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Abstract

Pseudo-random subsets of the set {1, 2, . . . , N} have many
applications in the fields of network security, cryptogra-
phy and other security issues. Recently, Dartyge and
Sárközy investigated the measures–the well distribution
measure and the correlation measure of order k–of pseu-
dorandomness of subsets of the set {1, 2, . . . , N}, and they
presented several constructive examples for subsets with
strong pseudorandom properties when N is a prime num-
ber. In this article, we present a construction of pseudo-
random subsets by using elliptic curves over finite fields
and estimate their pseudorandom measures. Exponential
sums play an important role in the proofs.
Keywords: Cryptography, pseudo-random subsets, elliptic
curves

1 Introduction

Random subsets of the positive integers not exceeding
a certain fixed integer N have many applications in the
fields of network security, cryptography and other secu-
rity issues. Many researchers find out that using random
subsets can improve the efficiency and security perfor-
mance in the key pre-distribution procedure, then propose
key management and broadcasting authentication proto-
col in P2P, ad hoc network and wireless sensor network
[1, 19]. Anonymous communication is one of important
security methods to defense passive attacks in network.
Random subsets can play an efficient role in constructing
an anonymous path and avoid routing information being
intercepted [21]. As we know random subsets can also
be used to construct key exchange and private matching
[20]. In particular, in stream ciphers random subsets of a
finite field are applied to construct binary sequences with
strong pseudorandom properties, see, e.g. [12, 17]. As in-
dicated in [7], it suffices to study subsets of {1, 2, . . . , N},

the study of subsets of other finite ordered sets can be
reduced to this case, which leads to use the number the-
oretic tools intensively.

A challenging problem is how to efficiently construct
random subsets of the positive integers not exceeding
a certain fixed integer N . However, in most cases we
replace the random subset by a pseudorandom subset,
which “looks random”, and which is constructed by a suit-
able algorithm. But when is a subset a “good” pseudo-
random subset? Recently, Dartyge, Mosaki and Sárközy
introduced and studied the pseudo-random measures of
subsets of the set of the positive integers not exceed-
ing N [7, 8, 9]. These measures are closely related to
the measures of pseudorandomness of binary sequences
introduced by Mauduit and Sárközy [17] and of the p-
pseudorandom binary sequences defined by Hubert and
Sárközy [13].

For a subset R of {1, 2, . . . , N}, define the associated
sequence EN by

EN = EN (R) = {e1, . . . , eN} ∈
{

1− | R |
N

,−| R |
N

}N

with

em =

{
1− |R|

N for m ∈ R
− |R|

N otherwise
(m = 1, . . . , N). (1)

Then the well-distribution measure of the subset R of
{1, 2, . . . , N} is defined by

W (R, EN ) = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

ea+jb

∣∣∣∣∣∣
where the maximum is taken over all a, b, t such that
a, b, t ∈ N and 1 ≤ a ≤ a + (t − 1)b ≤ N , while the
correlation measure of order k of R is defined as

Ck(R, EN ) = max
M,D

∣∣∣∣∣
M∑

m=1

em+d1em+d2 · · · em+dk

∣∣∣∣∣
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where the maximum is taken over all D = (d1, . . . , dk)
with non-negative integers 0 ≤ d1 < · · · < dk and M
such that M + dk ≤ N . One would expect that these
measures are “small”. Thus we may consider a subset
R of {1, 2, . . . , N} as a “good” pseudo-random subset if
W (R, EN ) and Ck(R, EN ) (at least for small k) are small;
they must be O(N) and ideally, they are O(N1/2+ε) [10].

Dartyge, Mosaki and Sárközy presented some good
constructions of pseudo-random subsets when N is a
prime number in [7, 8, 9, 10]. In [5] we present a con-
struction of pseudo-random subsets for N = pq with
2 < p < q < 2p by using generalized cyclotomic classes
modulo N . However in applications one usually needs
large families of pseudo-random subsets. It is interest-
ing to design “good” pseudo-random subsets for differ-
ent N using different algebraic systems. It is a natural
way to choose elliptic curves over finite fields, partially
for the elliptic curve cryptography for extensive use. We
will apply elliptic curves to constructing some families of
pseudo-random subsets and analyze their pseudorandom
measures in the present paper.

We first introduce some notions and basic facts of ellip-
tic curves over finite fields. Let p > 3 be a (large) prime,
Fp the finite field of p elements which we identify with
the set {0, 1, · · · , p − 1}, F∗p the set of non-zero elements
of Fp. Let E be an elliptic curve over Fp, given by an
affine Weierstrass equation of the standard form

y2 = x3 + Ax + B

with coefficients A,B ∈ Fp and nonzero discriminant, see
[11]. It is known that the set, denoted by E(Fp), of Fp-
rational points of E forms an Abelian group under an
appropriate composition rule denoted by ⊕ and with the
point at infinity O as the neutral element. We recall that

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, in-
cluding the point at infinity O. The translation map by
W ∈ E(Fp) on E(Fp) is defined as

τW : P 7→ P ⊕W.

It is obvious that (f ◦ τW )(P ) = f(τW (P )) = f(P ⊕W ).
In this article, for convenience, we always suppose

that E(Fp) is a cyclic group of order N and G ∈ E(Fp) is
a generator, i.e., E(Fp) = 〈G〉. In particular, N ∼ p in
this case. A multiple of G is taken by nG = ⊕n

i=1G. We
write nG = (xn, yn) ∈ Fp×Fp on E for all 1 ≤ n ≤ N − 1
and set X(nG) = xn and Y (nG) = yn.

Construction of subsets. We would like to study the
pseudorandom properties of the subset R of {1, 2, . . . , N}
defined by

R := {n | 1 ≤ n ≤ N, X(nG) ≡ h (mod p)
for any h ∈ H} (2)

where r ∈ Z, s ∈ N, s < p/2 and H = {r, r +1, . . . , r + s−
1}.

We remark that R can be defined in several differ-
ent ways using elliptic curves, we refer to a preprint
version of [12], which is available at http://iml.univ-
mrs.fr/editions/preprint2002/preprint2002.html, and [2,
3, 4] for related issues.

We also note that one can use some rational func-
tions f(X, Y ), a more general case, instead of X in Equa-
tion (2).

2 The Cardinality of R
Exponential sums play an important role in the proofs
to estimate the cardinality of R and its pseudo-random
measures.

For any positive integer m, we identify Zm with the
residue ring modulo m. Put

em(z) = exp(2πiz/m).

The exponential sums enter into our problem by means
of the following well known basic identity.

Lemma 1 ([15]). For any element c ∈ Zm, we have

∑

z∈Zm

em(cz) =
{

m, if c = 0
0, otherwise.

We also need the following statement.

Lemma 2 ([15]). The bound

m−1∑
c=0

∣∣∣∣∣
u+v∑

z=u+1

em(cz)

∣∣∣∣∣ ≤ m(1 + log m)

holds for any integers u and 1 ≤ v ≤ m.

Let ψ(z) = exp(2πiz/p) be a classical additive charac-
ter of Fp. We also need the following upper bound which
is a special case of [14, Corollary 1].

Lemma 3. Let f be a nonconstant rational function and
G ∈ E(Fp) be a rational point of order N . Then the bound

∣∣∣∣∣∣∣

N−1∑
z=0

f(zG)6=∞

ψ(λf(zG))eN (ηz)

∣∣∣∣∣∣∣
≤ 2deg(f)p1/2

holds for all λ ∈ F∗p and η ∈ ZN . Hence the bound on
incomplete sums

∣∣∣∣∣∣∣

v∑
z=u

f(zG)6=∞

ψ(λf(zG))

∣∣∣∣∣∣∣
≤ 2deg(f)p1/2(1 + log N)

holds for all λ ∈ F∗p and integers 0 ≤ u < v ≤ N − 1.

We now present a bound on the cardinality of R.
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Theorem 1. Let R be defined as in Equation (2). Then
the cardinality of R satisfies

∣∣∣∣|R| −
sN

p

∣∣∣∣ ≤ 4p1/2(1 + log p).

Proof. From the definition of R in Equation (2) and
Lemma 1, we have

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG)− h)) =
{

p, if n ∈ R
0, otherwise.

Hence by Lemmas 2 and 3 we obtain

|R| =
N∑

n=1

1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG)− h))

=
s(N − 1)

p
+

1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)
N∑

n=1

ψ(λX(nG))

≤ s(N − 1)
p

+

1
p

∑

λ∈F∗p

∣∣∣∣∣
r+s−1∑

h=r

ψ(−λh)

∣∣∣∣∣ ·
∣∣∣∣∣

N∑
n=1

ψ(λX(nG))

∣∣∣∣∣

≤ sN

p
+ 4p1/2(1 + log p).

We complete the proof of Theorem 1.

3 Pseudo-random Measures of R
Now we present upper bounds on the well-distribution
measure and the correlation measure of order k of R de-
fined in Equation (2). The associated sequence EN de-
fined by Equation (1) is

em =
{

1− α for m ∈ R
−α otherwise,

where

α =
| R |
N

=
s

p
+ 8θp−1/2(1 + log p)

with some θ satisfying |θ| < 1, since N ∼ p. Let β = s
p−α.

Throughout this paper, the implied constant in the
symbol “ ¿ ” is absolute.

Theorem 2. Let R be a subset of {1, . . . , N} defined as
in Equation (2), we have

W (R, EN ) ¿ p1/2(1 + log p)(1 + log N).

Proof. For 1 ≤ n ≤ N − 1, it is easy to see that

en = (1− α)
1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG)− h))

−α


1− 1

p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG)− h))




=
1
p

r+s−1∑

h=r

∑

λ∈Fp

ψ(λ(X(nG)− h))− α

=
s

p
− α +

1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX(nG))

= β +
1
p

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX(nG)). (3)

However eN = −α, since NG = O.
Assume that a, b, t ∈ N and 1 ≤ a ≤ a + b(t− 1) ≤ N .

According to Equation (3), we obtain
∣∣∣∣∣
t−1∑

i=0

ea+ib

∣∣∣∣∣

≤
∣∣∣∣∣∣
1
p

t−1∑

i=0

∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((a + ib)G))

∣∣∣∣∣∣

+

∣∣∣∣∣
t−1∑

i=0

β

∣∣∣∣∣ + 1

≤ 1
p

∑

λ∈F∗p

∣∣∣∣∣
r+s−1∑

h=r

ψ(−λh)

∣∣∣∣∣ ·
∣∣∣∣∣
t−1∑

i=0

ψ(λX((a + ib)G))

∣∣∣∣∣
+ |tβ|+ 1

≤ 4p1/2(1 + log p)(1 + log N) + |tβ|+ 1

by Lemma 2 and Lemma 3 or [3, Lemma 5], which is
derived from Lemma 3. And

|tβ| = 8tθp−1/2(1 + log p) ≤ 16p1/2(1 + log p)

since t ≤ N ∼ p. So we have
∣∣∣∣∣
t−1∑

i=0

ea+ib

∣∣∣∣∣ ¿ p1/2(1 + log p)(1 + log N).

We complete the proof of Theorem 2.

Theorem 3. Let R be a subset of {1, . . . , N} defined as
in Equation (2), for k < p, we have

Ck(R, EN ) ¿ kp1/2(2 + log p)k(1 + log N).

Proof. Assume that integers d1, . . . , dk and M ∈ N with

0 ≤ d1 < · · · < dk, M + dk ≤ N.
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Now using Equation (3), we obtain
∣∣∣∣∣

M∑
m=1

em+d1em+d2 · · · em+dk

∣∣∣∣∣

≤
∣∣∣∣∣∣

M∑
m=1

k∏

i=1


β +

1
p

∑

λ∈F∗p
r+s−1∑

h=r

ψ(−λh)ψ(λX((m + di)G))

)∣∣∣∣∣ + 1

= 1 +
1
pk

∣∣∣∣∣∣

M∑
m=1

k∏

i=1


pβ +

∑

λ∈F∗p
r+s−1∑

h=r

ψ(−λh)ψ(λX((m + di)G))

)∣∣∣∣∣

= 1 +
1
pk

∣∣∣∣∣∣

M∑
m=1

k∑
u=0

∑

1≤j1<...<ju≤k

(pβ)k−u

u∏

i=1


 ∑

λ∈F∗p

r+s−1∑

h=r

ψ(−λh)ψ(λX((m + dji)G))




∣∣∣∣∣∣

= 1 +
1
pk

∣∣∣∣∣∣

k∑
u=0

(pβ)k−u
∑

1≤j1<...<ju≤k

∑

λ1∈F∗p
· · ·

∑

λu∈F∗p

r+s−1∑

h=r

ψ(−h(λ1 + . . . + λu))

M∑
m=1

ψ

(
u∑

v=1

λvX((m + djv )G)

)∣∣∣∣∣

= 1 +
1
pk

∣∣∣∣∣∣

k∑
u=0

(pβ)k−u
∑

1≤j1<...<ju≤k

∑

λ1∈F∗p

r+s−1∑

h=r

ψ(−hλ1) · · ·
∑

λu∈F∗p

r+s−1∑

h=r

ψ(−hλu)

M∑
m=1

ψ((λ1X ◦ τdj1G + . . . + λuX ◦ τdju G)(mG))

∣∣∣∣∣

≤ 1 +
1
pk

k∑
u=0

(
k
u

)
(pβ)k−upu(1 + log p)uZ

= 1 +
1
pk

(pβ + p(1 + log p))kZ

= 1 + (β + 1 + log p)kZ ≤ (2 + log p)kZ

where
∣∣∣∣∣

M∑
m=1

ψ((λ1X ◦ τdj1G + . . . + λuX ◦ τdju G)(mG))

∣∣∣∣∣ ≤ Z.

It suffices to estimate the value of Z, i.e., the upper bound

of

M∑
m=1

ψ((λ1X ◦ τdj1G + . . . + λuX ◦ τdju G)(mG))

for any λ1, . . . , λu ∈ F∗p and 1 ≤ u ≤ k. By [3, Lemma 1],

λ1X ◦ τdj1G + . . . + λuX ◦ τdju G

is a nonconstant rational function of degree at most 2u.
So by Lemma 3 again, we obtain

∣∣∣∣∣
M∑

m=1

ψ((λ1X ◦ τdj1G + . . . + λuX ◦ τdju G)(mG))

∣∣∣∣∣
≤ 4up1/2(1 + log N) ≤ 4kp1/2(1 + log N).

We complete the proof of Theorem 3 by setting

Z = 4kp1/2(1 + log N).

4 Conclusion

Elliptic curves are widely used in cryptography for de-
signing public key cryptosystems [11] and pseudorandom
number generators [18]. It is a natural way to use el-
liptic curves to construct pseudorandom subsets, which
is an important security primitive in network security
and cryptography. In this article, we present an ef-
ficient method for constructing pseudorandom subsets
of the set {1, 2, . . . , N} using elliptic curves over finite
fields and show that such pseudorandom subsets possess
strong pseudorandom properties using the number theo-
retic tools of exponential sums.

Very recently, Liu and Gao studied a quasi-random
subset of Fp, which consists of the x-axis of all rational
points on elliptic curves over Fp in [16]. The study of
quasi-random subsets of ZN is partially related to random
graphs [6]. A relationship between quasi-randomness and
pseudo-randomness is discussed in [10].

It is noted again that the pseudorandom subsets are
constructed using modulo N residue rings in [7, 8, 9, 10]
when N is a prime and in [5] when N is a product of
two distinct primes. But in this article N can achieve
other values depending on the elliptic curves. Our method
can offer large families of pseudorandom subsets of the
set {1, 2, . . . , N} for different N by using different elliptic
curves. Although we only restrict that E(Fp) is a cyclic
group of order N , it is easy to extend to any elliptic
curves, which is defined over finite fields Fq for a prime
power q, with a cyclic subgroup of order N of E(Fq).
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