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Abstract

Bilinear pairing is a new and increasingly popular way of
constructing cryptographic protocols. This has resulted
in the development of Identity Based Encryption (IBE)
that is ideally used in identity aware devices. The se-
curity of such devices using pairing algorithms against
side-channel and fault attack has not been studied ex-
tensively. This paper examines the security of existing
countermeasures and show their weakness against fault
attacks. Subsequently, it proposes a new countermeasure
that prevents such kind of attacks. The paper also dis-
cusses for the first time fault attacks and countermeasures
against bilinear pairing in Edwards coordinates.
Keywords: Edwards coordinates, fault attack, pairing-
based cryptography

1 Introduction

Bilinear pairing has attained utmost importance in the
field of public key cryptography due to its wide appli-
cation area. An area of research in this regard has
been developed that is known as pairing based cryptog-
raphy [8, 9, 12, 17, 20]. Pairing based cryptography is
well-suited for developing identity based cryptographic
schemes [1, 10, 24, 32]. It is mainly used in identity aware
and ubiquitous computing devices. In the last decade, an
increasingly popular form of attack known as side-channel
analyzes [21, 22], which exploits the weakness in imple-
mentations, have developed. A related attack method,
known as fault attacks have evolved at the same time.
Both of them are directly applied on implementations.
Fault attack is based on the accidental or intentional in-
troduction of fault in the computations. It exploits the
leakage of information through the faulty outputs of the
cryptographic device. Boneh et al. showed way back in [7]
that cryptographic algorithms can be attacked when they
output faulty computation. These theoretical findings
were applied on both symmetric ciphers [27, 29, 30, 31]
and asymmetric ciphers [6] by several researchers.

Earlier implementation techniques for computing the
Tate pairing such as Barreto, Kim, Lynn, and Scott
(BKLS) algorithm [3] are effectively realized as point
multiplication with a fixed multiplier and some auxiliary
operations. Thus the security of pairing computations
against side-channel and fault attacks were not considered
as a new problem area distinct from elliptic curve cryptog-
raphy. But, the algorithms for Tate pairing by Duursma
and Lee [15], and their modification by Kwon [23] are not
based on point multiplication algorithm. Thus, the side-
channel and fault attacks become new problems in pairing
computation. Fault injection attacks on the above pairing
algorithms have been explicitly studied by Page and Ver-
cauteren in [28]. The attack exploits the effect of fault at
a specific register, which stores the number of iterations of
the pairing computations. The paper [28] have been also
proposed some countermeasures for resisting fault attacks
on respective pairing algorithms.

It is observed that the countermeasures that are pro-
posed in [28] are based on the measuring techniques of el-
liptic curve scalar multiplication against side-channel and
fault attacks. This paper analyzes the security of the ex-
isting countermeasures against fault attacks of pairing al-
gorithms. It shows that the countermeasure against side-
channel and fault attacks on elliptic curve scalar multi-
plication are insufficient for protecting the secrets of pair-
ing computation. It also presents a new countermeasure
against such kind of fault injection attacks.

Recently, a new representation of the addition law on
elliptic curves, introduced by Edwards [16], leads to ex-
tremely efficient elliptic curve group operations [5]. Pair-
ing computation in Edwards coordinates are proposed
in [13] and [19]. This paper analyzes the security of the
pairing computation that is proposed in [19] against fault
injection attack. It finds out a weakness of the pairing
computation by Miller’s algorithm in Edwards coordi-
nates in presence of fault. The paper also proposes a
suitable counter measuring technique.

The paper is organized by first describing the pairing
and fault injection attack in Section 2. It investigates the
pitfalls of existing countermeasures in Section 3. Section 4
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presents one new countermeasure for pairing computation
against fault attack. It analyzes the security of pairing
computation in Edwards coordinates against fault attack
in Section 5. Finally, Section 6 concludes the paper.

2 Background

The pioneer work in the field of pairing based encryp-
tion is proposed by Boneh and Franklin [8]. The identity
based encryption (IBE) scheme proposed in [8] uses the
pairing computation as one of the major operations in
encryption as well as decryption procedures. The secu-
rity of the scheme is based on the difficulty to solve well
known Bilinear Diffie-Hellman problem. A very good sur-
vey on pairing based cryptographic schemes are given by
Dutta et al. [14]. This section gives a brief overview of
Tate pairing computation and some of the security issues
against fault attack on pairing algorithms. Subsequently,
it describes the pairing computation in Edwards coordi-
nates [19].

2.1 Tate Pairing

The name bilinear pairing indicates that it takes a pair
of vectors as input and returns a number. It performs a
linear transformation on each of its input variables. For
example, the dot product of vectors is a bilinear pair-
ing. Similarly, for cryptographic application the bilinear
pairing (or pairing) operations are defined on elliptic or
hyper-elliptic curves. Pairing is a mapping G1×G2 → G3,
where G1 is a curve group on some field Fq, G2 is another
curve group on the lowest extension field Fqk , and G3 is
a subgroup of the multiplicative group of Fqk .

Let, a large odd prime l divides the order of the curve
group (#E(Fq)). Let, the point P be a l-torsion point
for a large prime l|#E(Fq). Here k is the corresponding
embedding degree, often referred to as security multiplier
in pairing computation. It is the smallest positive integer
such that l divides qk− 1. Then the Tate pairing of order
l is a map

el : E(Fq)[l]× E(Fqk)[l] → F∗qk/(F∗qk)l,

where E(Fq)[l] denote the subgroup of E(Fq) of all points
of order dividing l, and similarly for Fqk . The l-Tate
pairing on points P ∈ E(Fq)[l], Q ∈ E(Fqk)[l] is given by
el(P,Q) = fl,P (D). Here fl,P is a function on E whose di-
visor is equivalent to l(P )−l(O), D is a divisor equivalent
to (Q)− (O), whose support is disjoint from the support
of fl,P . The point O represents the point at infinity. For
more information regarding divisor, we refer the reader
to [3, 18]. The formulas for D and fl,P (D) is given in
following equations:

D =
∑

i

aiPi

fl,P (D) =
∏

i

fl,P (P ai
i ).

And it satisfies following properties:

• Non-degeneracy: For each P 6= O there exist Q ∈
E(Fqk)[l] such that el(P, Q) 6= 1.

• Bilinearity: For any integer n, el([n]P , Q) = el(P ,
[n]Q) = el(P , Q)n for all P ∈ E(Fq)[l] and Q ∈
E(Fqk)[l].

• Let L = hl. Then el(P , Q)(q
k−1)/l = eL(P ,

Q)(q
k−1)/L.

• It is efficiently computable.

The value el is a representative of an element of the
quotient group F∗qk/(F∗qk)l. However for cryptographic
protocols it is essential to have a unique representative
so it is raised to the ((qk − 1)/l)-th power, obtaining an
l-root of unity. The resulting value is called reduced Tate
pairing:

El(P, Q) = el(P, Q)(q
k−1)/l.

The point multiplication based algorithm (Algo-
rithm 1) for pairing computation is given by Miller [25].
The algorithm performs doubling for every bit value of
l, and it performs addition only if the corresponding bit
value of l is 1. Finally it returns the l-Tate pairing. In
the algorithm, l′(Q) indicates the divisor of the straight
line equation l′ connecting two points P1 and P2 with re-
spect to point Q. Let the line l′ intersects the curve at
a third point X. Now v′(Q) is the divisor of the vertical
line equation v′ through X with respect to Q [18, 19].

Algorithm 1: Miller’s Algorithm

Input P an l torsion point ∈ E(Fq), Q ∈ E(Fqk).
Output The Tate pairing El(P,Q)
Process

1 i = [log2(l)], K ← P, f ← 1.
2 While i ≥ 1 do
3 Compute equations of l′ and v′ arising in the

doubling of K.
4 K ← 2K and f ← f2l′(Q)/v′(Q)
5 If the i-th bit of l is 1
6 Compute equations of l′ and v′ arising in

the addition of K and P .
7 K ← P + K and f ← fl′(Q)/v′(Q).
8 end
9 i ← i− 1.
10 End While

11 Return f (qk−1)/l

The Tate pairing can only be computed efficiently if the
security parameter k is small. Before the work of Miyaji,
Nakabayashi and Takano [26], it was assumed that for
general curve k was in size of l. Thus, the early curves to
be used in pairing based cryptography were super-singular
curves, since their security multiplier satisfies k ≤ 6. Al-
gorithm 2 presents a technique for pairing computation on
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hyper-elliptic curves [15]. In the algorithm, ρ, σ, and b
are known system parameters. The algorithm was further
improved by Kown [23] and by Barreto et al. [3].

Algorithm 2: Miller’s Algorithm

Input P = (x1, y1), Q = (x2, y2)
Output fP (φ(Q)) ∈ µl ⊂ F∗q6

Process

1 f ← 1
2 For i = 1 to m do
3 x1 ← x3

1, y1 ← y3
1

4 µ ← x1 + x2 + b
5 λ ← −y1y2σ − µ2

6 g ← λ− µρ− ρ2

7 f ← f.g

8 x2 ← x
1/3
2 , y2 ← y

1/3
2

9 End For

10 Return fq3−1

2.2 Fault Attack on Tate Pairing

Fault attack on pairing computation tries to exploit erro-
neous results that are produced by the device in presence
of some transient fault at loop bound m [15] of the corre-
sponding algorithm. Page and Vercauteren [28] first stud-
ied the security of pairing algorithms against fault attack.
They have shown that if an adversary can induce proper
transient fault at loop bound m of Duursma-Lee algo-
rithm then the secret point P (x1, y1) could be revealed
easily. The transient fault on m can be induced through
glitch attack, or provoking error in memory or register in
where m is stored [2].

Let an adversary induce transient faults into the regis-
ter that holds the value of loop boundary m. It measures
the modified loop boundary and corresponding pairing re-
sult. Let us consider it replaces the loop boundary m with
m± r and m± r + 1 in two instances. The corresponding
pairing results are R1 = em±r and R2 = em±r+1. The
ratio of these two pairings gives

R =
R2

R1
=

em±r+1

em±r
= gq3−1

m±r+1,

where

gi = −y3i

1 .y2σ − µ2
i − µiρ− ρ2.

The value of gi from gq3−1
i can be extracted through

root finding algorithm and by solving some linear system
of equations [28]. Here σ and ρ are field extension param-
eters known to the attacker. The attacker can extract the
value of x1 and y1 from above equation. We refer [28] for
further analysis and information regarding fault attacks
on pairing algorithm.

2.3 Pairing in Edwards Coordinates

Edwards showed in [16] that every elliptic curve defined
over an algebraic number field F is birationally equivalent
to a curve over some extension of F given by the equation:

x2 + y2 = c2(1 + x2y2).

Thereafter Bernstein and Lange [5] showed that the
group operations can be performed most efficiently on the
elliptic curves defined in the Edwards coordinates. The
equation x2+y2 = 1+dx2y2 is called the Edward curve [4].
It was shown in [4] that an Edwards curve E is birationally
equivalent to the elliptic curve Ed : (1/(1− d))v2 = u3 +
2((1 + d)/(1− d))u2 + u via the rational map:

ψ : Ed → E

(u, v) →
(

2u

v
,
u− 1
u + 1

)
.

The addition formulas on Edwards curve is given by:

(x1, y1), (x2, y2) →
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

It is shown in [5] that above addition law is complete
when d is not a square. This means that it is defined for
all pairs of input points on the Edwards curve with no
exceptions for doubling operation, neutral element, etc.

The pairing computation in Edwards coordinates and
on Twisted Edwards coordinates [4] are defined by Ionica
and Joux [19], and by Das and Sarkar [13], respectively.
The doubling and mixed addition steps of Miller’s algo-
rithm for pairing computation are redefined in Edwards
and Twisted Edwards coordinates in these two papers. It
is shown that the computation of pairing f in Edwards
coordinates is the most efficient than that of Twisted Ed-
wards coordinates. This paper takes the pairing compu-
tation that is given in [19] for analyzing security against
fault attack.

3 Analysis of Existing Counter-
measures

Page and Vercauteren [28] have given two countermea-
sures against fault attacks on pairing based cryptography.
Both of the countermeasures are based on point blinding
technique, which is known as a good defence mechanism
against side-channel attacks on point multiplication al-
gorithm. But the principle to attack point multiplica-
tion and pairing computation are completely different. In
point multiplication, the adversary try to find out the bit
value of scalar multiplier that is used as a secret param-
eter in elliptic curve cryptography. Whereas, in pairing
computation the objective of the adversary is finding out
the x and y coordinates of the secret point P . Thus, it
is essential to study the countermeasures of side-channel
and fault attacks on point multiplication and pairing com-
putation independently. Here we investigate the ability of
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the countermeasures that are given in [28] to protect the
secret point against fault attack and show that they can
be compromised.

In the fault attack as described in Section 2.2 the fault
is injected randomly into the loop boundary m. The at-
tacker can easily measure the faulty value of m through
timing or power analyzes. The attacker has to ascertain
the loop boundary of the algorithm for which it produces
the final pairing result. The attacker collects two pairing
results R1 and R2 for asserted faulty loop boundary m±r
and m± r + 1, respectively, and computes the ratio

R =
R2

R1
=

em±r+1(P,Q)
em±r(P, Q)

,

which is exploited to compute the x and y coordinates
of secret point P . Therefore, in the countermeasure it
is essential to take care of the point such that attacker
could not ascertain loop boundary for which the algorithm
produces final result. Unfortunately, the countermeasures
that are given in [28] do not guarantee such a protection.
Let us analyze those two countermeasures.

3.1 Countermeasure-1: New Point Blind-
ing Technique [28]

The aim of point blinding technique is randomization of
input points so that the attacker could not utilize knowl-
edge of the public point in pairing computation. This
countermeasure chooses two integers x, y randomly from
Z∗l such that xy ≡ 1 (mod l). The points P and Q in
e(P, Q) computation are blinded by computing xP and
yQ. The pairing is computed on xP and yQ as e(xP, yQ)
since it is known that

e(P, Q) = e(xP, yQ)
= e(P, Q)xy. (1)

In both Duursma-Lee and Kwon-BGOS algorithms,
the input points are processed and it produces pairing
result after m iterations. Now according to the relation-
ship, which is shown in Equation 1, the pairing result on
set of points (P, Q) and (xP, yQ) are equal. However
the fault attack exploits the final result, which is remain
unchanged in current countermeasure. Thus the fault at-
tack that is defined in [28] should hold on Duursma-Lee
algorithm even in presence of this countermeasure. The
details are explained underneath.

Let us assume that the random fault is injected into
the respective register in the device to alter the value of
m. The new point blinding technique does not change
any internal operations of pairing computation. It only
changes the input points in such a way that the final re-
sult remains unchanged. Pairing computation is an itera-
tive algorithm. In presence of the above countermeasure,
the algorithm performs same sequence of operations iter-
atively on different data. It is observed that the power
consumption profile and execution time are almost same
for computing same operations on different data. The

adversary can find out the number of iterations the algo-
rithm performs for computing one pairing result by simple
power analysis and simple timing analysis. Thus the al-
tered value of m is recovered irrespective of input points.
The attacker repeatedly alters the value of m and aims to
collect two pairing results R1 and R2 such that:

R1 = em±r(x1P, y1Q) = em±r(P,Q),
R2 = em±r+1(x2P, y2Q) = em±r+1(P,Q).

The ratio of R2 and R1 is nothing but gq3−1
m±r+1, where

gm±r+1 = −y3m±r+1

P .yQσ − µ2
m±r+1 − µm±r+1ρ− ρ2,

and µ = xP +xQ +b. The point Q = (xQ, yQ) is known to
the attacker. Thus, the above equation can be reduced to
a equation of unknown point P = (xP , yP ). Along with
the above equation the attacker knows the curve equation,
which can be used as second equation for solving the x,
y coordinates of the secret point P = (xP , yP ). Hence,
the value of P can be computed easily by applying the
attacking procedure described in [28].

3.2 Countermeasure-2: Altering Tradi-
tional Point Blinding [28]

The pairing computation on points P , Q is performed by

e(P,Q) = e(P,Q + X).e(P,X)−1,

where X is a random point. It is assumed that P is se-
cret and Q is public. The fault attack described in [28]
exploits knowledge of the public point Q. This defence
mechanism [28] tries to randomize the public point Q us-
ing the random point X. Thus, it computes e(P,Q + X)
instead of e(P,Q), and eliminates the surplus by multi-
plying the inverse of e(P, X).

Internal operations of the algorithm remain same with
the countermeasure. So, the straight line instructions of
the pairing algorithms runs iteratively in same manner
without countermeasure. In summary, it only wraps the
input and unwraps the output for producing correct pair-
ing result. The attacker can easily alter the value of m,
randomly, and know its altered value through timing or
simple power analysis. With the same fault attack de-
scribed in [28], attacker collects two pairing results R1

and R2. These results are collected after (say) m± r and
m± r + 1 iterations, which means R1 = em±r(P, Q) and
R2 = em±r+1(P, Q) for some random fault r and r + 1.
The ratio R2

R1
can be written in terms of P = (xP , yP ) and

Q = (xQ, yQ) as written in Section 3.1. The faulty results
can be exploited in the same way as the fault attack de-
scribed in [28] for finding out the secret point P .

4 Proposed Countermeasure

This section proposes a suitable countermeasure against
fault attack on pairing computation. The underlying prin-
ciple of fault attack on pairing computation is based on
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the ability of the attacker to change the value of the loop
boundary m. The attacker also has the ability to measure
the change from timing or power analysis of the compu-
tation. The attacker tries to obtain two pairing compu-
tations one for m+ r and the other for m+ r, augmented
by 1 through fault induction. Hence, our countermeasure
ensures that even if there is a fault the attacker cannot
correlate the pairing output with number of iterations.
The objective is to disable the attacker from ascertaining
the ratio R2/R1, as mentioned in Section 2.2.

4.1 Blinding Loop Boundary

The proposed countermeasure blinds the loop boundary
m as it is the main factor in fault attacks. It protects
the loop boundary so that the attacker cannot guess the
number of iterations for which the faulty output is pro-
duced. It modifies the Duursma-Lee algorithm for pro-
tecting secret point in pairing computation against fault
attack. The modified algorithm is shown in Algorithm 3.
Other pairing computation procedures, like Kown-BGOS
algorithm can be modified by same procedure in order to
defend it against fault attack.

Algorithm 3: Modified Duursma-Lee Algorithm

Input P = (x1, y1), Q = (x2, y2)
Output fP (φ(Q)) ∈ µl ⊂ F∗q6

Process

1 Choose r1 ∈R Z∗q6 , and r2 ∈R Z, r2 ≤ m

2 f0 ← r1, f1 ← 1
3 m′ ← m + r2

4 For i = 1 to m′ do
5 x1 ← x3

1, y1 ← y3
1

6 µ ← x1 + x2 + b
7 λ ← −y1y2σ − µ2

8 g ← λ− µρ− ρ2

9 f1 ← f1.g
10 j ← (i == m)
11 f0 ← fj

12 x2 ← x
1/3
2 , y2 ← y

1/3
2

13 End For

14 Return fq3−1
0

Correctness:

Theorem 1. The modified Duursma-Lee algorithm pro-
duce the correct result.

Proof. The Algorithm 3 is modified from original
Duursma-Lee algorithm (Algorithm 2) for resisting it
against side-channel and fault attacks. The original al-
gorithm runs for m iterations and produce the final result
after mth iteration. In the modified algorithm, the loop
boundary m′ is random as m′ ← m + r2, r2 ∈R Z and
r2 ≤ m. It runs for a random number of iterations. How-
ever, the intermediate pairing result f1 is restored into
f0 at the mth iteration only. It is not restored for other

iterations. At the end of the execution, i.e. after m′ iter-
ations f0 holds the pairing result of m iterations. Hence,
the algorithm produces the correct reduced Tate pairing
result.

Security Against Fault Attack:
Security Assumption. The adversary inject random
fault into the loop boundary. But the faulty loop bound-
ary value is not known to the adversary.

Theorem 2. The modified Duursma-Lee algorithm
against fault attack proposed in [28].

Proof. In the fault attack, the adversary is interested in
two pairing results, Rm′±r′ and Rm′±r′+1. We may con-
sider the following two scenarios.

• Inject fault at m′: The adversary can change the value
of m′ to m′ ± r′ (with random r′) by injecting fault
at m′. Thus, our modified Duursma-Lee algorithm
runs for m′ ± r′ iterations. If the resultant value
m′ ± r′ ≥ m then the algorithm produces result Rm

for m iterations else it produces random value rq3−1
1

as a pairing result. So, the adversary cannot collect
two such target outputs by injecting random faults
at m′ register.

• Inject fault at m: The adversary can inject random
fault at m register, and alter m to m± r′. Thus, the
algorithm runs for m±r′+r2 iterations. But, it pro-
duces result Rm±r′ for m±r′ iterations only, where r2

and r′ both are random. This result can be collected
by the adversary. The adversary can also measure
the total number of iterations m± r′ + r2 by timing
or power analysis. But, it could not correlate the out-
puts and corresponding measured iteration numbers,
which are actually not correlated. Thus, it could not
find out two useful pairing results. Therefore, the
fault attack described in [28] could not be mounted
on proposed countermeasure.

5 Fault Attack on Pairing Compu-
tation in Edwards Coordinates

This section attempts to analyze the security of pairing
computation in Edwards coordinates that is defined by
Ionica and Joux [19] against fault attack. It finds out a
weakness of such algorithm in presence of fault and give
a suitable countermeasure.

5.1 Attack Procedure

The fault attack defined in [28] will not work on Miller’s
algorithm, Algorithm 1, in Edwards coordinates due to
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the complex nature of the iterative operations. For ex-
ample, the doubling operation [5] on K = (X1, Y1, Z1)
gives 2K = (X3, Y3, Z3), and the formulas are:

X3 = 2X1Y1(2Z2
1 − (X2

1 + Y 2
1 )),

Y3 = (X2
1 + Y 2

1 )(Y 2
1 −X2

1 ),
Z3 = (X2

1 + Y 2
1 )(2Z2

1 − (X2
1 + Y 2

1 )).

Similarly, during addition K is updated by K + P , which
is even more complex than doubling [5]. The point K is
initialized by the secret point P = (X0, Y0, 1).

Algorithm 1 is realized as a point multiplication along
with some additional field multiplication for computing
pairing value f . The value of f in doubling step of the
Miller’s algorithm in Edwards coordinates [19] can be
computed by f ← f2l1, where in case of even embed-
ding degree and k > 2, l1 can be computed by following
equations:

l1 = 2X1Y1(x/y − y/x)(X2
1 − Y 2

1 )(X2
1 + Y 2

1 − Z2
1 )

− 2(X2
1 − Y 2

1 )2(X2
1 + Y 2

1 − Z2
1 )

− dx2y2Z2
1 (X2

1 + Y 2
1 )(2Z2

1 −X2
1 − Y 2

1 )
+ (X2

1 + Y 2
1 )(2Z2

1 −X2
1 − Y 2

1 )(X2
1 + Y 2

1 − Z2
1 ).

The Tate pairing El(P, Q) is computed by Miller’s al-
gorithm on points P,Q such that P is an l-torsion point
on the curve E(Fq) and Q ∈ E(Fqk). In order to mount
fault attack on Miller’s algorithm in Edwards coordinates,
we assume that the adversary has ability to inject fault at
the register l. We further assume that the adversary can
obtain the pairing result El(P, Q) for l = 2. This may be
possible by adopting some powerful fault injection proce-
dure or from a number of trial with the help of timing and
simple power analysis [2, 11, 28]. If l = 2 then the Miller’s
algorithm runs for only one iteration and it executes only
doubling part of Algorithm 1. In such a scenario the pair-
ing output f = l1 and K = P . So, f will be a function of
X0, Y0, x, y, and d, which can be deduced from the equa-
tion of l1 by replacing X1 by X0, Y1 by Y0, and Z1 by 1.
We can assume that the value of d (curve parameter) and
Q = (x, y) are known to the attacker. Thus, f has been
simplified and represented by the following equation:

f = a1X
6
0 + a2Y

6
0 + a3X

5
0Y0 + a4X0Y

5
0 + a5X

2
0Y 4

0

+a6X
4
0Y 2

0 + a7X0Y
3
0 + a8X

3
0Y0 + a9X

2
0Y 2

0

+a10X
4
0 + a11Y

4
0 + a12X

2
0 + a13Y

2
0 ,

for constants a1, · · · , a13. Here a1, · · · , a13 are constants
as they can be expressed interms of known values, x, y,
and d. We can linearize the above equation by using a
number of variables. The public point Q could be changed
for obtaining a number of such equations. Hence, X0, Y0

could be solved by solving the set of linear equations.

• Practical Implication of Above Fault Attack:
Let us assume l is a large prime (say 256 bits long
in practice). Then the probability of setting l = 2
by random fault injection [2] is very less (≈ 2−256 for

a 256-bit l). Hence a random fault in register l has
vary less probability of success. However, we propose
a different strategy.

The requirement of our fault attack is satisfied by
inverting the least-significant-bit of l, l[1], and setting
i = 1. Note that since l is a odd prime, l[1] is 1. Now,
if l is 256 bits long then i is of dlog2(256)e = 8 bits.
Hence the probability of setting i = 1 by random
fault injection is at least 2−8. The algorithm runs
for only one iteration as i = 1, and it executes only
the doubling part as l[i] = 0. Thus the probability of
success of the attacker is 2−9. Hence we expect that
after 512 trials the attacker will be successful at least
once.

5.2 Countermeasure

In order to resist the above fault attack it is ensured that
the Miller’s algorithm does not produce a valid pairing
result for l = 2, and for the condition that i = 1 and
l[1] = 0. In general, l is a odd prime in l-Tate pairing
computation, which means l[1] = 1. But for mounting the
above fault attack it is essential to alter the value of l[1]
from 1 to 0. Thus we suggest modified Miller’s algorithm
that is shown in Algorithm 4 for defending against fault
attack.

Algorithm 4: Fault Attack Resistant Miller’s
Algorithm

Input P an l torsion point ∈ E(Fq), Q ∈ E(Fqk)
Output The Tate pairing El(P,Q)
Process

1 i = [log2(l)], K ← P, f ← 1.
2 If l[1] = 0 then
3 Return 0.
4 End If
5 While i ≥ 1 do
6 Compute equations of l′ and v′ arising in the

doubling of K.
7 K ← 2K and f ← f2l′(Q)/v′(Q).
8 If the i-th bit of r is 1 then
9 Compute equations of l′ and v′ arising in

the addition of K and P .
10 K ← P + K and f ← fl′(Q)/v′(Q).
11 End If
12 i ← i− 1.
13 End While

14 Return f (qk−1)/l.

Correctness:

Theorem 3. The fault-attack resistant Miller’s algorithm
produce the correct result for cryptographic pairing com-
putation.

Proof. The modified Miller’s algorithm performs correctly
for cryptographic pairing computation. It is automati-
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cally aborted if l is even. It returns zero if least signif-
icant bit (LSB) of l is zero, i.e., l[1] = 0. But, pairing
computation for cryptographic applications chooses l as a
large odd prime. Thus, the LSB of l is one, i.e., l[1] = 1.
In this case our proposed modified Miller’s algorithm ex-
ecutes exactly same operations with its original form (Al-
gorithm 1). Thus it produces correct pairing value for
cryptographic applications.

Security:

Theorem 4. The fault-attack resistant Miller’s algorithm
is secure against fault attack described in Section 5.

Proof. The fault attack described in Section 5 believes
that the attacker has ability to inject fault at particular
variables during execution. It injects fault at variables
i and l. In order to mount the fault attack in pairing
computation in Edwards coordinate it is necessary to sets
i = 1 and l[1] = 0. Let us assume that the adversary
has successfully injected the required fault. Now for per-
forming the attack on the pairing computation it is also
necessary to get the correct result for faulty values of i
and l. But the proposed fault-attack resistant Miller’s
algorithm does not execute the pairing with above fault.
It will simply return zero. Thus the proposed counter-
measure is secure against the fault attack described in
Section 5.

6 Conclusion

The paper has described the security issues of pairing al-
gorithms in presence of fault. It has shown that the exist-
ing countermeasures, which are based on the point blind-
ing technique, are not sufficient for resisting fault attack
on pairing algorithms. It has proposed a new countermea-
sure that resists such kind of fault attacks. A weakness
of Miller’s algorithm in Edwards coordinates in presence
of fault has been also described in this paper. The paper
has proposed a suitable countermeasure against such an
attack.
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