

Host: ask-bank.com Content-Length: 176

FromA ccount=18281008&Amount=1430<Amount>
<ClearedFunds>True< /Cleared Funds>
<ToAccount>08447656< /ToAccount>

</Account>

</pre: Add>

< /soap: Body>

< /soap: Envelope>

34

<!-&Submit=Submit.

SOAP injection can be difficult to detect, because
supplying XML metacharacters in a noncrafted way will
break the format of the SOAP message, and this will often
simply result in an uninformative error message. Never-
theless, the following steps can be used to detect SOAP
injection vulnerabilities with a degree of reliability. In
most situations, you will need to know the structure of
the XML that surrounds your data, in order to supply
crafted input which modifies the message without invali-
dating it. In all of the preceding tests, look for any error
messages that reveal any details about the SOAP mes-
sage being processed. If you are lucky, a verbose message
will disclose the entire message, enabling you to construct
crafted values to exploit the vulnerability. SOAP injec-
tion can be prevented by employing boundary validation
filters at any point where user-supplied data is inserted
into a SOAP message. This should be performed both on
data that has been immediately received from the user
in the current request and on any data which has been
persisted from earlier requests or generated from other
processing that takes user data as input [15].

We have seen that above explained these cases & expe-
rience “No automation based Detection Tool” can Check
Vulnerabilities performed by the intruders. It makes all
of your efforts “Zero” which an organization invests on
security for their organizational assert.

8 Application Attacks

Types

Logic

The different types of Logic Attack occur each time since
it has to exploit a function or a feature that is specific to
the application, for example when an attacker repeatedly
uses an application’s functionality such as the ability to
create several thousand new accounts or posting repeated
messages on discussion board. This type of attack abuses
a useful application with little or no modification to the
original function. The Logical Attacks focus on the ex-
ploitation of a Web application’s logic flow. Application
logic is the expected procedural flow used in order to per-
form a certain action. Password recovery, account regis-
tration, auction bidding, and e-Commerce purchases are
all examples of application logic. A Web site may require
a user to correctly perform a specific multi-step process
to complete a particular action. An attacker may be able
to circumvent or misuse these features to harm a Web site
and its users.

9 C(Case Studies

The logic flaws differ hugely, each application logic attack
is usually unique but they share many common themes
and they demonstrate the kinds of mistake that human
designer and developers will always be prone to making.

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

Therefore, insights gathered from case studies about logic
flaws should help to uncover new flaws in entirely different
situations.

9.1 Case Study: Insufficient Process Val-
idation

This case study focus on the application logic flaw in
the Web application an online retailer. This is case of
Insufficient-Process-Validation.

The Application Functionality: The process of plac-
ing an order involved the following stages:

1) Browse the product catalog and add items to the
shopping basket.

2) Return to the shopping basket and finalize the order.
3) Enter payment information.

4) Enter delivery information.

The Design Logic of Application: The developers
assumed that users would always access the stages in the
intended sequence, because this was the order in which
the stages are delivered to the user by the navigational
links and forms presented to their browser. Therefore,
any user who completed the order process must have
submitted satisfactory payment details along the way.

Attack Possibilities: The Designer/Developers’ as-
sumption was flawed for fairly obvious reasons. Users
control every request that they make to the application
and so can access any stage of the ordering process in any
sequence. By proceeding directly from stage 2 to stage
4, an attacker could generate an order that was finalized
for delivery but that had not actually been paid for.

Attacking Technique in this Scenario: The tech-
nique for finding and exploiting flaws of this kind is
known as “Forced Browsing”. Note that this should
be distinguished from the Open Web Application Secu-
rity Project (OWAP http://www.owasp.org/index.php/
Forced_browsing). Unlike that attack, this does not in-
volve resource discovery at the level of the Web browser.
Our definition applies to the application-level. Forced
browsing involves circumventing any controls imposed by
in-browser navigation on the sequence in which applica-
tion functions may be accessed:

e When a multistage process involves a defined se-
quence of requests, attempt to submit these requests
out of the expected sequence. Try skipping certain
stages altogether, accessing a single stage more than
once, and accessing earlier stages after later ones.

e The sequence of stages may be accessed via a series
of GET or POST requests for distinct URLs, or they

35

may involve submitting different sets of parameters
to the same URL. The stage being requested may
be specified by submitting a function name or index
within a request parameter. Be sure to understand
fully the mechanisms that the application is employ-
ing to deliver access to distinct stages.

e From the context of the functionality that is imple-
mented, try to understand what assumptions may
have been made by developers and where the key
attack surface lies. Try to identify ways of violat-
ing those assumptions to cause undesirable behavior
within the application.

e When multistage functions are accessed out of se-
quence, it is common to encounter a variety of
anomalous conditions within the application, such as
variables with null or uninitialized values, a partially
defined or inconsistent state, and other unpredictable
behavior. In this situation, the application may re-
turn an error message and debug output, which can
be used to better understand its internal workings
and thereby fine-tune the current or a different at-
tack. Sometimes, the application may get into a state
entirely unanticipated by developers, which may lead
to serious security flaws.

9.2 Case Study: Component-based Soft-
ware Causes Design Flaw

EFU Insurance financial services company started an
online insurance scheme “filing your own insurance”. Un-
fortunately, there was a logic flaw in the Web application
deployed by financial services company. This is a case of
component-based Web application software flaw which
cause of the application logic flaw.

The Application Functionality: The application en-
abled users to obtain quotations for insurance, and if de-
sired, complete and submit an insurance application on-
line. The process was spread across a dozen stages, as
follows:

e At the first stage, the applicant submits some basic
information, and specifies either a preferred monthly
premium or the value the applicant wishes insurance
for. The application offers a quotation, computing
whichever value the applicant did not specify.

e Across several stages, the applicant supplies various
other personal details, including health, occupation,
and pastimes.

e Finally, the application is transmitted to an under-
writer working for the insurance company. Using the
same Web application, the underwriter reviews the
details and decides whether to accept the applica-
tion as is, or modify the initial quotation to reflect
any additional risks.

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

Through each of the stages described, the application
employed a shared component to process each parameter
of user data submitted to it. This component parsed out
all of the data in each POST request into name/value
pairs, and updated its state information with each item
of data received.

The Design Logic of Application: The component
which processed user-supplied data assumed that each
request would contain only the parameters that had been
requested from the user in the relevant HTML form.
Developers did not consider what would happen if a user
submitted parameters that they had not been asked to

supply.

Attack Possibilities: The Logic/assumption was
flawed, because users can submit arbitrary parameter
names and values with every request. As a result, the
core functionality of the application was broken in vari-
ous ways:

e An attacker could exploit the shared component to
bypass all server-side input validation. At each stage
of the quotation process, the application performed
strict validation of the data expected at that stage,
and rejected any data that failed this validation.
But the shared component updated the application’s
state with every parameter supplied by the user.
Hence, if an attacker submitted data out of sequence,
by supplying a name/value pair which the application
expected at an earlier stage, then that data would
be accepted and processed, with no validation hav-
ing been performed. As it happened, this possibility
paved the way for a stored cross-site scripting attack
targeting the underwriter, which allowed a malicious
user to access the personal information belonging to
other applicants.

e An attacker could buy insurance at an arbitrary
price. At the first stage of the quotation process,
the applicant specified either their preferred monthly
premium or the value they wished to insure, and
the application computed the other item accordingly.
However, if a user supplied new values for either or
both of these items at a later stage, then the ap-
plication’s state was updated with these values. By
submitting these parameters out of sequence, an at-
tacker could obtain a quotation for insurance at an
arbitrary value and arbitrary monthly premium.

e There were no access controls regarding which pa-
rameters a given type of user could supply. When
an underwriter reviewed a completed application,
they updated various items of data, including the
acceptance decision. This data was processed by
the shared component in the same way as for data
supplied by an ordinary user. If an attacker knew
or guessed the parameter names used when the un-
derwriter reviewed an application, then the attacker

36

could simply submit these, thereby accepting their
own application without any actual underwriting.

Attacking Technique in this Scenario: The flaws in
this application were absolutely fundamental to its se-
curity, but none of them would have been identified by
an attacker who simply intercepted browser requests and
modified the parameter values being submitted.

e Whenever an application implements a key action
across multiple stages, you should take parameters
those are submitted at one stage of the process, and
try submitting these to a different stage. If the rel-
evant items of data are updated within the applica-
tion’s state, you should explore the ramifications of
this behavior, to determine whether you can lever-
age it to carry out any malicious action, as in the
preceding three examples.

e If the application implements functionality whereby
different categories of user can update or perform
other actions on a common collection of data, you
should walk through the process using each type of
user and observe the parameters submitted. Where
different parameters are ordinarily submitted by the
different users, take each parameter submitted by one
user and try to submit this as the other user. If the
parameter is accepted and processed as that user, ex-
plore the implications of this behavior as previously
described.

9.3 Case Study:
Copycat Attack

Barclay Bank Web

This case study highlights the effect of a poorly designed
application logic of a reused server-side component
combined with the mis-configuration of the server-side
component. The same flawed server-side component
was incorporated into registration functionality and
elsewhere within the application, including within the
core functionality.

The Application Functionality: The application
enabled existing customers who did not already use the
online application to register to do so. New users were
required to supply some basic personal information, to
provide a degree of assurance of their identity. This
information included name, address, and date of birth,
but did not include anything secret such as an existing
password or PIN number. When this information had
been correctly entered, the application forwarded the
registration request to back-end systems for processing.
An information pack was mailed to the user’s registered
home address. This pack included instructions for
activating their online access via a telephone call to the
company’s call center and also a one-time password to
use when first logging in to the application.

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

The Design Logic of Application: The application’s
designers believed that this mechanism provided a very
robust defense against unauthorized access to the appli-
cation. The mechanism implemented three layers of pro-
tection:

e A modest amount of personal data was required up
front, to deter a malicious attacker or mischievous
user from attempting to initiate the registration pro-
cess on other users’ behalf.

e The process involved transmitting a key secret out-of-
band to the customer’s registered home address. Any
attacker would need to have access to the victim’s
personal mail.

e The customer was required to telephone the call cen-
ter and authenticate himself there in the usual way,
based on personal information and selected digits
from a PIN number.

This design was indeed robust. The logic flaw lay in the
actual implementation of the mechanism. The developers
implementing the registration mechanism needed a way to
store the personal data submitted by the user and corre-
late this with a unique customer identity within the com-
pany’s database. Keen to reuse existing Component code,
they came across the following class, which appeared to
serve their purposes:

class CCustomer {

String firstName;

String lastName; CDoB dob; CAddress homeAddress;
long custNumber;

-}

After the user’s information was captured, this object
was instantiated, populated with the supplied informa-
tion, and stored in the user’s session. The application
then verified the user’s details, and if they were valid,
retrieved that user’s unique customer number, which
was used in all of the company’s systems. This number
was added to the object, together with some other
useful information about the user. The object was then
transmitted to the relevant back-end system for the regis-
tration request to be processed. The developers assumed
that making use of this code component was harmless
and would not lead to any security problem. However,
the assumption was flawed, with serious consequences.

Attack Possibilities: The same component (code) that
was incorporated into the registration functionality was
also used elsewhere within the application, including
within the core functionality, which gave authenticated
users access to account details, statements, funds trans-
fers, and other information. When a registered user suc-
cessfully authenticated itself to the application, this same
object was instantiated and saved in her session to store
key information about her identity.

37

The majority of the functionality within the applica-
tion referenced the information within this object in order
to carry out its actions-for example, the account details
presented to the user on his/her main page were generated
on the basis of the unique customer number contained
within this object. The way in the component code was
already being employed within the application meant that
the developers’ assumption was flawed, and the manner
in which they reused it did indeed open up a significant
vulnerability. Although the vulnerability was serious, it
was in fact relatively subtle to detect and exploit. Ac-
cess to the main application functionality was protected
by access controls at several layers, and a user needed to
have a fully authenticated session to pass these controls.
To exploit the logic flaw, therefore, an attacker needed to
perform the following steps:

e Log in to the application using his own valid account
credentials.

e Using the resulting authenticated session, access the
registration functionality and submit a different cus-
tomer’s personal information. This causes the appli-
cation to overwrite the original “CCustomer” object
in the attacker’s session with a new object relating
to the targeted customer.

e Return to the main application functionality and ac-
cess the other customer’s Account. A vulnerability
of this kind is not straightforward to detect when
probing the application from a black-box perspective.
However, it is also hard to identify when reviewing or
writing the actual source code. Without a clear un-
derstanding of the application as a whole and the use
made of different components in different areas, the
flawed assumption made by developers may not be
evident. Of course, clearly commented source code
and design documentation would reduce the likeli-
hood of such a defect being introduced or remaining
undetected.

Attacking Technique in this Scenario: In a complex
application involving either horizontal or vertical privilege
segregation, try to locate any instances where an individ-
ual user can accumulate an amount of state within their
session which relates in some way to their identity. Try
to step through one area of functionality, and then switch
altogether to an unrelated area, to determine whether any
accumulated state information has an effect on the appli-
cation’s behavior.

10 The Proposed Framework
Method for Secure Design of
Business Application Logic

With this term pointing to the business logic layer in

n-tier applications. The need for such a framework
method is motivated by the fact that logical flaws do not

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

show patterns or signatures and, thus, their discovery
cannot be automated. Therefore, in order to counter this
problem, we present a secure framework method based
on existing techniques that treats security as a first-class
concept and considers its interaction with business logic.

Effect of Attacks on System Design: One of the
first steps in system design should be the analysis of the
possible attacks on specific system and their consequences
when successful. This analysis can be used to define the
countermeasures that need and will also be useful later
to evaluate the system security.

Layers Pattern: Security encompasses all the architec-
tural levels of a system. The layers architectural pattern
[17] is therefore the starting point of the design of secure
systems. This pattern provides a structure where we can
define patterns at all levels that together implement a
secure system. Its main idea is the decomposition of a
system into hierarchical layers of abstraction, where the
higher levels use the services of the lower Levels. Here it
provides a way to put things in perspective and to describe
the mechanisms needed at each layer. Figure 3 shows the
specific set of layers we consider. This figure shows some
of the participants at each layer and their correspondence
across layers.

10.1 Strategy: Checking for the Exis-
tence and Analyzing Weaknesses in
Application Logic

In order to check for the existence of weaknesses in the
application and analyze them, the strategy must focus on
the configuration of the server-side middleware and the
components implementing the business logic. For exam-
ple, in the EJB environment, the configuration of Java
connectors would need to be checked. Also components
implementing each function in which the application can
check a user’s credentials should be analyzed for logic flow
problems. Every request parameter submitted to the ap-
plication should be varied to see what effect it has on
the logic flow. This process would be repeated many
times, modifying each parameter in turn in various un-
expected ways designed to interfere with the application
logic. Each stage of the mechanism tries to modifying the
sequence and accessing different stages that the developer
may not have anticipated. Determine whether any single
piece of information is submitted at more than one stage,
either because it is captured more than once from the
user or because it is transmitted via the client in a hid-
den form field, cookie, or preset query string parameter.
If so, try submitting different values at different stages
(both valid and invalid), and observing the effect. Try to
determine whether the submitted item is sometimes su-
perfluous, or is validated at one stage and then trusted
subsequently, or is validated at different stages against
different checks. Try to exploit the application’s behavior
to gain unauthorized access or reduce the effectiveness of

38

the controls imposed by the mechanism. Look for any
data that is transmitted via the client that has not been
captured from the user at any point. If hidden parameters
are used to track the state of the process across successive
stages, then it may be possible to interfere with the ap-
plication’s logic by modifying these parameters in crafted
ways.

The strategy should be based on try each Parameter
would consist the following changes:

e Submit an empty String as the Value.

e Remove the name/value pair altogether.

Submit very long and very short Values.

Submit the String instead of numbers.

Submit the same named parameter multiple times,
with the same and different values. For example ap-
ply this into above mentioned case of SOAP such as a
ClearedFunds (Component) via the Amount param-
eter to check its integrity & functionality from all
expected ways.

Carefully, closely review the application’s response to
the preceding requests. If it is found any unexpected di-
vergences from the base case occur feed that back into
your framing of further test cases. If one modification
causes a change in behavior than try to combine this with
other changes to push the application’s business logic to
its limits.

10.2 Strategy: Secure Business Applica-
tion Logic

Verifying the design of secure business logic for an e-
commerce distributed application in the middle tier is also
very important. since many attacks are caused by design
flaws in the e-commerce systems such logical flaws dose
not often refer to component based flaws but also architec-
tural, component modelling to set the logic of application
while using business rules related to the particular busi-
ness or activity. Therefore, it is very important to define
clearly architectural design of topology in which system
going to design for deploy by separating each tier clearly,
second stage focus on the application logic design strat-
egy & policy with that components have to function under
given business defined rule/policy, third stage refer to de-
sign strategy for components which dynamic Web content
is used to tailor an individual’s interactions with a Web
site & provide users with more interactive information.
Dynamic content may be rendered in various form, such as
static HTML files, Java Script or JSP file rendered using
component supported environment such as Java Servlets
in a J2EE .those invoke business -logic application hosted
middle tier to access back-end business data. in the above
given example of attack as it is stated that always follow
right principles of Web application software engineering

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

39

s 1 ™.,
L 3
classes é ﬁ \-l Metalayer
| e .|
i i
[aa | = [ws | .i Application
objects ‘_,.-" H,--"' . r;’ layer
;L =
;-’; |‘ T
o T <
execnting @ - < ind System layer
—
processes \' (OSDBMS)
| Nodel Node?
? Distmibation
nodes 9
,Q [o e
:
; CPU1 | CPU2 CPU3
processors | | I | | | Hardware
network [I I S

Pratocal

Layers architectural pattem

related to the order concept.

The Business Component described in the context of an imitial enterprise Object
model focusing on Classes that own by the Business Component. For example for an
Order Business Component, 1t may be a Class focusing only on the Classes directly

Figure 3: Layers architectural pattern

in the right technology environment support for compo-
nent interoperability & security, it is noticed in the exam-
ple that threat to the application integrity & application
dependability based on the design flaw & engineering of
the component while defining logic for e-commerce sys-
tem Web application software by merging all logic and
invoke the direct access using Servlets through JDBC to
the back-end having bypass the middleware process or
without encapsulating the business logic in an enterprise
bean which also define screening & as a shield to the or-
ganizational resources by restricting unauthorized people
to access valuable data or temper the resources.

10.3 Strategy: Planning a Secure Com-
ponent System

Identifying the components that need to be secured is a
very important factor and first stage in the designing a se-
cure environment for system. Next mechanisms that can
be used to secure those components need to be identified.
It is then necessary to understand which mechanisms are
to be put together to secure the components thus giving
rise to a secure development scenario.

In the n-tier distributed-computing environment,
front-end presents presentation logic which invoke the
business logic for the submitted request then the busi-
ness logic layer hosted application interacts with the data
tier & its logic for requested enquiry and computes the re-
sults that will be delivered to the presentation-logic layer

Typically, security senility increases its flow from the first
layer towards the last such partitioning into zones helps
define the security requirement for the environment & the
design of the topology to the host the components. It is
also need to make sure that every aspect of the applica-
tion’s design is clearly mentioned in the sufficient detail
to understand every assumption made by the designer
and all such assumption must be explicitly on the record
within design plan.

For example, sources code is clearly commented pur-
pose & intended uses of each component and assumption
made by each component about any thing that is outside
of its direct functional control. It is also important to
reference to all client code which makes use of the com-
ponent and clear to it effect could have prevented the
Logic flaw within the online registration functionality as
defined in the example in that case “client” here refers
not to the user end of the client-server relationship but to
other code for which the component being considered is
an immediate dependency. When implementing functions
that update session data on the basis of input received
from the user or actions performed by the user, reflect
carefully on any impact that the updated data may have
on other functionality within the application unexpected
side effects can occur in entirely unrelated functionality
defined by a different programmer or even a different de-
velopment team.

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

10.4 Strategy: Architectural Risk Anal-
ysis for Component-based Business
Logic

Design flaws account for 50% of the Security problems
in the component-based software system [20]. Architec-
tural risk analysis is, at best, a good general-purpose yard-
stick by which we can judge our security design’s effective-
ness [20]. Because roughly 50 percent of security problems
are the result of design flaws, performing a risk analysis
at the design level is an important part of a solid good
secure Component-based software system engineering.

To encompass the design stage, any risk analysis pro-
cess should be tailored. The object of this tailoring exer-
cise is to determine specific vulnerabilities and risks that
exist for the software [20]. Above mentioned design model
by Cigital dose not clarify the each layer in the tier and
its components, as its very important for a functional de-
composition of the application into major components,
processes, data stores, and data communication flows,
mapped against the environments across which the soft-
ware will be deployed, allows for a review of threats and
potential vulnerabilities, as its defined in the new pro-
posed n-tier e-commerce Web system architectural risk
analysis & security management model.

It can contemplate using modelling languages, such as
UML, to attempt to model risks; even the most rudi-
mentary analysis approaches can yield meaningful results.
Consider above model, which shows an n-tier deployment
design model for Web-based application issues. As we
applied risk analysis principles to this level of design, we
achieved immediately some useful conclusions about the
security design of the application.

During the risk analysis process must consider the fol-
lowing:

1) The threats those are likely to want to attack the
system.

e risks present in each tier’s environment.
2) Th ks p t h tier’ t

3) The kinds of vulnerabilities that might exist in each
component, as well as the data flow.

4) The business impact of such technical risks, were they
to be realized.

5) The probability of such a risk being realized.

Solution Summary: Ensure that every aspect of the
application’s design must be clearly & sufficiently detailed
to understand every assumption and designed function
logic within the application by designer.

Mandate that all CBSD should be clearly commented
to include the following information throughout.

1) The purpose and intended use of each component (IF
Component code available information of code & its
functional business logic within the component).

2) The assumptions & logic made by each component
about anything that is outside of its direct control.

40

3) Reference to all client-code which makes use of the
component clear documentation to this effect could
have prevented the logic flaw within the online reg-
istration functionality (Note: Client have dose not
refer to the user-end of the client-server relationship
but to other code for which the component being
considered is an Immediate dependency).

Solution Artifacts: As that there is no unique sig-
nature by which logic flaws in component-based rapid
developed Web software application can be identified,
because there is no silver bullet so far developed which
could protect.

Good Practice: Good practice that can be applied to
significantly reduce the risk of logical flaws appearing
within component-based development and its logic. There
are two important artifacts which we consider.

1) During Security-focused Review of Applica-
tion Design: During the security-focused review
of design, must reflect upon every assumption made
within the design, and try to imagine circumstances
in which each assumption and logic might be vio-
lated. Focus particularly on any assumed condition
that could conceivably be within the control of ap-
plication user based on business process, rule and
policy.

2) Security-focused Code Review: Carefully, think
laterally about two key areas;

a. The ways in which unexpected user behavior
and Input will be handled by the application.

b. The potential side effects of any dependencies
and interoperation between different code com-
ponents and different application function.

11 Conclusion

Attacking an application’s logic involves a mixture of sys-
tematic probing and lateral thinking. As we have iden-
tified, there are various key checks that you should al-
ways carry out to the application’s behavior in response
to unexpected input. These include removing parameters
from requests, using forced browsing to access functions
out of sequence, and submitting parameters to different
locations within the application. Often, the way an appli-
cation responds to these actions will point towards some
defective assumption that can violate, to malicious effect.

Much of the security today is addressed as an audit
activity that mostly relies on the penetration testing such
testing activities often attempt to identify vulnerabilities
that belong to certain categories of threats & use tools
that are tailored around these threats. They may have
security policies that auditors follow which require them
to check a specific list of the things, but they often fall
short of identifying vulnerabilities that a result of the way
the application logic has been custom developed. The fact

International Journal of Network Security, Vol.12, No.1, PP.29-41, Jan. 2011

is that many attacks that are reported today fall under
what we define as application logic attacks. Therefore,
common sense is a appropriate tool while designing your
Web application software and deploying component based
business logic into that system, must focus on security
beside the functionality because this functionality can be
productive only when it work as per and within its func-
tional control defined business policy into the e-commerce
systems.

Acknowledgements

This research has been conducted with the bless of
all mighty Allah Pak, Reference of wasila Ya Rasool-
Allah Muhammad Peace be upon him and Ali Ibn-e-Abi
Talib (There is no lad but Ali, there is no blade like
Zolfikaar).Bullah what I know; who I am (Bullah ki Jana
mein koon).I am also grateful of my Murshid Pak Hazraat
Muostar Malang baba Chishtia Nizamia benefited from a
great sufi saint Hazraat Khawaja Abdul Shakoor Malang
baba Chishtia Nizamia, from the reference of Sultan-al-
Hind Hazrat Khawaja Moinuddin Chisti (rahamtullah)
famous with the title Khawaja Gharib nawaz (rahamtul-
lah). Special Dedication to Dr Fiaz Hussain, Department
of Computer Science & Technology, University of Bed-
fordshire, he is top class scientist, who gave me a lot of
courage, while I was part of university of Luton.

References

[1] C. V. Berghe, J. Riordan, and F. Piessens, A Vulner-
ability Taxonomy Methodology applied to Web Ser-
vices, IBM Zurich Research Laboratory, 2005.

F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A.
M. Olson, and C. C. Burt, “Component specification
and wrapper/glue code generation with two-level
grammar using domain specific knowledge,” Formal
Methods and Software Engineering, LNCS 2495, pp.
103-107, Springer-Verlag, Berlin, Heidelberg, 2002.
E. Dustin, J. Rashka, and D. McDiarmid, Qual-
ity Web System; Performance, Security & Usabilty,
Adition-Wesley, Boston, 2001.

R. Ganesan, M. Gobi, and K. Vivekanandan, “A
novel digital envelope approach for a secure e-
commerce channel,” International Journal of Net-
work Security, vol. 11, no. 3, pp. 121-127, 2010.

A. K. Ghosh, E-Commerce Security: Weak Links
Best Defence, John Wiley & Sons, ISBN 0-47119223-
6, New York, NY, 1998.

A. K. Ghosh, Security and Privacy in E-Commerce,
John Wiley & Sons, 2000.

A. K Ghosh, Security & Privacy for FE-Business,
John Wiley & Sons, ISBN 0-471-384211-6, 2001.

G. Hoglund, and G. McGraw, Ezploiting Software,
Addison-Wesley, 2004.

M. Hung, and Y. Zou, FEaxtracting Business Process
from the Three-Tier Architecture System, Queen’s
University Kingston, ON, K7L 3N6, Canada 2005.

2]

41

[10] M. Hung, and Y. Zou, “A Framework for Exacting
Workflows from E-Commerce Systems,” Proceedings
of Software Technology and Engineering Practice, pp.
43-46, 2005

M. McIntosh, and P. Austel, “XML signature
element wrapping attacks and countermeasures,”
Workshop on Secure Web Services, pp. 20-27, 2005.
F. Nabi, “Secure business application logic for e-
commerce systems,” Computers & Security, pp. 208
217, 2005.

J. Offutt, “Qulaity attributes of Web software appli-
cations,” IEEFE Software, pp. 25-32, Mar. 2002.

R. R. Raje, B. R. Bryant, M. Auguston, A. M. Ol-
son, and C. C. Burt, “A unified approach for the in-
tegration of distributed heterogeneous software com-
ponents,” Proceedings 2001 Monterey Workshop En-
gineering Automation for Software Intensive System
Integration, pp. 23-31, 2001.

M. A. Rahaman, A. Schaad, and M. Rits, “Towards
secure soap message exchange in a soa,” Workshop
on Secure Web Services, pp. 35—42, 2006.

P. Ritchie, “The security risks of Ajax/Web 2.0 ap-
plication,” Network Security, pp. 4-8, 2007.

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture Volume 2:
Patterns for Concurrent and Networked Objects, Wi-
ley, 2000.

G. Simson, and S. Gene, Web Security and Com-
merce, O’Reilly Publishing, 1997.

J. Viega, and G. McGraw, Building Secure Software,
John Wiley, ISBN 0-321-42523-5, 2006.

D. Verdon, and G. McGraw, “Risk analysis in soft-
ware design,” IEEE Security & Privacy, vol. 2, no.
4, pp. 79-84, 2004.

C. Yang, “Secure Internet applications based on mo-
bile agents,” International Journal of Network Secu-
rity, vol. 2, no. 3, pp. 228-237, May 2006.

[11]

[12]

[13]

[14]

[18]
[19]

[20]

[21]

Faisal Nabi, Junior Scientist in the field of Information
& Computer Security was born in Karachi City. He had
his initial schooling, college & University degree level ed-
ucation from Karachi. He went UK for higher educa-
tion Oct 2001 Joined University of Luton, (Great Britain)
M.Sc by Research in Electronic Commerce.. He is special-
ized in e-commerce/information security. Interest Area
of Research: Cryptography, Steganography, Virtual In-
visible Secure Disk design, Secure Architecture, Web Se-
curity. Started research R&D as an assistant Researcher
with Professor: Carsten Maple 23 Nov 2003, Institute of
Applied Research for Applicable Computing, University
of Luton. In April 2004, he was appointed as Researcher
at Deveraux & Deloitte Research Centre, UK. Faisal’s Re-
search work has been published in International Journals
of IEEE/MCB level. Faisal has also received Research
Award in the “First Cyber Security Conference 29 Sept
2004” at Sheraton Hotel, held in Karachi in conjunction
with NR3C National Response of Cyber Crime.

